
On the Impact and Defeat of Regular Expression Denial of Service

James C. Davis

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Dongyoon Lee, Chair
Francisco Servant

Danfeng (Daphne) Yao
Ali R. Butt

Patrice Godefroid

April 30, 2020
Blacksburg, Virginia

Keywords: Regular expressions, denial of service, ReDoS, empirical software engineering,
software security

Copyright 2020, James C. Davis

On the Impact and Defeat of Regular Expression Denial of Service

James C. Davis

(ABSTRACT)

Regular expressions (regexes) are a widely-used yet little-studied software component. Engi-
neers use regexes to match domain-specific languages of strings. Unfortunately, many regex
engine implementations perform these matches with worst-case polynomial or exponential
time complexity in the length of the string. Because they are commonly used in user-facing
contexts, super-linear regexes are a potential denial of service vector known as Regular ex-
pression Denial of Service (ReDoS). Part I gives the necessary background to understand
this problem.

In Part II of this dissertation, I present the first large-scale empirical studies of super-linear
regex use. Guided by case studies of ReDoS issues in practice (Chapter 3), I report that the
risk of ReDoS affects up to 10% of the regexes used in practice (Chapter 4), and that these
findings generalize to software written in eight popular programming languages (Chapter 5).
ReDoS appears to be a widespread vulnerability, motivating the consideration of defenses.

In Part III I present the first systematic comparison of ReDoS defenses. Based on the
necessary conditions for ReDoS, a ReDoS defense can be erected at the application level,
the regex engine level, or the framework/runtime level. In my experiments I report that
application-level defenses are difficult and error prone to implement (Chapter 6), that find-
ing a compatible higher-performing regex engine is unlikely (Chapter 7), that optimizing an
existing regex engine using memoization incurs (perhaps acceptable) space overheads (Chap-
ter 8), and that incorporating resource caps into the framework or runtime is feasible but
faces barriers to adoption (Chapter 9).

In Part IV of this dissertation, we reflect on our findings. By leveraging empirical soft-
ware engineering techniques, we have exposed the scope of potential ReDoS vulnerabilities,
and given strong motivation for a solution. To assist practitioners, we have conducted a sys-
tematic evaluation of the solution space. We hope that our findings assist in the elimination
of ReDoS, and more generally that we have provided a case study in the value of data-driven
software engineering.

On the Impact and Defeat of Regular Expression Denial of Service

James C. Davis

(GENERAL AUDIENCE ABSTRACT)

Software commonly performs pattern-matching tasks on strings. For example, when vali-
dating input in a Web form, software commonly tests whether an input fits the pattern of
a credit card number or an email address. Software engineers often implement such string-
based pattern matching using a tool called regular expressions (regexes). Regexes permit
software engineers to succinctly describe the sequences of characters that make up common
“languages” like the set of valid Visa credit card numbers (16 digits, starting with a 4) or
the set of valid emails (some characters, an ‘@’, and more characters including at least one
‘.’). Using regexes on untrusted user input in this manner may be a dangerous decision be-
cause some regexes take a long time to evaluate. These slow regexes can be exploited by
attackers in order to carry out a denial of service attack known as Regular expression Denial
of Service (ReDoS). To date, ReDoS has led to outages affecting hundreds of websites and
tens of thousands of users.

While the risk of ReDoS is well known in theory, in this dissertation I present the first
large-scale empirical studies measuring the extent to which slow regular expressions are used
in practice. I found that about 10% of real regular expressions extracted from hundreds of
thousands of software projects can exhibit longer-than-expected worst-case behavior in pop-
ular programming languages including JavaScript, Python, and Ruby. Motivated by these
findings, I then consider a range of ReDoS solution approaches: application refactoring, regex
engine replacement, regex engine optimization, and resource caps. I report that application
refactoring is error-prone, and that regex engine replacement seems unlikely due to incom-
patibilities between regex engines. Some resource caps are more successful than others, but
all resource cap approaches struggle with adoption. My novel regex engine optimizations
seem the most promising approach for protecting existing regex engines, offering significant
time reductions with acceptable space overheads.

Dedication

Praise God from whom all blessings flow.

iv

Acknowledgments

So many people have contributed to this labor! Many thanks to all of you, and particularly...

To Kirsten: Thank you for suggesting we go to graduate school, for sharing in its triumphs
and tribulations, and for listening with a smile to years of incomprehensible jargon.

To my multitudinous family: Thank you for your love, your questions, and for fruitful family
colloquia. To quote my sister, Dr. Nan Pond: “I joyfully acknowledge the absurd cross-
disciplinary thinktank that is my family.” I am also grateful to B. Danielak — you were the
first of my friends to go to graduate school, and your passion has been an inspiration to me.

To my friends (you know who you are): Thank you, variously, for many rounds of rac-
quetball, many madcap conversations, many tea parties, and many Tuesday evenings in the
Word.

To L.C. Gayne, S. Duersch, and the GPFS team: Thank you for introducing me to the
practice of computing, and for supporting me in the transition into research.

To P. De Arras and the Idego Coffee team: Thank you for helping me through the days
and (a few) nights.

To my collaborators: Thank you for challenging me and for expanding my perspectives.
I am particularly grateful to C. Coghlan, J. Donohue, Sk A. Hassan, A. Kazerouni, L.
Michael IV, D. Moyer, and E. Williamson, for their expert and enthusiastic contributions to
the research presented in this dissertation.

To D. Craig, S. Fulton, T. Pennings, and T. Nishikawa: Thank you for holding my hand in
my first fumbling attempts at research.

To my doctoral committee: Thank you for your candid criticisms, and for your guidance
and assistance on this path.

To my advisor, Dongyoon Lee: Thank you for inviting me into your research lab, infect-
ing me with your curiosity and delight in discovery, and asking more of me than I thought
possible. I would not be here without your unceasing support.

v

List of Figures xi

List of Tables xiii

Part I Introduction and Background 1

Chapter 1 Introduction 2

1.1 Context and problem statement . 2

1.2 Thesis . 4

1.3 Scientific contributions and applications . 4

1.4 Organization . 5

1.5 Statement of authorship, attribution, and copyright 5

Chapter 2 Background and related work 6

2.1 Outline . 6

2.2 The theory of regular languages . 6

2.3 Algorithms for regex membership testing . 15

2.4 Regular expressions in software engineering practice 25

2.5 Regular expression denial of service (ReDoS) 34

2.6 Research on the use of regexes in practice 40

2.7 What we don’t yet know . 44

Part II Is ReDoS a Problem in Practice? 45

Chapter 3 Case studies of problematic super-linear regex behavior 47

3.1 Summary . 47

3.2 CVE 2015-6736 at MediaWiki . 48

3.3 July 2019 service outage at Cloudflare . 49

3.4 July 2016 service outage at Stack Overflow 50

3.5 Performance problem in the Atom editor . 51

vi

3.6 Lessons learned . 53

Chapter 4 Measuring the use of super-linear regexes in practice 55

4.1 Summary . 55

4.2 Study design and research questions . 56

4.3 RQ1: How prevalent are super-linear regexes in practice? 56

4.4 RQ2: How strongly vulnerable are the super-linear regexes? 61

4.5 RQ3: Which application domains do super-linear regexes affect? 63

4.6 Discussion . 65

4.7 Threats to validity . 66

Chapter 5 Generalizing regex measurements 68

5.1 Summary . 68

5.2 Motivation . 69

5.3 Study design and research questions . 71

5.4 Regex metrics for use in hypothesis testing 72

5.5 RQ1: Does the Extraction Methodology Hypothesis hold? 77

5.6 RQ2: Does the Cross-Language Hypothesis hold? 83

5.7 RQ3: Does super-linear behavior generalize to other regex engines? 89

5.8 RQ4: Can we replicate other previous regex research? 92

5.9 Discussion . 93

5.10 Threats to validity . 95

Part III Evaluating Approaches to Address ReDoS 98

Chapter 6 Application-level refactoring 101

6.1 Summary . 101

6.2 Study design and research questions . 102

6.3 RQ1: Do ambiguity anti-patterns signal SL regexes? 102

vii

6.4 RQ2: How have software engineers repaired ReDoS vulnerabilities? 105

6.5 RQ3: What ReDoS repair strategies do software engineers prefer? 107

6.6 RQ4: How effective are software engineers’ manual repairs? 108

6.7 Discussion . 109

Chapter 7 Replacing the regex engine 112

7.1 Summary . 112

7.2 Study design and research questions . 113

7.3 RQ1: To what extent does moving from one regex engine to another offer
consistent performance benefits? . 114

7.4 RQ2: To what extent do syntactically-compatible regexes exhibit semantic
differences between regex engines, and why? 117

7.5 RQ3: To what extent are a common core of regexes used across regex engine
boundaries? . 123

7.6 Discussion . 126

7.7 Threats to validity . 127

Chapter 8 Optimizing a regex engine through memoization 129

8.1 Summary . 129

8.2 Related work . 130

8.3 Study design and research questions . 134

8.4 RQ1: What is the expected effect of memoization on K-regexes? 134

8.5 RQ2: How might the space costs of K-regex memoization be reduced? 142

8.6 RQ3: Experimentally, what are the space and time costs of K-regex memo-
ization? . 154

8.7 RQ4: How might memoization be extended to E-regexes? 160

8.8 Discussion . 171

8.9 Threats to validity . 172

Chapter 9 Techniques to cap per-client resource utilization 174

9.1 Summary . 174

viii

9.2 Related work — resource caps in mainstream regex engines 175

9.3 Study design and research questions . 177

9.4 RQ1: How effective are existing resource-cap solutions? 178

9.5 RQ2: How commonly do software engineers adopt a retrofitted resource-cap
solution once it becomes available? . 180

9.6 RQ3: How might a web framework be designed from scratch to incorporate
resource caps? . 183

9.7 Discussion . 207

9.8 Threats to validity . 208

Part IV Conclusions and Recommendations 209

Chapter 10 Conclusions and recommendations 210

10.1 Summary . 210

10.2 Future work . 212

10.3 Broader implications for computing systems 215

10.4 Reproducibility and open science . 216

10.5 Closing remarks . 216

Bibliography 217

Appendix A Notes on the Perl regex engine 246

A.1 Introduction . 246

A.2 Origins . 246

A.3 Conversion from pattern to automaton . 246

A.4 Automaton simulation . 247

A.5 Avoiding super-linear behavior . 247

ix

List of Figures

2.1 Finite automaton example 1 . 10

2.2 Finite automaton example 2 . 10

2.3 Finite automaton example 3 . 11

2.4 Thompson sub-automaton for σ ∈ Σ . 12

2.5 Thompson sub-automaton for repetition . 12

2.6 Thompson sub-automaton for disjunction . 13

2.7 Thompson sub-automaton for concatenation 13

2.8 Example automaton following the Thompson construction 14

2.9 Automaton used to illustrate membership testing 17

2.10 A regular expression with finite ambiguity 37

2.11 Regular expressions with infinite ambiguity 38

4.1 Distribution of regexes and super-linear regexes in npm and pypi modules . . 59

4.2 The code size and popularity of npm modules, marked if they contain super-
linear regexes . 60

4.3 The code size and popularity of pypi modules, marked if they contain super-
linear regexes . 60

4.4 Proportion of super-linear regexes from the npm and pypi datasets that bear
each semantic meaning . 65

5.1 Illustration of the “simple paths” regex metric 74

5.2 Methodology followed in our study of regex generalizability 78

5.3 H-EM: Regex pattern lengths by programming language 82

5.4 Distribution of module stars by programming language 86

5.5 H-CL: Cross-language regex comparisons on various metrics 88

5.6 Frequency of super-linear regex behavior in eight programming languages . . 91

5.7 Distribution of DFA blowup from each programming language 95

x

7.1 Faster regex engine families provide uniform performance improvement . . . 116

7.2 Pairwise view of potential semantic portability problems 120

7.3 Multi-language use of common regexes . 125

8.1 Automaton used to illustrate the effect of memoization 139

8.2 Example search tree using memoization . 140

8.3 Automaton used to illustrate memoizing Φin−deg>1 146

8.4 Illustration for the proof of theorem 8.5.4 . 146

8.5 Automaton used to illustrate memoizing Φquantifier 149

8.6 Raw sizes and relevant ratios of various vertex-set sizes 156

8.7 Absolute space costs of memoization schemes 159

8.8 Relative space costs of memoization schemes 159

8.9 Automaton used to illustrate the complexity of zero-width assertions 163

8.10 Automaton used to illustrate the f -NFA for backreferences 167

8.11 Automaton used to illustrate the difficulty of memoization with backreferences168

8.12 Automaton used to illustrate the effect of tuning the RLE run length 172

9.1 Illustration of the Event-Driven Architecture 185

9.2 Performance impact of an Event Handler Poisoning attack 188

9.3 EHP vulnerabilities in npm modules . 190

9.4 Node.cure’s Event Handler Poisoning-proof architecture 195

xi

List of Tables

2.1 Components of a finite automaton . 9

2.2 Summary of regular expression membership testing algorithms 15

2.3 Features and notation of E-regexes (PCRE) 28

2.4 Testing whether a string is in the language of a regex 29

2.5 Leftmost-greedy match semantics . 30

2.6 Sample reductions from K-compatible E-regexes to K-regexes 31

3.1 Super-linear regexes in ReDoS case studies 47

4.1 Summary of our measurements of super-linear regexes in the npm and pypi
module registries. 59

4.2 Measured worst-case behavior of super-linear regexes 62

4.3 Performance of each ReDoS detector in our ensemble 63

4.4 Proposed common semantic meanings for regexes, with results from automatic
labeling . 64

5.1 Comparison of existing regex corpuses by extraction method, programming
language, and scale . 70

5.2 Regex metrics organized by representation, language diversity, and worst-case
match complexity . 73

5.3 Details of the regex extraction techniques used to compare the regexes ex-
tracted using static analysis and program instrumentation 80

5.4 Summary of the corpuses resulting from the two regex extraction methodologies 81

5.5 Summary of the polyglot regex corpus . 84

5.6 Measurements of regexes extracted from different programming languages . . 87

5.7 ReDoS solution space . 100

6.1 Utility of the super-linear regex anti-patterns 105

xii

6.2 The three super-linear regex repair strategies 106

6.3 Frequency of repair strategies for historic and new vulnerabilities 107

7.1 The language versions used in our regex portability experiments 118

7.2 Summary statistics for the semantic portability experiment 119

7.3 The semantic differences identified during our semantic portability experiment 122

8.1 Components of a memoized finite automaton 137

8.2 Example memoization table . 139

8.3 Space and time complexity of selective memoization schemes 144

9.1 The effectiveness of algorithm-oriented resource caps 179

9.2 Adoption of regex match timeouts in C# projects 182

9.3 Adoption of C# timeouts in super-linear regex method calls 182

9.4 Taxonomy of vulnerable APIs in Node.js . 194

9.5 Summary of our extended Worker Pool API 196

9.6 Performance evaluation of Node.cure using macro-benchmarks 203

10.1 Artifacts for reproducibility . 216

xiii

Part I

Introduction and Background

1

Chapter 1

Introduction

“ Some people, when confronted with a problem, think ‘I know, I’ll use regular expressions.’
Now they have two problems. ”

–Jamie Zawinski

1.1 Context and problem statement

Recognizing patterns is one of the most important challenges of life. Many tasks rely on
the ability to determine whether a new object belongs to a class of objects of interest,
or whether it resembles one you’ve seen before. We have long sought to train computers
to solve pattern recognition problems on our behalf [170]. In the context of computing,
many pattern recognition problems take the form of string matching problems. For example,
business processes often require testing whether a user’s input resembles an email address,
or searching unstructured text for phone numbers, tax identifiers, or phrases of interest. By
expressing these pattern recognition tasks as string matching problems, software engineers
can use computers to automate time-consuming manual activity.

One of the most widely used techniques for solving string matching problems is known as
Regular Expressions (regexes). A regex is a notion and a notation for concisely describing
a set of strings that share a property. Rather than enumerating all such strings, a regex
provides the machinery to generalize the content of these strings into a pattern. An algorithm
can then be used to determine whether a candidate string matches this pattern. For example,
the set of all valid email addresses might be described using the pattern “A non-empty
sequence of characters, an ‘@’ symbol, and then another non-empty sequence of characters
containing at least one period.” This pattern for email addresses can be encoded in traditional
regex notation as /.+@.+\..+/.

Many practical problems can be described in the form of string matching using regexes [163].
The general nature of string matching has made regexes a popular tool, and software en-
gineers report that they frequently use regexes [238]. By one estimate, 40% of software
projects use regexes to solve string matching problems [115]. For example, string matching
can be used to validate input [338], search for relevant code [300], and as part of linting or
compiling software programs [65].

2

1.1. Context and problem statement 3

Although regexes are sometimes used in low-risk and ephemeral ways, e.g., during program
comprehension [300], regexes are also used in business-critical contexts. Of particular interest
in this dissertation, regexes are widely used in web servers to validate untrusted input, e.g.,
to confirm that an entry on a web form is truly an email and not an SQL injection attack.
When used in this manner, regexes act as a defensive filter and prevent illegitimate data
from poisoning a program, avoiding crashes and security vulnerabilities. But are the regexes
themselves a potential vector for abuse? Quis custodiet ipsos custodes?

This dissertation focuses on the denial-of-service implications of using regexes as a defensive
filter. Not all regex matches can be solved quickly in current computer systems, with po-
tentially dire consequences for software stability. For some regexes, there are input strings
that will cause the standard matching process to take super-linear time in the length of the
pattern and input strings [284, 313, 336, 341]. To determine a match using the standard
matching process, the worst-case time complexity is polynomial in the length of the input for
some regexes, and exponential in the input length for others.1 This high algorithmic com-
plexity exposes software to a potential denial of service vector [246, 247] known as Regular
expression Denial of Service (ReDoS) [135, 136]. A malicious actor can conduct a ReDoS at-
tack by first identifying (or guessing [307]) a super-linear regex that is used by a web server
to process untrusted input, and then submitting as input one of the strings that triggers
that regex’s worst-case behavior. Such an input will cause the web server to dedicate an
inordinate amount of computational resources to the matching process, diverting resources
away from legitimate users. If the attacker can divert sufficient resources, the effect will be
to deny service to other users.

The technology of regexes has a great deal of inertia, and will only be changed for a com-
pelling reason. To date, there have been only a few publicized examples of super-linear regex
evaluations that disrupted a web service. Although some of these examples had substantial
impact — e.g., rippling across thousands of websites (Chapter 3) — on the whole I believe
that regex engine maintainers feel no urgency to address this issue, viewing ReDoS as a
parlor trick rather than a pressing concern. For example, Google’s V8 JavaScript engine
has had defects describing its super-linear behavior since 2009 [274], and many Perl monks
believe such regexes are unrealistic [277]. The motto of the maintainers of critical software
like regex engines is quite reasonable: “If it ain’t broke, don’t fix it. (And even if it is broke,
tread carefully).”

In light of this inertia, this dissertation investigates two questions:

Part II : Is ReDoS a significant threat to real-world software?
Part III : What is the solution space for ReDoS, and how effective are existing solutions?

1In Chapter 8, we extend prior analyses to show that some regexes require super-exponential time to
match using the standard matching process.

4 Chapter 1. Introduction

1.2 Thesis

Because 10% of regexes exhibit super-linear worst-case behavior in typical
regex engine implementations, ReDoS is a significant security threat to real-
world software. Existing solutions are ineffective or impractical, while our new
approaches appear promising.

1.3 Scientific contributions and applications

This dissertation has contributed to computer science in two ways:

Part II: I determined that a significant fraction — up to 10% — of real regexes exhibit
super-linear behavior. Since regexes are commonly applied to untrusted input, this finding
suggests that ReDoS may be a significant problem in practice. Some of these results were
shared with the scientific community at ESEC/FSE [139, 141] and ASE [142].

Part III: I analyzed the ReDoS solution space and evaluated the effectiveness of various
solutions. Some of the solutions evaluated in this work are novel. Others have been
proposed by researchers or implemented in production systems, and I have provided the
first empirical evaluation of their effectiveness. My findings have been shared with the
scientific community at ESEC/FSE [139, 141] and USENIX Security [140]. Other findings
are under preparation.

Beyond contributions to the state of knowledge, my findings will impact two engineering
communities: software engineers and regex engine developers.

In the short term, software engineers should take more care with the use of regexes in
their software. My empirical research has shown that most programming languages have
exponential worst-case behavior, despite the adoption of safeguards in several programming
languages. Unless software engineers incorporate regex vulnerability scans into their code
review process, they should be suspicious of the use of regexes on time-critical paths. They
may wish to respond “Regexes considered harmful” to code changes that introduce new
regexes into their software.

In the long term, regex engine developers should modify their regex engines as a result of my
findings. My empirical research has shown that software engineers frequently rely on super-
linear regexes in their code, and so regex engine developers should address the widespread
potential for ReDoS. With the adoption of regex engines comes the responsibility to offer
users a secure foundation. But this task can be difficult to implement in the absence of usage
data and a systematic empirical evaluation of the solution space. My work has addressed
these gaps, guiding regex engine developers toward an effective solution appropriate to their
context.

1.4. Organization 5

1.4 Organization

This dissertation is divided into four parts.

• Part I presents background and related work. Additional related work will be introduced
as needed in the subsequent chapters.

• Part II describes my research showing that ReDoS is a problem in practice.
• Part III describes my research evaluating approaches to address ReDoS.
• Part IV concludes with a summary of the findings and opportunities for future work.

1.5 Statement of authorship, attribution, and copy-
right

As required by the Virginia Tech Dissertation Handbook,2 this section clarifies the intellectual
ownership of the material in this document.

This dissertation is in the “manuscript” style, with several chapters derived from published
work that had multiple co-authors. Each chapter begins by indicating the publication(s)
from which the material is drawn. Where appropriate, the content has been modified and
extended to form a coherent dissertation.

I am the author of all of the material included in this dissertation. I identified the prob-
lems and potential solutions, designed and performed the experiments, and documented my
findings. Where my co-authors had intellectual ownership of portions of a publication, I did
not include that material in this dissertation. For example, Chapter 7 is derived from [141];
the qualitative portions of [141] were conducted by L. Michael and appear in his Master’s
thesis [237] rather than this dissertation.

All figures used in this document are of my own creation.

2See https://guides.lib.vt.edu/c.php?g=547528&p=3756998.

https://guides.lib.vt.edu/c.php?g=547528&p=3756998

Chapter 2

Background and related work

“ ‘Begin at the beginning’, the King said, very gravely, ‘and go on till you come to the end:
then stop.’ ”

–Lewis Carroll

2.1 Outline

This dissertation is motivated by the importance of regexes within software engineering
practice. In this chapter I will discuss the theoretical underpinnings of regexes, as well as
their manifestation in computer software as experienced by a software engineer. This chapter
covers the following material and related work:

• The history and theoretical foundations of regexes (§2.2);
• The various algorithms for testing whether a string is in the language of a regex (§2.3);
• The use of regular expressions (regexes) in software engineering practice (§2.4);
• The nature of Regular Expression Denial of Service (ReDoS) (§2.5); and
• Other research related to the work described in this dissertation (§2.6).

It concludes by summarizing what can be learned from the literature and identifying open
questions that are resolved in this dissertation (§2.7).

The material on ReDoS (§2.5) and the summary of gaps in the literature (§2.7) is the most
critical for understanding the contributions of this dissertation. I have provided the other
material to give readers a more complete understanding of the context of my work, and to
assist those unfamiliar with the material. Subsequent chapters will refer back to this material
as needed, so readers may skip some or all of it for now.

2.2 The theory of regular languages

2.2.1 Mathematical origins

The theory of regular languages emerged from concurrent studies of computability and lin-
guistics. Fundamental work in the 1930s by Gödel [173], Church [123], and Turing [324]

6

2.2. The theory of regular languages 7

sketched the general limits of computability using a machine with a finite set of states and
an unlimited tape comprising its working memory. Subsequent work by McCulloch and
Pitts posited that the behavior of neural systems could be modeled using “neural nets” with
finitely many states and no memory at all [230]. Various extensions of these neural nets
are now known more generally as finite state automata. Kleene described an algebra for the
“regular events” that these automata could identify, and showed the correspondence between
this algebra and the behavior of the automata [210].1 Mealy soon observed that similar ma-
chines could be used to model the behavior of an electrical circuit [235]. Moore [253] and
others [296] demonstrated and delineated the expressive power of various formulations of
finite state automata. Eventually Rabin and Miller provided the canonical formalization of
finite automata and the classes of problems that they could compute [281], while the linguist
Chomsky described the limits of their expressiveness in the context of human language [121].

By the end of the 1950s, computational and linguistic researchers had introduced the par-
allel ideas of finite state automata (as a model of computation) and of regular languages
(as an algebra and a linguistic model). It was known that these concepts had equivalent
expressive power, but the precise correspondence between them had not yet been clearly
shown. This task was accomplished independently by McNaughton and Yamada [234] and
by Glushkov [171], both of whom provided algorithms for converting between a finite state
machine and Kleene’s algebraic language of regular expressions. After this, many researchers
explored the expressive power of various classes of finite state machines, and the computa-
tional complexity they face in solving different problems. Many survey papers [192] and
textbooks [93, 194, 301] summarize their efforts. I discuss work on the specific problem of
membership testing in §2.3.

2.2.2 Regular expressions and finite automata

2.2.2.1 Kleene regular expressions

Kleene introduced the class of regular events that a McCulloch-Pitts neural net (finite state
automaton) might identify [210]. A regular event is any sequence of elementary events from
an alphabet Σ that can be constructed using a finite number of disjunctions, concatena-
tions, and repetitions. Kleene introduced algebraic notation to describe this class of events
inductively. A grammar for the Kleene regular expressions (K-regexes) is given in Grammar
2.1.

A Kleene regular expression consists of a sequence of terminal characters σ taken from
an alphabet Σ, as well as operations on groups of these characters. Kleene defined three
operations on the sub-patterns of an expression:

1It was Kleene who proposed the term “regular languages”. In the same breath he made an appeal for a
“more descriptive term” that never emerged.

8 Chapter 2. Background and related work

〈R〉 ::= P
| (P)
| P∗
| P · P
| P | P

〈P〉 ::= σ ∈ Σ ∪ {ε}
| R

Grammar 2.1: Kleene’s grammar for regular expressions. A Regular expression
consists of one or more Patterns. Parentheses provide precedence. Patterns can be repeated
(“ ∗ ”) and combined using concatenation (“ · ”) and disjunction (“ | ”). Disjunction is also
denoted “ ∪ ” and “ + ” in the literature. My introduction of a second non-terminal P is
intended to emphasize the recursive nature of sub-patterns, but is not strictly necessary.

• Disjunction, permitting a nerve net to recognize the union of a set of regular events
(R1|R2);

• Concatenation, permitting a nerve net to recognize two regular events in sequence
(R1 ·R2);2 and

• Unbounded repetition, permitting a nerve net to recognize a regular event zero or
more times (R∗).

The language of a Kleene regular expression R, i.e., the set of strings that it describes, is
denoted L(R). This language can be described inductively in terms of the basic operations
of the grammar:

L(ε) = {ε}
L(σ) = {σ}
L(P1 · P2) = L(P1) · L(P2)
L(P1∗) = L(P1)∗
L(P1|P2) = L(P1) ∪ L(P2)

For example, with the alphabet Σ = 0, 1, the Kleene regular expression

R = (0 · 0 ∗ ·1) | (1 · 0)

describes the sequence of events consisting of either (1) one or more 0’s, followed by a 1; or
(2) a 1 followed by a 0.

2In Glushkov’s algebra, this operation is referred to as multiplication and can be thought of as a Cartesian
product.

2.2. The theory of regular languages 9

Table 2.1: Components of a finite automaton. Components of a Rabin-Miller finite
state automaton A = 〈Q, q0 ∈ Q,F ⊆ Q,Σ, δ〉. Whether the automaton is deterministic or
non-deterministic depends on its transition function δ. The components of finite automaton
A can be denoted, e.g., AQ or Aq0.

Component Meaning

Q The (finite) set of states of the automaton: Q = {q1, q2, . . . , qm}, with |Q| = m

q0 ∈ Q The initial state of the automaton

F ⊆ Q The accepting (Final) states of the automaton

Σ The input alphabet for strings: w ∈ Σ∗

δ : Q× Σ ∪ {ε} → P(Q) The transition function of the automaton, i.e., its “edges” in a graph representation

Kleene showed that every regular expression corresponded to the behavior of some finite
state automaton, and vice versa. In other words, every finite automaton describes a class of
regular events, and every regular expression describes some finite automaton. McNaughton
and Yamada, as well as Glushkov, provided algorithms to show “which ones”, i.e., to convert
from a Kleene regular expression to an automaton and from an automaton to a Kleene
regular expression [171, 234]. Expressions in Kleene’s algebra can thus be viewed both as
a description of a set of regular events, as well as a notation to describe the behavior of a
finite state machine. I will describe their constructions using the Rabin-Miller model of a
finite state machine, or finite automaton [281].

2.2.2.2 Finite automata

Rabin and Miller provided the canonical model of a finite state machine. Unlike ma-
chines based on Turing’s model, which were automata with internal states and unbounded
memory, Rabin and Miller studied finite automata with a fixed number of states to rep-
resent memory and computation. These automata can be described using the five-tuple
A = 〈Q, q0 ∈ Q,F ⊆ Q,Σ, δ〉 with the meanings given in Table 2.1.

In Kleene’s terminology, such a finite state automaton encodes a class of regular events of
interest. Suppose that we encode a regular event in terms of a string over the input alphabet:
w ∈ Σ∗. We denote the empty string w = ε, |ε| = 0. Given a finite automaton A, starting
from its start state Aq0 , we can repeatedly apply the transition function Aδ a total of |w|
times, once for each character in w. If the automaton ends in an accept state f ∈ AF ⊆ AQ,
we say that the regular event described by the string w is in the language of the automaton:
w ∈ L(A). If the automaton does not end in an accept state, we say that the regular event
described by the string w is not in the automaton’s language: w 6∈ L(A). The set of strings
that drive a finite automaton to an accept state is known as the language of that automaton.

The behavior of a finite automaton can be represented by means of a directed graph: the
states in Q comprise the vertices, the δ mapping is expressed in the form of transitions or

10 Chapter 2. Background and related work

q1 q2 q3

0

1 1

1

Figure 2.1: Finite automaton example 1. Example of a finite automaton whose language
can be described using the regular expression 0 ∗ ·1 · 1 · 1∗. There are implicit edges from q2
and q3 to the implicit reject state on the input 0.

q1 q2 q3

0

1 0

0

Figure 2.2: Finite automaton example 2. Example of a finite automaton whose language
can be described using the regular expression 0 ∗ ·1 · 0∗. Note that this automaton has two
accept states: q2 and q3.

edges between the states, each edge is labeled with the corresponding character Σ, the vertex
for the start state q0 is denoted by an unlabeled edge entering from outside the automaton,
and the vertices for the accept states F are indicated with a double circle. To avoid cluttering
such a graph, there is usually an implied reject state to which implicit sink edges are directed
from any vertices missing an outgoing state transition.

The correspondence between a finite automata and a regular expression can be seen intu-
itively from examples like the graphs shown in Figure 2.1 and Figure 2.2. These automata
both have the start state q1. The operation of these automata is to track their current state,
consume a character from the input string w, and “move” (i.e., update their current state)
by following the corresponding edge. While they consume 0’s from the input string, they
will remain in state q1. Once they observe a 1, they will advance to state q2. For a string
to be in the language of the automaton depicted in Figure 2.1, it will then have to conclude
with at least one 1, up to an unlimited number thereof. For a string to be in the language of
the automaton depicted in Figure 2.2, it will then have to conclude with between zero and
an unlimited number of 0 symbols. Such strings would cause the corresponding automata to
terminate while in one of their accept state(s). Any other strings would cause these automata
to transition to an implicit reject state.

The finite automata we consider come in two kinds: deterministic and non-deterministic.
The determinism of an automaton is based on its δ component.

• If a finite automaton is deterministic (DFA), then for any input string there is exactly one
path through a deterministic finite automaton (DFA). This property is ensured by means
of an additional constraint on the automaton’s transition function δ: a finite automaton

2.2. The theory of regular languages 11

q1

q2

q3

q4

q5

a

a

b

c

Figure 2.3: Finite automaton example 3. Example of a non-deterministic finite automa-
ton whose language can be described using the regular expression (a|a)(b|c). This automaton
is non-deterministic due to the multiple transitions from q1 on the input a.

is deterministic if every (q, σ) ∈ δ maps to a single state, i.e., |δ(q, σ)| = 1 ∀q ∈ Q, σ ∈ Σ.
• If a finite automaton is non-deterministic (NFA), then for some input string, there is a

point at which the simulation could advance to different states on the same character.
More formally, a finite automaton is non-deterministic when δ is permitted to map some
state to multiple states on some input character. In an NFA, there exists a q ∈ Q and
a σ ∈ Σ ∪ {ε} such that |δ(q, σ)| > 1. In a non-deterministic automaton, there may
be multiple paths through the automaton for a given input string, thus complicating its
simulation.

The automata of Figures 2.1 and 2.2 are deterministic. The automaton of Figure 2.3 is
non-deterministic.

Let us now consider the cost to store a finite automaton. A finite automaton with |Q| vertices
can have at most O(|Q|2) edges if it is completely connected. To be fully described, the edges
of the automaton must describe δ(q, σ) for every node in Q and the entire alphabet Σ. An
automaton can be represented by a transition table, a two-dimensional matrix of automaton
states and alphabet characters [105]. Such a table contains |Q| columns and Σ rows, and
each cell contains one or more states from Q. It may thus have O(|Q|∗Σ∗|Q|) = O(|Q|2 ∗Σ)
storage cost. As Σ can be the Unicode character set, reducing this cost is critical for practical
applications. This cost can be substantially lessened by means of an efficient encoding scheme
for ranges of Σ that map to the same vertex [133]. Therefore, in the analyses of §2.3, we will
assume that each edge has a constant storage cost, for an automaton storage complexity of
O(|Q|2).

2.2.2.3 Constructing an NFA corresponding to a regular expression

Researchers have proposed myriad constructions of an automaton corresponding to a given
regular expression. These constructions may yield distinct automata with equivalent lan-

12 Chapter 2. Background and related work

guages [92, 234]. Some constructions aim to avoid non-determinism, others to minimize the
number of states, and others to minimize the number of transitions. The original construc-
tion of McNaughton and Yamada produces a DFA, unsuitable for exposition because the
mapping from the expression to the automaton can be difficult to see. I will instead follow
the NFA construction algorithm given by Thompson [321]. Thompson’s construction resem-
bles that of Glushkov [171],3 but is more accessible thanks to Thompson’s use of what are
known as ε-edges. These edges can be taken by the automaton without consuming an input
character.

Thompson’s construction begins by parsing a regular expression into an abstract syntax tree,
following Grammar 2.1 and applying precedence rules. The automaton is then built from a
bottom-up traversal of the tree, beginning at the leaf nodes (terminals; σ ∈ Σ) and working
its way to the root of the tree (the entire expression). At the leaf nodes, simple automata are
constructed that can match each symbol. At successive layers, these automata are composed
according to the meaning of the unary or binary operator being visited, connected using ε-
edges. The final automaton thus corresponds to the set of all events.

The automaton for a leaf node, a symbol σ ∈ Σ, is depicted in Figure 2.4. From an initial
state, there is a single edge on σ to the accept state.

q1 q2
σ

Figure 2.4: Thompson sub-automaton for σ ∈ Σ. This figure shows the Thompson sub-
automaton for a terminal node corresponding to the sub-pattern σ ∈ Σ. This automaton will
accept w = σ and reject all other inputs. In other words, its language is L(P) = L(σ) = { σ }.

The automaton for the unary operation P∗ is depicted in Figure 2.5. The automaton will
accept the empty string, as well as one or more strings from L(P). In this and the fol-
lowing figures, the notation L(P) indicates the sub-automaton for the pattern P . This
sub-automaton has previously been produced using Thompson’s construction, which pro-
ceeds from the leaves of the parse tree to its root and processes child nodes before parent
nodes.

q1 q2
L(P)

L(P)

Figure 2.5: Thompson sub-automaton for repetition. This figure shows the Thompson
sub-automaton for repetition: an internal node corresponding to P∗, for some sub-pattern
P . This automaton will accept the family of strings {xk | x ∈ L(P), k ≥ 0} (where xk

denotes x repeated k times).

3See Glushkov’s “minimal automaton” addendum to his Theorem 16.

2.2. The theory of regular languages 13

The automaton for an inner AST node for the disjunction operation P1 | P2 is depicted
in Figure 2.6. This automaton will accept a string from L(P1) or a string from L(P2).

q1

q2

q3

L(P1)

L(P2)

Figure 2.6: Thompson sub-automaton for disjunction. This figure shows the Thomp-
son sub-automaton for disjunction: an internal node corresponding to P1 | P2, for sub-patterns
P1 and P2. This automaton will accept the family of strings {x | x ∈ L(P1) or x ∈ L(P2)}.

The automaton for the concatenation operation P1·P2 is depicted in Figure 2.7. The “accept”
states of P1 serve as the entry points into P2.

q1 q2 q3
L(P1) L(P2)

Figure 2.7: Thompson sub-automaton for concatenation. This figure shows the
Thompson sub-automaton for concatenation: an internal node corresponding to P1 · P2, for
sub-patterns P1 and P2. This automaton will accept the family of strings {xy | x ∈
L(P1) and y ∈ L(P2)}. The dashed node q2 represents the former accept state(s) of the sub-
automaton for P1, which may no longer be the accept state(s) of the combined sub-automaton
for P1 · P2.

Figure 2.8 illustrates an automaton for the regular expression (a | b) ∗ c. Note that it is
non-deterministic — for example, from node q2 the automaton can take either ε-edge to
reach q3 or q5.

As presented here, Thompson’s construction introduces up to three states at each node in
the parse tree. The resulting automaton thus has O(|R|) states for a regular expression
R of length |R|. Thompson often relies on ε-edges to join his sub-automata. In contrast,
Glushkov introduces new states sparingly, with one state for each symbol σ ∈ Σ from the
regular expression. Under Glushkov’s approach, algebra on Kleene’s grammar (Grammar
2.1) is used to determine the viable destinations from each state. Glushkov does not rely on
ε-edges; his approach is analogous to applying an ε-edge removal algorithm by computing
the transitive closure of the ε-edges [301].

14 Chapter 2. Background and related work

q1 q2

q3

q5

q4

q6

q7 q8

a

b

ε

ε

ε

ε

ε

c

ε

ε

ε

Figure 2.8: Example automaton following the Thompson construction. This
figure shows the automaton produced by Thompson’s construction for the regular expression
(a | b) ∗ c. Vertices with a dashed circle indicate the accept states of some sub-automaton
prior to being composed into the full automaton. In this case: q4 and q6 were the accept
states of the automata for a, b, and a | b; q1, q4, and q6 were thus the accept states of the
automaton for (a | b)∗; and the accept state for the automaton for c remains the overall
accept state after completing the concatenation. Thompson automata may make liberal use
of ε-edges.

2.3. Algorithms for regex membership testing 15

Table 2.2: Summary of regular expression membership testing algorithms. Sum-
mary of the worst-case complexities of the regular expression membership testing (i.e., recog-
nition) algorithms presented in this section, given a K-regex R and candidate string w. For
the finite automaton algorithms, the complexities stated here use addition to distinguish be-
tween (time) the cost of constructing and simulating the automaton, and (space) the cost
of storing the automaton (dominated by the transition table), the candidate string, and the
simulation state. For the space complexity of DFA simulation, observe that |Q| in this case
may be exponentially larger than for an equivalent NFA. Spencer’s and Thompson’s NFA sim-
ulation algorithms use, respectively, depth-first search (DFS) and breadth-first search (BFS)
to resolve non-determinism. The time and space complexity of derivative-based approaches
vary, but some approaches can run in linear in |w| (akin to the Thompson NFA simulation).

Matching algorithm Summary FA size Time cxty. Space cxty.

DFA simulation (§2.3.1.1) Apply δ |Q| = O(2|R|) O(|Q|2 + |w|) O(|Q|2 + |w|+ 1)

Spencer NFA simulation (§2.3.1.2) DFS |Q| = O(|R|) O(|Q|2 + |Q||w|) O(|Q|2 + |w|+ |Q| ∗ |w|)

Thompson NFA simulation (§2.3.1.3) BFS |Q| = O(|R|) O(|Q|2 + |Q|2 ∗ |w|) O(|Q|2 + |w|+ |Q|)

Brzozowski derivatives (§2.3.2) Algebraic ops. – Varying Varying

2.3 Algorithms for regex membership testing

At the heart of Kleene’s theory of regular events [210] is the notion that some sequences of
events will be recognized by a given nerve net (finite automaton), and other sequences will
not. As described in §2.2.2.1, Kleene introduced a notation called a regular expression that
describes families of events, and that corresponds to an equivalent finite automaton. Given
a regular expression and a sequence of events — or, equivalently, given a finite automaton
and a string (§2.2.2.3) — we now wish to determine whether the sequence is in the language
of the regular expression (i.e., accepted by the finite automaton).

This section describes the four common algorithms to solve the regular expression language
membership testing problem, also known as recognition. The input to this problem is a pair
(R,w): a regular expression R and a string w describing the sequence of events of interest.
This is a decision problem, so the output is a Boolean, either “yes” or “no”. The first
three approaches solve this problem by leveraging the automaton interpretation of a regular
expression, while the fourth approach relies on algebraic manipulation. These algorithms
have varying time and space complexities summarized in Table 2.2. If the regex pattern R
is fixed, terms like |Q| = f(R) can be viewed as a constant. It is sometimes assumed that
a candidate string w is much larger than the regular expression R, i.e., |w| � |R|, in which
case terms involving |w| may dominate other terms [221]. In practice, however, |R| may be
large, under circumstances we discuss in §2.4.3 (e.g., expansion of limited repetition).

16 Chapter 2. Background and related work

Listing 1 General algorithm for solving the match (recognition) problem by sim-
ulating a finite automaton.

def isInLanguage(regexPattern, candidateString):
Build the automaton.
FA = buildFA(regexPattern)
Simulate the automaton.
finalState = FA.simulate(candidateString)
Check if we ended in one of the FA's accept states.
return FA.acceptStates.contains(finalState)

2.3.1 Membership testing via automaton simulation

The equivalence between regular expressions and finite automata has led to a two-phase mem-
bership testing approach via automata simulation. In the first phase, the regular expression
R is converted to an equivalent finite automaton. In the second phase, this automaton is
simulated on the input string w.

The general algorithm is given in Listing 1. The three algorithms in sections 2.3.1.1 to 2.3.1.3
differ based on the automaton they build and the simulation they perform. I assume that
all of these automata have a special “reject state” (i.e., “sink state”), qreject, such that
δ(qreject,σ) = qreject ∀ σ ∈ Σ.

In explaining the three approaches, I will make reference to the NFA depicted in Figure 2.9.
This NFA accepts the language of the regular expression(a|a)b and was produced using
Thompson’s construction. I will also assume that a finite automaton’s δ function has the
following properties:

• δ(q, σ) can be calculated in O(1) time (e.g., by storing outgoing edges at q).
• δ(q, σ) will return O(|Q|) vertices: 1 vertex for a DFA and between 1 and |Q| vertices for

an NFA.
• δ(q, σ) returns a unique set of vertices, no duplicates.

2.3.1.1 The McNaughton-Yamada-Glushkov DFA-based algorithm

Algorithms to convert a regular expression into a corresponding deterministic finite au-
tomaton (DFA) were proposed independently by McNaughton and Yamada [234], and by
Glushkov [171, 172]. To understand these DFAs, it is helpful to contrast the NFA in Fig-
ure 2.9 with an equivalent deterministic automaton. The automaton given in Figure 2.9 is
non-deterministic because from state q1 on the input a the automaton can move to state
q2 or state q3. The non-determinism can be removed using the Rabin-Miller power set con-
struction algorithm [281], which creates a DFA with one “multi-state” for each of the subsets

2.3. Algorithms for regex membership testing 17

q1

q2

q3

q4

a

a

b

b

Figure 2.9: Automaton used to illustrate membership testing. This figure shows the
automaton produced by Thompson’s construction for the regular expression (a|a)b. It will
be used to illustrate the behavior of the automaton simulation algorithms in sections 2.3.1.1
to 2.3.1.3.

of the states of an NFA. These multi-states are connected with edges such that there is an
edge labeled σ between multi-state q = {qa, qb, ...} ⊆ Q and multi-state r = {qx, qy, ...} ⊆ Q
provided that the original NFA had an edge labeled σ between some state in q and some
state in r.

Given a regular expression of length |R|, these algorithms produce a DFA with |Q| = 1+2|R|

states in the worst case, combining a reject state with the 2|R| subsets in the power set of
the |R| original NFA states. If the DFA state-graph is complete, it may have a transition
table of size O(|Q|2) = O((2|R|)2) = O(22|R|). This DFA must be created and stored prior
to simulation.

Once a DFA is created, simulating it is straightforward because of its deterministic nature.
On each input character, there is exactly one possible next state. An algorithm for simulating
the DFA is given in Listing 2. This algorithm takes constant space in addition to the cost
of constructing the DFA. The simulation phase performs O(|w|) iterations of the loop, with
each iteration making constant-time accesses to the transition function DFAδ.

2.3.1.2 Spencer’s NFA-based backtracking algorithm

“ It can be pretty inefficient. ”
–Henry Spencer [305]

The trouble with constructing and then simulating a DFA is that the DFA may be exponen-
tially large in the worst case. Thus, the algorithm discussed in §2.3.1.1 may be intractably
expensive in practice. As an alternative to building a DFA, an equivalent non-deterministic
finite automaton (NFA) may be created and simulated instead. This NFA may exist explic-
itly as states and edges [305], or implicitly, e.g., embedded in a grammar [157, 295]). Either
way, NFA simulation is an accurate model for the behavior of this class of algorithms [335].
Thompson [321], McNaughton and Yamada [234], and Glushkov [171] all proposed NFA con-

18 Chapter 2. Background and related work

Listing 2 Algorithm for solving the match problem by simulating a DFA.

def isInLanguage(regexPattern, candidateString):
Build the automaton
DFA = buildDFA(regexPattern)

Simulate the automaton
currState = DFA.q0
for char in candidateString:
nextState = DFA.deltaTransitionFunction(currState, char)
currState = nextState

Check if we ended in one of the FA's accept states.
finalState = currState
return DFA.acceptStates.contains(finalState)

struction algorithms.4 Although their construction algorithms yield automata with some-
what different numbers of states (|Q|) and transitions (|δ|), they all yield NFAs with O(|R|)
states and O(|R|2) transitions.5

The Spencer backtracking algorithm (this section) and the Thompson lockstep algorithm
(§2.3.1.3) both operate on an NFA by simulating non-determinism.

Spencer’s approach is to simulate non-deterministic choices using a technique called back-
tracking [90, 248].6 Any time Spencer’s algorithm encounters ambiguity, it tries one path
first, and if that path fails it will try the other(s) later. To implement a backtracking algo-
rithm, a backtracking stack is used to store paths to try again later. If any path ends in an
accept state, it is unnecessary to try the remaining options in the stack. If a path fails, how-
ever, the stack is consulted to identify the ambiguous points where another non-deterministic
choice might have led to success. A version of this algorithm is given in Listing 3.

For example, consider the behavior of Spencer’s algorithm as it simulates the NFA from Fig-
ure 2.9 on the candidate string w = ac. The automaton simulation begins in state 〈q1, 0〉
(where w[0] = a). Applying the transition function, δ(q1, a) yields {q2, q3}. Thompson’s

4The automata produced by McNaughton and Yamada and by Glushkov are known as position automata
and do not require ε-edges. The automata produced by Thompson are rife with ε-edges. If an NFA is
ε-free, it can be simulated directly using the algorithms in this section and the next. If not, it can either
be converted to an ε-free NFA [301], or the ε closure can be calculated when determining each next set of
states.

5Although the worst-case O(|R|2) does not always occur; Nicaud [262] has shown that McNaughton-
Yamada-Glushkov position automata have on average a linear number of transitions in |R|.

6I do not know who first proposed the algorithm that I here call “Spencer’s algorithm”. Spencer used
this algorithm in the Ur-regex engine on which many popular programming languages have based their
implementations, and so I credit him here to acknowledge his influence. But the general technique of
backtracking had apparently been applied to NFA simulation as early as 1968, when Thompson refers to
it [321].

2.3. Algorithms for regex membership testing 19

simulation will arbitrarily order these states and try one first — say, q2. It will push the
alternative simulation state 〈q3, 1〉 onto the stack. Proceeding with its choice, the simulation
will discover that δ(q2, c) yields the reject state, and will have exhausted the candidate string.
Not having ended in an accept state, Thompson’s algorithm will pop from its backtracking
stack to examine another possibility: 〈q3, 1〉. Proceeding with this alternative choice, the
simulation will find that δ(q3, c) yields the reject state. Now the backtracking stack is empty,
so the simulation concludes by reporting that the candidate string is not in the language of
the automaton (nor the regular expression from which the NFA was derived).

Beyond the O(|R|2) = O(|Q|2) space complexity of storing an NFA, the space complexity
of simulating it using Spencer’s algorithm is a fairly intuitive O(|Q| ∗ |w|) in the case of a
completely-connected NFA, i.e., one for which all state-vertices are connected on every char-
acter σ ∈ Σ. The stack will have no more than |w| distinct indices amongst its backtracking
points, and at each index it can add at most |Q| states to the backtracking stack — so there
will be at most O(|Q| ∗ |w|) stack entries to which it may backtrack at any particular time.

In terms of time complexity, it costs O(|R|2) = O(|Q|2) to construct an NFA. The worst-
case time complexity of simulating this NFA using Spencer’s algorithm can be bounded as
O(|Q||w|) by counting the number of simulation states processed during the backtracking
simulation. To see this, let’s again examine the case of the same pathological completely-
connected NFA as before, and this time suppose that the NFA has no accepting states.
Consider the following two properties of the simulation of this NFA on an input w:

• Each time we consume a character at index j, we handle one simulation state directly and
add |Q|−1 simulation states to the backtracking stack. This is because in the pathological
NFA, the δ transition function returns all of the states Q from any character.

• Because the NFA has no accepting states, none of the potential solutions (paths through
the NFA) will end in an accepting state. Thus we will eventually process each of those
|Q| backtracking points (one immediately and the other |Q| − 1 via backtracking). When
processed, each of those states will themselves introduce |Q| backtracking points.

Combining these two facts, we see that the number of simulation states we process com-
pounds for each additional input character: |Q| states to consider for |w| = 1, |Q|2 states
for |w| = 2, and so on — O(|Q||w|) states overall. The cost of handling the states returned
by the transition function δ at each point will itself cost O(|Q|) (for there are |Q| states
returned), giving us a total estimated cost of O(|Q| ∗ |Q||w|) = O(|Q||w|+1).

It is worth noting that the number of simulation states processed by this algorithm will grow
exponentially under a much weaker condition. The NFA need not be completely connected,
so long as there is some vertex in the NFA such that there are two different paths that
originate and terminate at this vertex under the same string ρ. If there are two such paths,
each time the simulation sees an instance of ρ it will double the number of paths to explore,
leading to a cost of O(2|w|) instead of O(|Q||w|). This is of course a more desirable worst-
case behavior, but still exponential in the length of the input string w. This behavior lies at

20 Chapter 2. Background and related work

the heart of ambiguity leading to Regular Expression Denial of Service (ReDoS), discussed
further in §2.5.

Finally, it is also worth noting that Spencer’s algorithm can perform in best-case linear time
in the length of the candidate string: O(|Q|∗|w|). This time can be achieved if the candidate
string never requires the simulation to make a non-deterministic choice. Then the simulation
will follow a deterministic path through the NFA, its backtracking stack is never used, and
the simulation will cease after |w| iterations of the inner loop and only one iteration of the
outer backtracking loop.

2.3. Algorithms for regex membership testing 21

Listing 3 Algorithm for solving the match problem using Spencer’s backtracking
NFA simulation. The backtracking stack contains NFA simulation states in the form of
tuples 〈q, j〉, where q ∈ Q and j is an index into the candidate string w.

class BacktrackingPoint:
def __init__(self, state, stringIx):
self.state, self.i = state, stringIx

def isInLanguage(regexPattern, candidateString):
Build the automaton
NFA = buildNFA(regexPattern)

Initialize the backtracking stack
stack = Stack() # Contains BacktrackingPoints
initialState = BacktrackingPoint(NFA.q0, 0)
stack.push(initialState)

Backtracking loop to evaluate choices we haven't yet considered
while not stack.empty():

Simulate the next backtracking point to completion,
appending to the stack at each non-deterministic choice.
bPt = stack.pop()
currState = bPt.state
i = candidateString[bPt.i]

for j, nextChar in enumerate(candidateString[i:]):
Where might nextChar lead?
possibleStates = NFA.deltaTransitionFunction(currState, nextChar)

Pick one for now
currState, others = possibleStates[0], possibleStates[1:]

Unlike Frost, we can take the path less traveled later
backtrackingPoints = [BacktrackingPoint(q, j+1) for q in others]
stack.push(backtrackingPoints)

End of candidateString.
Check if we ended in one of the FA's accept states.
finalState = currState
if NFA.acceptStates.contains(finalState):
return MATCH

None of the paths reached an accept state.
return MISMATCH

22 Chapter 2. Background and related work

2.3.1.3 Thompson’s NFA-based lockstep algorithm

Thompson’s approach [321] is to simulate non-deterministic choices using what has been
called the lockstep algorithm [284]. Where Spencer’s approach saved unexplored paths for
later in a backtracking stack, Thompson’s approach instead tracks all of these paths together
by managing a frontier of possible states. Thompson saves the current set Φcurr ⊆ Q of
potential states, and upon consuming each character he updates this set to Φnext ⊆ Q by
applying the δ transition function to each state in Φcurr in turn. Thus the frontier of possible
positions in the NFA is updated at each character in lockstep. A version of this algorithm
is given in Listing 4.

For example, consider the behavior of Thompson’s algorithm as it simulates the NFA depicted
in Figure 2.9 on the candidate string w = ac.

1. The automaton simulation begins at the initial state: Φcurr = {q1}.
2. Applying the transition function to the states in Φcurr on the input character a, the

simulation obtains Φnext = {q2, q3} and then copies Φnext into Φcurr.
3. Repeating this, on the next input character c, the simulation obtains the next Φnext =

{REJECT} — both δ(q2, c) and δ(q3, c) yield the same state, and Φnext removes the
redundancy.

4. Having exhausted the candidate string, Thompson’s simulation now examines Φcurr to
see whether Φcurr ∩ F 6= ∅.

5. As Φcurr = {REJECT}, the simulation concludes by reporting that the candidate string
is not in the language of the automaton (nor the regular expression from which the NFA
was derived).

Beyond the O(|R|2) = O(|Q|2) space complexity of storing an NFA, the space complexity
of simulating it using Thompson’s algorithm is O(|Q|). The algorithm maintains only the
state-sets Φcurr ⊆ Q and Φnext ⊆ Q.

In terms of time complexity, it costs O(|R|2) = O(|Q|2) to construct an NFA. The worst-
case time complexity of simulating this NFA using Thompson’s algorithm can be bounded
as O(|w| ∗ (the cost to query δ and update nextFrontier for each q ∈ Φcurr)) — in each of
the |w| iterations, we query δ for each of the O(|Q|) states in Φcurr, and must merge the
O(|Q|) states returned by each query. Based on the properties of δ assumed in §2.3.1, the
time complexity is expected to be O(|Q|2 ∗ |w|).7

A common interpretation of Thompson’s algorithm is that it is a “dynamic DFA construc-
tion” [132, 332]. To see this, consider the Rabin-Miller power-set construction for a DFA,
as described in §2.3.1.1. This construction produces one multi-state for every subset of Q in
the original NFA, with edges connecting these multi-states corresponding to potential routes
in the NFA. The state of the Thompson algorithm — Φcurr and Φnext — are precisely the
multi-states that would be taken during a traversal of the full power-set DFA under the

7Google’s RE2 implementation caches these computations to lower the time cost [133].

2.3. Algorithms for regex membership testing 23

Listing 4 Algorithm for solving the match problem using Thompson’s lockstep
NFA simulation. The simulation simulates non-determinism by tracking all possible NFA
states together, i.e., an NFA “state frontier”.

def isInLanguage(regexPattern, candidateString):
Build the automaton
NFA = buildNFA(regexPattern)

Choice frontier begins at q0
currFrontier = set([q0])

for nextChar in candidateString:
Compute the next choice frontier: the union of all destinations
from the current frontier on this character.
nextFrontier = set()
for state in currFrontier:
possibleStatesFromHere = NFA.deltaTransitionFunction(state, nextChar)
nextFrontier.add(possibleStates)

Update currFrontier.
currFrontier = nextFrontier

End of candidateString.
Check if any path ended in one of FA's accept states
if currFrontier.intersect(NFA.acceptStates):
return MATCH

None of the paths reached an accept state.
return MISMATCH

candidate string of interest. So Thompson’s algorithm dynamically performs the power-set
construction, but only for the path through the DFA that would be taken on one particular
input string.

24 Chapter 2. Background and related work

2.3.2 Membership testing via algebraic manipulation: Brzozowski
derivatives

The previous section described membership tests that leverage the equivalence of regular
expressions and finite automata. Those approaches required two steps: converting the regex
into an automaton, and then simulating the automaton. In this section I describe an al-
ternative approach, that of algebraic manipulation of the regular expression in the context
of the candidate string as pioneered by Brzozowski [103]. To the best of my knowledge,
this approach is not used in any production regex engines, so I will not treat it in detail.
Researchers from Microsoft have, however, demonstrated its potential in a research regex
engine [293], and may plan to incorporate it into the .NET framework.

Brzozowski’s approach relies on regular expression derivatives. A derivative describes the
effect of a symbol σ ∈ Σ on a regular language L, i.e., the strings that are prefixed with
this symbol. For example, consider the regular expression R = foo|bar, whose language is
L(R) = {foo, bar}. The derivative of this language with respect to f ∈ Σ isDf (R) = {oo, ar}
— these are the strings that remain after subtracting off the prefix “f”. A regular expression
derivative is a language of strings, and Brzozowski showed that it is also regular. In addition
to defining the derivative explicitly in terms of a set of strings, we can also define the
derivative implicitly in terms of the regular expression that denotes this language.

With this in mind, here are the derivatives on the regular expression terminals from Grammar
2.1:

Dσ(∅) = ∅
Dσ(ε) = ∅
Dσ(σ) = ε
Dσ(σ

′) = ∅ if σ′ 6= σ

and derivatives for regular expressions that use operators:

Dσ(R∗) = Dσ(R) ·R∗
Dσ(R1 | R2) = Dσ(R1) | Dσ(R2)
Dσ(R1 ·R2) = Dσ(R1) ·R2 if ε 6∈ L(R1)
Dσ(R1 ·R2) = (Dσ(R1) ·R2) | (Dσ(R2)) if ε ∈ L(R1)

Having done so, we can define the recognition problem in terms of repeated derivation. To
learn whether a string w = σ1σ2 . . . σn is in the language of a regular expression R, compute
D1 = Dσ1(R), then D2 = Dσ2(Dσ1(R))) = Dσ2(D1), and so on until you reach Dn. At Dn,
all characters from w have been consumed; now, if ε ∈ Dn, then w ∈ L(R).

There are both dynamic and static approaches to solving the recognition problem using
Brzozowski derivatives. Dynamically, Brzozowski derivatives can be computed on a per-
candidate-string basis to answer recognition queries, as we have just discussed. Statically,
as Thompson observed [321], his algorithm can be understood as the automaton analogue

2.4. Regular expressions in software engineering practice 25

of the repeated application of derivatives. The Thompson NFA simulation considers all
possible NFA states at once based on the characters consumed so far, just as the Brzozowski
derivative tracks all possible regular suffixes based on the prefix for which the derivative
has been calculated. A static alternative to calculating dynamic derivatives is thus to pre-
compute all possible derivatives: Dσ(R) for each σ ∈ Σ, then derivatives of those Dσ, and
so on. Brzozowski showed that there are finitely many such derivatives, and Owens et
al. show that there are O(2|R|) equivalence classes for a given starting expression R [271].
A DFA can then be constructed from these equivalence classes, with one DFA state per
class and edges to indicate transitions upon derivatives. The time and space complexity of
using Brzozowski derivatives will therefore range from that of Thompson’s NFA simulation
(dynamic derivatives relate to w) to that of a DFA simulation (static pre-computation of all
derivatives).

Brzozowski derivatives have been extended beyond the recognition problem. Sulzmann and
Lu showed that they can solve the parsing problem (sub-matches) [316], and Saarakivi et
al. have recently demonstrated a more full-featured regex engine via Brzozowski deriva-
tives [293].

2.4 Regular expressions in software engineering prac-
tice

2.4.1 A brief history of the adoption of regexes by computing prac-
titioners

As discussed in §2.2, the theory of regular expressions was initially developed as a model
for biological systems [210, 230] Once that theory was applied to string matching prob-
lems [121, 321], computing practitioners began to adopt it for general engineering purposes.
Using regexes for string matching was popularized through UNIX tools like ed (1973 [233]),
sed, awk, grep, and egrep.8 Soon C libraries for regexes emerged, e.g., the regexp module in
the GNU C library (1980s) [309]. Led by Perl [329], programming languages began to incor-
porate regexes as a language primitive or within their standard libraries. Now virtually all
mainstream programming languages have built-in support for regexes, including JavaScript,
Java, PHP, Python, Ruby, Go, Perl, Rust, and C# (.NET) [178]. These programming lan-
guages maintain regex engines whose purpose is to accept the pattern representation of a
regex and answer variations on the regex match problem.

The regexes used in software engineering practice have diverged from the Kleene regular
expressions (K-regexes) defined and studied by theorists. Whether at the behest of software

8The program name grep is derived from the command g/re/p in the ed editor, which would Globally
apply a Regular Expression and Print the result [285].

26 Chapter 2. Background and related work

engineers hungry for conciseness or expressiveness, or motivated by inter-tool competition,
or merely due to the vagaries of the implementers, the regexes used by software engineers
bear little resemblance to the regexes of the automata theorists (§2.2). I will use the term
Extended Regular Expressions (E-regexes) to distinguish the regexes supported by program-
ming languages from the well-studied K-regexes of yore.

From the perspective of a software engineer, a regular expression is a tool and a domain-
specific language to match strings — a regular expression is a string pattern language. Soft-
ware engineers can apply regular expressions in many contexts where strings are processed.
Software engineers can use regexes in all mainstream programming languages [178]. They
can also turn to regexes on the command line; UNIX command-line tools have long supported
regexes for use in shell scripting, from primitive regexes like shell globs to the increasingly-
expressive regexes supported by grep, egrep, sed, and other command-line interfaces. Regexes
are often offered in a search API for text-centric applications, such as web browsers [251, 292],
word processors [242, 269], and IDEs [152, 243]. Regexes are also supported in broader con-
texts where content can be interpreted as strings, e.g., databases [13, 200] and network
monitoring tools [77, 120, 127, 155].

In this section I will describe the syntax and semantics of regexes used in modern program-
ming languages (§2.4.2), discuss the relationship between these Extended Regular Expres-
sions (E-regexes) and the Kleene Regular Expressions (K-regexes) of the theorists (§2.4.3),
consider implementation concerns (§2.4.4), and sketch alternative semantics proposed in the
literature (§2.4.5).

2.4.2 Regex syntax and semantics in modern programming lan-
guages

Regexes reached maturity in the 1980s, with the release of Henry Spencer’s regex package
in 1986 [305], Larry Wall’s Perl in 1987 [163], and the GNU regex lib in 1988 [309]. Pro-
gramming languages have followed the example of Perl, and regexes are now supported in
all mainstream general-purpose programming languages. “Scripting” languages [268] often
include regexes in the language specification, e.g., Perl [330], PHP [181], Ruby [99], and
JavaScript [147]. Other programming languages and frameworks offer regexes through a
core module, as is done in Python [216], Java [130], Rust [146], Go [176], and the .NET
framework [240].

In the context of programming languages, regexes are a string pattern language. I introduce
this language using its syntax (§2.4.2.1) and semantics (§2.4.2.2).

2.4. Regular expressions in software engineering practice 27

2.4.2.1 Perl-Compatible Regular Expressions (PCRE) syntax

There have been several specification efforts for E-regexes [163]. Since 1992, the POSIX
standard has described two types of regexes: POSIX Basic Regular Expressions and POSIX
Extended Regular Expressions [201]. These variations share core semantics but differ in their
expressive power (i.e., conciseness and feature support). Despite the efforts of the POSIX
committee, their standard has not been accepted by the regex engine developer community.
Instead, Wall’s Perl regexes have dominated the discussion.9 In an effort to establish a Perl-
oriented specification that could be used by other tools and programming languages, in 1997
Hazel published the Perl-Compatible Regular Expression specification (PCRE) [187]. The
POSIX standard uses the same syntax as PCRE for the features that it supports.

The regex sub-language of mainstream programming languages is derived from the PCRE
syntax and semantics. All programming languages support a core set of regex features, and
some support various regex extensions. The regex language in this dissertation will therefore
follow the PCRE standard, which is a superset of the regex dialects in most programming
languages. The PCRE syntax is given in Table 2.3.

In this dissertation, “Extended Regular Expressions” (E-regexes) refers to the syntax and
semantics of PCRE regexes. I have omitted some of the more exotic PCRE features, most
notably inline options,10 conditionals,11 recursive patterns,12 and callouts.13

9Perhaps this is because Perl regexes have greater expressiveness than the two forms of regexes proposed
by the POSIX specification.

10Inline options permit changing the match configuration in parts of the evaluation, e.g., enabling or
disabling case-sensitivity while evaluating a sub-pattern. For example, in the pattern R1(?i)R2, the sub-
pattern R2 is matched in a case-insensitive manner.

11Conditionals permit testing pattern R1 for a match, and applying R2 or R3 depending on whether R1

matched.
12Recursive patterns permit encoding a “stack” to match, e.g., matching left- and right-parentheses.
13Callouts permit executing arbitrary code during a regex evaluation.

28 Chapter 2. Background and related work

Table 2.3: Features and notation of E-regexes (PCRE). Summary of the major
features and notation of regexes in mainstream programming languages. This table uses the
notation from the PCRE specification [188]. Abbreviations are consistent with Chapman and
Stolee where possible [115]. A P denotes a sub-pattern consisting of any combination of the
regex features. In most cases regex features can be arbitrarily combined, though some regex
engines restrict interactions between certain features.

Abbreviation Feature Notation

Regular features (K-regexes)

CAT X followed by Y P1P2

KLE Zero-or-more repetition P∗

OR Logical OR (Disjunction) P1|P2

CG Capture group (P)

NCG Non-capturing group (?:P)

PNG Named capture group (?<name>P)

Additional quantifiers

ADD One-or-more repetition P+

QST Zero-or-one repetition P?

DBB m-to-n repetition P{m,n}

LWB At-least-m repetition P{m, }

SNG Exactly-n repetition P{n}

Shorthand for a subset of Σ

CCC Custom character class [aeiou]

RNG CCC with range [a-z]

NCCC Negated CCC [^aeiou]

ANY Built-in class: non-newline character .

WSP Built-in class: whitespace character \s

DEC Built-in class: numeric character \d

WRD Built-in class: word character \w

NWSP Built-in class: non-whitespace character \S

NDEC Built-in class: non-numeric character \D

NWRD Built-in class: non-word character \W

VWSP Built-in class: vertical whitespace \v

Zero-width assertions

STR Start-of-{string,line} ^P , \AP

END End-of-{string,line} P$, P \ Z

WNW Word/non-word boundary \b

NWNW Negated WNW \B

PLA Positive lookahead (?=P)

NLA Negative lookahead (?!P)

PLB Positive lookbehind (?<=P)

NLB Negative lookbehind (?<!P)

Backreferences

BKR Backreference (numeric) (R) . . . \ 1

BKRN Backreference (named) (?<name>P) . . . \ k<name>

Prioritization and backtracking controls

LZY Non-greedy repetition P∗?, P+?, P{m,n}?

ATM Atomic group (cut) (?>P)

POS Possessive quantifier (cut) P + +, P ∗ +

2.4. Regular expressions in software engineering practice 29

Table 2.4: Testing whether a string is in the language of a regex. This table provides
examples of language membership testing for simple regexes. The syntax follows Table 2.3.

Pattern Candidate string Is in language? Explanation

/(ab)|(cde)/ ab Yes Matches the left side of the disjunction

/a+b?c{3}[xy]/ aaccc No The candidate string is missing a trail-
ing x or y

/(a+)(?=b)\1/ aabaa Yes One or more a’s, the lookahead is satis-
fied, and the captured a’s are repeated

2.4.2.2 PCRE semantics

Having defined the syntax we will use for regexes, we now turn our attention to their match
semantics. As with Kleene regular expressions, with E-regexes one tests whether or not a
candidate string is part of the language of a regex by applying the sub-patterns of the regex
(left to right) against the characters in the string (left to right). For example, suppose we
have the regex /^ab+c$/. The strings abc and abbbc are in its language. The string ac is not
in the language, because the pattern requires at least one b. Likewise, the string bac is not,
because the order of characters is incorrect. Further examples are given in Table 2.4.

The PCRE semantics permit several regex queries:

1. Full match, i.e., recognition: A Boolean result indicating whether or not the entire
candidate string is in the language of the regex.

2. Partial match, i.e., partial recognition: A Boolean result indicating whether or not
some substring of the candidate string is in the language of the regex.

3. Matched string: For a partial match, indicates the substring and offset of the candidate
string that matched the pattern.14

4. Capture groups, i.e., parse: If the candidate string is in the language of the regex, and
if the regex contains sub-patterns enclosed in capture groups, then the sub-strings that
they matched and their positions are disclosed. This requires that the regex engine act
as a parser (building a parse tree) rather than a recognizer (returning a Boolean result).

The results from these queries are dictated by the semantics of the regex match, i.e., the
matching behavior that a regex will exhibit when it is applied to a string. Perl-Compatible
Regular Expressions follow a leftmost-greedy rule. This rule can be stated in three parts as
follows [189]:

1. Leftmost match: “A pattern is matched against a subject string from left to right.” In
the more precise words of the POSIX specification, “The search for a matching sequence

14In addition to being reported to the caller, if a regex is being evaluated in “global” mode, this offset
may be tracked by the regex engine as the starting point in a subsequent match.

30 Chapter 2. Background and related work

Table 2.5: Leftmost-greedy match semantics. This table illustrates the leftmost-greedy
match semantics followed by all mainstream regex engines. The syntax follows Table 2.3.

Pattern Candidate string Matching substring(s) Rule illustrated

Default semantics

a+ abaa a Leftmost match

(a|aa) aa a Left-to-right disjunctions

(a+)(a+) aaa (aa), (a) Greedy pattern

Non-greedy quantifiers

(a+?)(a+) aaa (a), (aa) Non-greedy pattern

starts at the beginning of a string and stops when the first sequence matching the expression
is found, where ‘first’ is defined to mean ‘begins earliest in the string’ ” [202].

2. Left-to-right disjunctions: “The matching process tries each alternative in turn, from
left to right, and the first one that succeeds is used.” In other words, the disjunction oper-
ation is not commutative [284]; /(a|aa)/ and /(aa|a)/ will match different substrings.

3. Greedy patterns: “Quantifiers are ‘greedy’, that is, they match as much as possible (up
to the maximum number of permitted times), without causing the rest of the pattern to
fail.”15

The behavior of a few illustrative cases is illustrated in Table 2.5. Expanding on these cases
in more detail:

• In the first example, the “Leftmost match” semantic causes the quantifier to only match
the first character, even though there is a longer matching substring later in the string.

• In the second example, the “Left-to-right disjunctions” semantic gives the first of the two
disjunction patterns priority over the second.

• In the third example, the “Greedy patterns” semantic causes the first quantified group to
consume as many characters as possible while still permitting a match to occur. Hence,
the first two a’s are consumed in the first group, and the third a is consumed in the second
group.

• In the fourth example, the use of non-greedy repetition (indicated at the bottom of Ta-
ble 2.3) is illustrated. The first quantified group is non-greedy, reversing its behavior from
“matches the longest possible string” to “matches the shortest possible string.” Hence, the
first group (non-greedy) consumes only the first a, and the remaining a’s are consumed
in the second (greedy) group.

15This rule can be inverted using the “non-greedy” quantifiers proposed by Friedl [163], also known as
“lazy” or “reluctant” quantifiers. Such quantifiers consume the shortest viable sequence, not the longest one.

2.4. Regular expressions in software engineering practice 31

Table 2.6: Sample reductions from K-compatible E-regexes to pure K-regexes.
The syntax follows Table 2.3.

Abbreviation Feature Notation Reduced to K-regex

Additional quantifiers

ADD One-or-more repetition P+ a+ → aa*

QST Zero-or-one repetition P? a? → a|ε

LWB At-least-m repetition P{m, } a{2,} → aaa*

SNG Exactly-n repetition P{n} a{3} → aaa

Shorthand for a subset of Σ

CCC Custom character class [aeiou] [aeiou] → a|e|i|o|u

RNG CCC with range [a-z] [a-c] → a|b|c

NCCC Negated CCC [ˆaeiou] [ˆa] → The disjunction over Σ− a

WSP Built-in class: whitespace char. \w \w → \t||\t|\n|\r|\v

2.4.3 Relationship between K-regexes and E-regexes

Clearly E-regexes (Table 2.3) offer far more features than Kleene’s regular expressions (Gram-
mar 2.1). The features of E-regexes can be divided into three categories with respect to
K-regexes.

First, K-regexes are a subset of E-regexes, as indicated in the topmost section of Table 2.3.

Second, some of the extended regex features can be trivially reduced to K-regexes. These
K-compatible features do not increase the expressiveness of the string language that can be
encoded using a regex, but rather permit more concise or readable notation. These features
appear above the double-line in Table 2.3, in the sections labeled “Additional quantifiers”
and “Shorthand”. Sample reductions from regexes using K-compatible features to K-regexes
are given in Table 2.6. The expansions of the quantifiers in the upper portion of Table 2.6
are particularly instructive; because the only way for an NFA to maintain memory is to move
to an appropriate state, bounded repetition can only be encoded in an NFA by introducing
additional states, once for each repetition of the sub-pattern. Nested bounded repetition
will thus yield a geometric increase in states (i.e., a very large |Q|). This problem can
be combated by departing from a pure NFA model, e.g., by introducing counters into the
automaton model [79, 217].

In the third category (below the double line in Table 2.3) are the remaining extended regex
features. Some extended regex features offer engineers expressiveness beyond traditional
regular expressions (e.g., backreferences are NP-hard [62]), others are regular but exponen-
tially concise (e.g., atomic groups [88]), and still others have not yet been formally studied.
There is an active line of formalization work that provides specifications for such features
and shows whether or not they are truly regular (i.e., expressible with an equivalent K-

32 Chapter 2. Background and related work

regex) [84, 85, 88, 107, 108, 162, 294].

2.4.4 Implementing PCRE semantics in a regex engine

The regex engines in mainstream programming languages support PCRE semantics using
automaton simulation [132, 163]. They employ the algorithms given in §2.3.1. In particu-
lar, to support leftmost-greedy semantics in the context of various regex queries, they must
guarantee not only that regexes match properly, but also that (1) The patterns of a disjunc-
tion are prioritized in left-to-right-order; and (2) The greedy/non-greedy behavior of each
quantified sub-pattern operates properly. In addition, to support capturing sub-patterns,
they must monitor the offsets at which the corresponding sub-string is matched. These re-
quirements cannot be implemented using pure NFAs or DFAs, but can be modeled through
minor extensions of automata theory.

To formally describe disjunction and greedy semantics, Berglund et al. have extended the
notion of an NFA to a prioritized NFA [85]. The changes required in the automaton sim-
ulation are not complex. In a Spencer-style backtracking-based NFA simulation, edges are
prioritized such that δ(q, σ) returns a list instead of a set. For example, the NFA in Figure 2.9
would be prioritized to consider the upward q1 → q2 edge (first clause in the disjunction)
before the downward q1 → q3 edge (second clause). In a Thompson-style lockstep NFA
simulation, all valid edges are processed in each step, and so the current state-set Φcurr is
ordered to prioritize the appropriate states [133]. In a DFA construction, the set of states in
each multi-state would likewise be ordered.

To support capture queries, NFAs can be extended to Laurikari’s notion of tagged au-
tomata [221]. This extension is orthogonal to the introduction of prioritization, and es-
sentially amounts to performing bookkeeping operations each time the edges into and out of
a capture group are traversed during automaton simulation.

The extended regex features (below the double-line in Table 2.3) are straightforward to
support in a Spencer-style backtracking simulation, and can be implemented by extending
the definition of an edge in the NFA. To implement a zero-width assertion, an ε-edge can
be introduced that can only be taken if the associated test passes, e.g., for \b confirming
that the preceding and subsequent characters are a mix of “word” or “non-word” characters.
Lookaround assertions can be implemented using recursion, applying the regex engine on
the associated sub-pattern. To implement a backreference, an NFA edge can be introduced
that will (1) confirm that the contents of the corresponding captured group appear following
the current index into the candidate string, and (2) advance the index that many charac-
ters. To implement non-greedy repetition, the prioritization of the corresponding back-edge is
inverted from highest- to lowest-priority. To implement atomic groups and possessive quan-
tifiers, which are the practical equivalent of cuts [86, 249], traversing an edge that leaves the
corresponding sub-automaton results in an appropriate manipulation of the backtracking
stack.

2.4. Regular expressions in software engineering practice 33

Some of these behaviors are difficult to implement under a Thompson-style NFA simula-
tion. The authors of the production-grade Thompson-style regex engines (Google’s RE2,
and the engines used in Go and Rust) have chosen not to support any of these features.
Backreferences are particularly problematic to support in a Thompson-style engine, because
a backreference requires that the regex engine record the path through the automaton dur-
ing simulation [63]. In Spencer’s backtracking algorithm these paths are straightforward to
track, because only one path is being considered at a time; in Thompson’s lockstep algo-
rithm, all paths are collapsed into the current state frontier to save space, and recording the
distinct paths leading to the state frontier would require exponential space in the worst case.

2.4.5 (The failure of) Alternative regex semantics

Given its longstanding support in programming languages and systems utilities (§2.4.2), the
PCRE syntax and semantics for regexes has acquired technical inertia. Alternative pattern
matching semantics have not captured a significant share of the pattern matching market.

Given a regex and a candidate string, the leftmost-greedy rule is not the only semantic. The
POSIX committee proposed “leftmost-longest” match semantics [201], which were adopted
by the Boost regex engine [89]. Clarke and Cormack proposed “shortest-match substring”
semantics, which they argue is more suitable for structured text such as is commonly encoun-
tered in HTML or XML documents [124]. The PCRE syntax and semantics are, however,
fairly entrenched, and these alternative semantics have not been adopted by any mainstream
programming language.

Researchers have also considered the problem of approximate matching, in which the out-
come of a regex match is defined not as a Boolean condition but on a continuum of degree
of fit. This problem arises in the context of text with errors, e.g., computational biology,
signal processing, or information retrieval tasks [258]. Solutions support a range of pattern
encodings, including single strings [320, 340], sets of strings [254], and Kleene regular ex-
pressions [255, 257, 340]. Despite the potential utility of approximate pattern matching, it
has not seen widespread adoption in software engineering practice.

I believe the primary lesson to be learned from these lines of work is that, as a string matching
tool for software engineering, regexes are here to stay. Regex-based string matching solutions
have been estimated to occur in over 40% of software projects (§2.6.2), regexes are widely
used by professional software engineers (§2.6.1), and regexes are supported in all mainstream
programming languages. Studies of alternative matching problems and semantics have their
applications, but the software engineering community appears to have settled on E-regexes-
style regexes as one of their tools of choice.

34 Chapter 2. Background and related work

2.5 Regular expression denial of service (ReDoS)

We have now covered the necessary background to define and discuss Regular expression
Denial of Service (ReDoS). In this section I will define the conditions for a ReDoS vulner-
ability (§2.5.1), summarize the analyses that identify regexes with super-linear worst-case
behavior (§2.5.2), and describe researchers’ preliminary findings on the incidence of ReDoS
in practice (§2.6.3).

2.5.1 Conditions for a ReDoS vulnerability

Software engineers who wish to use a regular expression in their computer programs will
typically turn to a regex engine. For example, an engineer working in JavaScript might
use the regexes built into the language specification. These regexes will be evaluated using
the regex engine of the JavaScript interpreter — e.g., in Google’s V8 JavaScript runtime,
their regexes would be evaluated by the Irregex regex engine [131]. When it evaluates
a regex match, a regex engine employs one or more of the algorithms described in §2.3.
Unfortunately, some regex engines rely on algorithms that expose their users to ReDoS
vulnerabilities.

In §2.3.1 I described two regex matching algorithms that exhibit best-case linear perfor-
mance but worst-case exponential performance in either the length of the pattern or the
candidate string (Table 2.2). If a regex engine is implemented with one of these algorithms,
an application that relies on it may be exposed to a denial of service attack [60, 247] called
ReDoS [135, 290], which is a type of algorithmic complexity attack [136]. A ReDoS attack
requires four conditions:

1. Multi-client service: The victim operates a service that handles requests from multiple
clients, permitting a malicious client to impact the experience of other clients.

2. Super-linear regex engine: The victim application uses a regex engine for which certain
regex matches exhibit super-linear time complexity.

3. Super-linear regex on untrusted input: The victim application uses a regex that
exhibits super-linear worst-case behavior in its regex engine, and the candidate strings on
which the regex is used are not adequately sanitized.

4. No safeguards: The victim does not have appropriate safeguards in place to cap a
client’s resource usage.

If these conditions are met, then an attacker can submit input designed to trigger the super-
linear regex behavior. Because the service has insufficient safeguards, the super-linear regex
evaluation will divert resources from legitimate clients to this malicious one. If the malicious
client can divert enough resources, they can reduce the quality of service offered to legitimate
clients. At the extreme, the attacker diverts enough resources to completely deny service to
legitimate clients.

2.5. Regular expression denial of service (ReDoS) 35

ReDoS Conditions 1 and 2 are commonly met. Prior research has shown that engineers com-
monly use regexes to parse user input as part of a web service [115, 238] (ReDoS Condition
1). As Cox observed anecdotally [132] and we show empirically in Chapter 5, many of the
regex engines built into programming languages use a Spencer-style backtracking algorithm
to perform regex matches (ReDoS Condition 2).

The remaining conditions to be considered are ReDoS Condition 3 (whether the regexes
are super-linear), and ReDoS Condition 4 (whether there are safeguards in place). In the
remainder of this section I will discuss techniques to evaluate the super-linearity of a regex
(Condition 3). The existence of safeguards varies by application context. In Chapter 9 we
discuss the lack of a safeguard in many web applications.

2.5.2 Identifying super-linear regexes

As noted in §2.5.1, many of the regex engines built into mainstream programming languages
perform a Spencer-style backtracking NFA simulation to answer regex queries [132]. To
understand the potential for ReDoS Condition 3 to be met, engineers must determine whether
their user-facing regexes could exhibit worst-case super-linear behavior in a Spencer-style
backtracking NFA simulation. Because the phenomenon involves a substantial amount of
backtracking through the search space, this super-linear behavior is known colloquially as
catastrophic backtracking [163]. Despite the maturity of regex theory, the conditions for
a super-linear regex, i.e., one for which a Spencer-style backtracking regex evaluation may
exhibit worst-case performance that is polynomial or exponential the length of the input
string, have only recently been formalized.

One of the necessary conditions for a regex to exhibit worst-case super-linear behavior is
that it be ambiguous. In §2.5.2.1 I define regex ambiguity and provide examples. Then I
consider the various means of identifying worst-case super-linear regexes. Researchers have
investigated this problem using both dynamic (§2.5.2.2) and theoretical (§2.5.2.3) analyses.
These approaches come with the typical trade-offs for their species. The dynamic analyses
have no fidelity issues, but struggle to explore the full input space. On the other hand, the
theoretical analyses offer proofs of correctness, but only insofar as their model of a regex
engine squares with reality. Practitioners typically do not apply formal analyses, but instead
follow heuristics to identify super-linear regexes (§2.5.2.4).

2.5.2.1 Ambiguity of regular expressions

The ambiguity of a regular expression has been described in several equivalent ways. In
syntactic terms, a regular expression is unambiguous if there is exactly one parse tree for
every string in its language [97, 317]. In terms of the behavior of its equivalent automaton,
a regular expression is unambiguous if there is exactly one way in which it matches every
string in its language [92]. Conversely, if a regular expression is ambiguous, then there are

36 Chapter 2. Background and related work

strings that occur in its language in more than one way. The definition of ambiguity in
regular expressions is analogous to that of ambiguity in a context-free grammar [98, 151].

The ambiguity of a regular expression can be determined using direct analysis of the language
of the expression [97, 317] or through analysis of the corresponding automaton [69, 92, 119].
The degree of ambiguity of a regular expression can be expressed in terms of the maximum
number of distinct derivations for any string in the language of the regular expression. In
terms of the corresponding NFA, the degree of ambiguity is the maximum number of distinct
accepting paths through the automaton for any string in its language. Some regular expres-
sions are unambiguous, while others have ambiguity that is fixed, polynomial, or exponential
in the length of the string [69, 310]. I will show examples of each type.

Unambiguous regular expressions Informally speaking, unambiguous regular expres-
sions have the property that for every string in its language, each character can only be
mapped to one component of the expression. In terms of a backtracking NFA simulation,
a regular expression is unambiguous if, during simulation on a string, non-deterministic
choices never reach the same point. The regular expression R1 = a with L(R1) = {a} is
unambiguous, as are the regular expressions R2 = ab*c with L(R2) = {abkc | k ≥ 0}, and
R3 = a(b|c) with L(R3) = {ab, ac}. The automaton representation of each of these regexes
is deterministic (i.e., a DFA), or can easily be made so through the treatment of ε-edges.
However, an unambiguous regular expression may still result in a non-deterministic finite
automaton representation (i.e., an NFA), e.g., R4 = (ab|ac) with L(R4) = {ab, ac}.16 In this
example, the candidate string ‘ad’ would require an NFA simulation to traverse two different
branches before a mismatch is determined. However, there is no suffix that would permit
the branches to join again, and so the regular expression remains unambiguous.

Finitely-ambiguous regular expressions Some regular expressions are k-ambiguous —
they have a maximum degree of ambiguity that results from the structure of the expression,
and that is independent of the input string. For example, no matter the length of the input
string, the regular expression R5 = (a|a) with L(R5) = {a} is 2-ambiguous. The string “a”
is in the language of both halves of the disjunction, and so an input string can be parsed
in 2 ways, but no more. The degree of ambiguity may still be quite large as a function of
the length |R| of the regular expression. For example, Figure 2.10 illustrates the automaton
corresponding to an O(2|R|)-ambiguous regular expression R6 = (a|a)(b|b)(c|c). As another
example, a regex of the form R7 = /a?a?a?a?a?.../ is

(|R|
|R|/2

)
-ambiguous. To see this,

consider the number of ways to parse the input string w = a
|R|
2 . Each of the k a’s can be

matched to any of the |R| slots, left to right.

16Cox distinguishes between R3 (whose “NFA” is deterministic) and R4 using the term “one-pass
NFA” [133].

2.5. Regular expression denial of service (ReDoS) 37

q1

q2

q3

a

a

q4

ε

ε

q5

q6

b

b

q7

ε

ε

q8

q9

c

c

q10

ε

ε

Figure 2.10: A regular expression with finite ambiguity. This figure shows the
finitely ambiguous NFA produced by Thompson’s construction for the regular expression
R = /(a|a)(b|b)(c|c)/. The string “abc” is in L(R), and can be parsed eight ways — there
are two ways for it to reach q4, four ways to reach q7, and eight ways to reach q10.

Infinitely-ambiguous regular expressions By applying unbounded repetition to finitely
ambiguous structures, regular expressions can become infinitely ambiguous. If a regular ex-
pression is infinitely ambiguous, then there are infinitely many ambiguous strings in the
language of the regular expression, and the degree of ambiguity is a function of the length of
these ambiguous strings. The degree of ambiguity can be either polynomial or exponential
in the length of the input string.

There are two ambiguous structures in an NFA that can lead to infinite ambiguity. These
structures are depicted generically in Figure 2.11a (polynomial ambiguity) and Figure 2.11b
(exponential ambiguity), with details in the figure captions. In the language of Wüstholz et
al. [341], in each figure the node labeled q1 is a pivot node because from this node an NFA
simulation can “pivot” along one path or the other.

This dissertation is largely concerned with ReDoS through infinitely ambiguous regular ex-
pressions. Although finitely-ambiguous regular expressions may have an exponential degree
of ambiguity in |R| [132], I believe such regexes are uncommon in practice. By compari-
son, regular expressions with infinite ambiguity are trivial to construct and are commonly
used in practice. As a result, most chapters only consider regexes with infinite ambiguity.
Only Chapter 8 treats both finite and infinite ambiguity.

2.5.2.2 Detecting super-linear regexes using dynamic analyses

Several researchers have evaluated dynamic analyses to identify a regex’s worst-case match
complexity. Given a regex, these analyses evaluate its behavior in the regex engine of interest
on a variety of inputs. Their goal is to identify inputs that take a particularly long time to
evaluate, and from this to infer the regex’s worst-case match complexity. Sullivan proposed a
classical fuzzing approach in the manner of Miller et al. [245], re-purposing a Microsoft prod-
uct’s regex input generator to test a regex’s match time on a range of randomly-generated

38 Chapter 2. Background and related work

q1 q2

α

ε

α

(a) This NFA has a simple polynomially-
ambiguous structure. Two nodes q1 and q2 both
have an unbounded quantifier, both consume the
string α, and are connected by an ε-edge. As an
example, the regex /a ∗ a ∗ / would have such
a structure. Beginning from q1 on the string
w = αk, the automaton can advance from q1 to
q2 after consuming any prefix αi, 0 ≤ i ≤ k.
There are thus k = Θ(|w|) distinct accepting
paths to q2. By extending this automaton with
additional similar states (e.g., R = /a∗a∗a∗/),
the number of paths increases geometrically in
|k|.

q1

π1 : α

π2 : α

q2
. . .

(b) This NFA has exponentially-ambiguous
structure. As an example, the regex /(a|a) ∗ /
would have such a structure, as would the regex
/(a∗) ∗ /. Beginning from q1 on the string
w = αk, the automaton can return to q1 along
either path π1 or path π2. Thus, if w is ac-
cepted, then there will be |2k| = Θ(2|w|) distinct
accepting paths to q2.

Figure 2.11: Regular expressions with infinite ambiguity. Regular expressions with
infinite ambiguity.

input strings [314, 315]. Petsios et al. [279] and Shen et al. [297] both proposed genetic search
algorithms to discover particularly expensive input strings for a given regex, with fitness mea-
sured by the number of instructions performed by the regex engine during evaluation. Due to
the enormous string search space, these dynamic approaches are not able to identify regexes
with quadratic super-linear behavior. They are more successful at identifying regexes with
highly super-linear worst-case behavior, viz. exponential behavior and polynomials that are
cubic or higher. They can also identify regexes with large finite ambiguity, e.g., the regex
from Figure 2.10.

2.5.2.3 Detecting super-linear regexes using theoretical analyses

Other researchers have pursued static analyses of a regular expression to determine whether
it could exhibit worst-case super-linear behavior. These analyses are based on the model of
a backtracking regex engine as described in §2.3.1.2, and define the necessary and sufficient
conditions for super-linear matching in this model: (1) that the regex have an infinitely
ambiguous sub-pattern Rsuper−linear = Pprefix · Pambig · Psuffix; and (2) that there be some
strings wsuper−linear = αβkγ such that α ∈ L(Pprefix), βk is ambiguous in L(Pambig), and
γ 6∈ L(Psuffix), so that wsuper−linear 6∈ L(R). If these conditions are met, then a backtracking
search will traverse the sub-string βk as many times as the sub-pattern is ambiguous. For
example, in the case of the NFA depicted in Figure 2.11a, the backtracking search will

2.5. Regular expression denial of service (ReDoS) 39

traverse the input w = ak once for each of the k = Θ(|w|) paths through the string, at a
cost of |w| ∗Θ(|w|) = Θ(|w|2).

Researchers have considered several theoretical approaches by which to identify regexes that
have worst-case super-linear matching behavior. Sugiyama et al. [313] and Kirrage et al. [209]
both considered an abstract model of the evaluation tree of a regex. Others have modeled
the regex engine’s behavior using NFAs [284, 335, 336, 341] and reduced the problem to
graph reachability. Some analyses identify solely regexes with exponential worst-case com-
plexity [87, 209, 284], and others will identify any super-linear behavior, whether polynomial
or exponential [313, 335, 336, 341].

All of these analyses are equivalent to searching for paths through the NFA derived from
the regex. In keeping with the necessary and sufficient conditions defined above, the desired
paths have three components: a prefix to reach an ambiguous sub-automaton; a pump string
exploiting the NFA’s ambiguity that can be repeated to increase the amount of backtracking
in the NFA simulation; and a suffix that will cause a mismatch.17 For example, on the
regex /^b(a+)+$/, the prefix would be “b”, the pump would be “a” (each “a” increases
the backtracking by a factor of two), and a suffix would be any other character (to trigger
backtracking).

Many of these analyses include proofs of soundness and completeness for regexes that are
written in the regex language they consider and that are evaluated under their model of a
regex engine. However, they still have sources of false positives and false negatives for the E-
regexes that are supported in most regex engines. False negatives may arise for two reasons:
(1) they consider only the behavior of K-regexes and K-compatible E-regexes, ignoring super-
linearity that may arise from the use of extended regex features like backreferences; and
(2) they consider only regexes with infinite ambiguity, ignoring large finitely ambiguous
regexes, e.g., the regex from Figure 2.10. False positives may arise where their models are
inconsistent with real regex engine implementations, e.g., ignoring prioritization [209] or
not considering the impact of optimizations like Aho-Corasick [64], Boyer-Moore [96], and
Knuth-Morris-Pratt [212].18 Lastly, these analyses ignore the effect of flags on the semantics
of a regex match, which can affect properties like case sensitivity, the character set, and the
interpretation of certain operators. Flags can lead to both false positives and false negatives
for these analyses.

17Some analyses consider richer PCRE semantics, and show that super-linear behavior can manifest even
when the candidate string is in the language of the regex, e.g., when non-greedy quantifiers are used to
de-prioritize the accepting path [336].

18These techniques are used to short-circuit evaluations or identify feasible starting and stopping points
based on regex sub-patterns that are sequences of symbols. For example, any string that can match the regex
/(c+) + d/ must contain at least one ‘d’, and the only viable starting points for a search can be identified
by working backwards from each instance of a ‘d’ in the candidate string.

40 Chapter 2. Background and related work

2.5.2.4 Regex ambiguity anti-patterns

Several regex reference texts make informal recommendations to avoid super-linear behav-
ior [156, 177, 179]. They suggest that software engineers should avoid nested quantifiers
(“star height”) [163, 177], and more generally that software engineers should “watch out
when...[different] parts of the [regex] can match the same text” [179]. These recommenda-
tions are an imprecise warning against writing regexes that contain ambiguity, and therefore
we will refer to these anti-patterns as ambiguity anti-patterns. We evaluate this advice
in Chapter 6.

If an engineer cannot avoid ambiguity, these texts suggest that it could be refactored using
atomic grouping or possessive quantifiers. Such advice is applicable in the languages that
support either of these features — Java, Perl, .NET, Ruby, and PHP [5, 47]. The viability
of such refactorings has not yet been studied scientifically.

2.6 Research on the use of regexes in practice

The previous sections described the mathematical theory behind regexes (K-regexes) §2.2,
gave common algorithms for language membership testing §2.3, stated their syntax and
semantics in practice (E-regexes) §2.4, and discussed the risk of ReDoS when super-linear
regexes are deployed in user-facing contexts §2.5. This section summarizes the empirical
research literature on regexes from a software engineering perspective.

2.6.1 Qualitative research on the use of regexes

Several research teams have examined the ways in which software engineers use regexes
in practice. At a high level, these works have told us three things: (1) That regexes are
commonly used by practitioners; (2) That regexes are frequently used in critical places, e.g.,
input sanitization; and (3) That many engineers struggle to use regexes correctly.

To the best of my knowledge, Singer et al. were the first to document the use of regexes
in practice. During an ethnographic study, they reported that software engineers spent
much of their time on program comprehension tasks, and that engineers commonly applied
regex tools like grep to search for relevant sections [299, 300]. Their findings align with
Goebelbecker’s popular introduction to regexes, which describes searching files as a common
application [174].

Chapman and Stolee performed the next studies of regex use in practice [115]. In 2016,
they surveyed 18 software engineers at a small software firm to understand their use of
regexes. The average respondent wrote regexes frequently, typically at least weekly. They
used regexes in a range of contexts: within text editors, on command lines, as part of an SQL

2.6. Research on the use of regexes in practice 41

query, and as part of various computer programs. These engineers commonly reported using
regexes for parsing user input, searching files, and summarizing data (e.g., counting lines that
match a pattern). With Wang, Chapman and Stolee later studied the comprehensibility of
regexes [116], identifying more and less comprehensible regex synonyms (e.g., /a|b/ and
/[ab]/) with an eye towards determining regex anti-patterns [213].

The most recent studies of regex use in practice were conducted by Michael [237] and Dono-
hue [149], summarized together in [238].19 These studies surveyed a combined 279 software
engineers from many companies, and interviewed 17 of them for further insight. They re-
ported that regexes are hard, and that engineers find search, validation, and documentation
tasks particularly difficult.

None of these qualitative studies have included a comparison of regexes to other tools,
whether specifically for pattern matching (e.g., string functions or parsing expression gram-
mars [236]) or more broadly to software engineering tools, e.g., compilers, query languages,
version control systems, or collaboration tools. Although learning of engineering difficulties
with regexes is valuable, it would be fruitful to understand their place in a hierarchy of
difficult software engineering tasks.

2.6.2 Quantitative research on the use of regexes

Although qualitative research has told us about how regexes are used in practice, we know
relatively little about regex practices in the wild. On a small scale — a few thousand web-
sites or applications — researchers have reported on regex repetition practices, the most
commonly used regex features, and the existence of relatively synonymous regexes (overlap-
ping languages).

In their 2010 work, Hodován et al. reported that many websites use the same (JavaScript)
regexes, commonly for identifying web browsers via their user-agent strings [191]. They col-
lected a ten-year longitudinal sample of regexes from 100 websites, extracting about 200, 000
regexes (5, 000 unique) over 10 years. I conjecture that the high degree of repetition they
report might be due to widespread adoption of the same client-side JavaScript libraries, or
perhaps due to infrequent regex evolution [332].

Chapman and Stolee examined regex usage in 4, 000 Python projects [115]. They found that
regexes were widely used, appearing in about 40% of the projects. Analyzing their corpus
14, 000 distinct regexes, they reported on the relative popularity of the ∼ 35 regex features
in Python. About half of these regexes contained repetition constructs like + (ADD) and ∗
(KLE), while only 0.5% contained rarer constructs like backreferences (BKR). Chapman et
al. leveraged this corpus to guide their study of synonymous regex constructs [116].

Wang and Stolee went on to consider regex test practices, grounded in a corpus of 15, 000

19I helped conduct these studies.

42 Chapter 2. Background and related work

unique regexes extracted from 1, 225 Java projects [332]. They reported that the test suites
for these projects successfully covered the lines on which regexes occurred, but provided poor
coverage of the regexes themselves. Depending on the coverage metric, the non-diverse input
strings led to average regex coverage of only 59% or 29%. Troublingly, they also reported
that the state-of-the-art input generation tool, Rex [328], did not prioritize generating diverse
inputs and would thus not be a particularly useful tool for improving on the relatively poor
regex test coverage. One shortcoming of this work was a lack of comparison between regex
test practices and broader test practices. It would be helpful to know whether the projects
were typically well tested using, say, line coverage, and that regexes were abnormally under-
tested. Conversely, if the projects had poor test quality in general, it would be unsurprising
that the regexes were also poorly tested.

Finally, Wang et al. further considered regex evolution, i.e., the way in which a regex in a
software project changes over time. Building on the same set of Java projects as [332], Wang
et al. reported that regexes do not typically evolve once they enter a software project’s
source code [333]. When they do evolve, regexes are typically expanded in two ways: to
accept a wider variety of strings, and using a larger set of regex features than before.

Both qualitative data and these quantitative measurements suggest that regexes are widely
used in practice. These quantitative measurements have provided regex corpora that could
guide the development of future tools or regex engines. But given the relatively small scope
of these quantitative studies, the generalizability of the findings as well as the characteristics
of interesting populations of regexes remain unknown. From the characteristics of regexes in
a few hundred or a few thousand projects in JavaScript, Python, and Java, we cannot safely
generalize to, e.g., the population of regexes in Python projects or the population of regexes
across many programming languages.

2.6.3 Studies of super-linear regexes and ReDoS in practice

Michael et al. found among 279 professional software engineers from many companies, all
used regexes but only 38% were aware of ReDoS attacks [238]. As a result, it is unsurprising
that many examples of super-linear regexes have been reported in small-scale studies.

While evaluating their super-linear regex detectors, several researchers have measured the
number of super-linear regexes within a corpus of regexes used in practice. Sugiyama et al.
found super-linear regexes in the five PHP projects they examined [313]. Rathnayake and
Thielecke and Weideman et al. observed super-linear regexes in the Snort WAF rules and the
RegExLib library [284, 335]. Shen et al. found hundreds of super-linear regexes in the Snort
WAF rules, the RegExLib library, and Chapman and Stolee’s Python regex corpus [297].

Rather than considering regexes in isolation, two works have considered regexes in their

2.6. Research on the use of regexes in practice 43

application context. Wüstholz et al. combined their super-linear regex analysis with taint
analysis to establish that in 27 out of the 150 Java web applications they considered, super-
linear regexes were evaluated on untrusted input [341]. From a black-box approach, Staicu
et al. leveraged insights into modern software engineering practices in the Node.js com-
munity. They identified super-linear regexes in popular JavaScript libraries from the npm
ecosystem, conjectured how they might be deployed within a Node.js application, and suc-
cessfully exploited ReDoS vulnerabilities in 339 out of the 2,846 popular web services they
attacked [307].

2.6.4 Tools for working with regexes

Given the value of regexes and the difficulty that engineers report when working with them, it
is unsurprising that researchers have proposed a range of tools to support software engineers
in regex engineering tasks. These tools consider regexes in two distinct modalities: the regex
pattern itself, and its language (the set of strings it matches). Tools have been proposed
to aid engineers under both of these interpretations of a regex, and a long line of work has
considered automatic regex composition.

Some research on regex maintenance has focused on diagnosing issues within the regex
pattern. Regexes are included in programming languages, but not incorporated into type
systems. This omission can cause syntax errors to manifest late in the development cycle,
at run-time instead of compile-time. Spishak et al. described a regex type system that can
identify a range of errors earlier in the development cycle [306]. The approach of Beck et
al. applies syntax highlighting concepts from general-purpose programming languages to
regexes [80], and others have considered automaton-based visualizations [104]. For syntac-
tically correct regexes, Casias et al. recently proposed early steps towards regex debugging
assistance [110].

Other work focuses on understanding the set of strings that a regex will match. Some re-
searchers have done so to support program analysis and testing, e.g., understanding the string
constraints encoded in a regex in order to permit deeper path exploration [223, 227, 328].
Others have considered the regex’s language from a testing perspective. These researchers
hypothesized common regex errors, and proposed interactively probing developers to de-
termine whether a regex exhibits an error [73, 219, 220]. For comprehension, Blackwell
proposed a visualization intended to support regex comprehension based on the strings that
it matches [91].

Rather than supporting regex maintenance tasks, many researchers have investigated the
problem of automatic regex composition. Their goal has been to learn a regex pattern from
examples, to induce an automaton (and/or its corresponding regex) from inputs that it ac-
cepts or rejects. This line of work has typically been as a stepping stone towards higher-order
learning, targeting a relatively simple problem first. Researchers have induced automata from
a variety of starting points, including positive examples [145], positive and negative exam-

44 Chapter 2. Background and related work

ples [70], noisy (biological) examples [164], and examples plus additional guidance [76, 225].
Although these tools have not always been developed with an eye towards practical adoption
by software engineers, this seems like a natural application of such work.

Since the empirical literature does not contain large-scale regex corpora, it is not clear
whether these tools support engineers in solving the regex problems they actually face. To
ensure that their tools to be relevant to practitioners, regex tool builders would benefit from
evaluating their tools on a representative regex corpus. Many of these studies would also
benefit from evaluation on a population of software engineers.

2.7 What we don’t yet know

In this section I described the mathematical foundations of regexes (§2.2), the common
algorithms for regex language membership testing (§2.3), and the syntax and semantics
of regexes in software engineering practice (§2.4). Combining this background, in §2.5 I
explained the risk of ReDoS: the denial-of-service implications of the conjunction of (1)
software engineers’ common use of regexes to process untrusted user input; and (2) the
use of inefficient algorithms to perform regex matching. Despite recent exploratory studies
(§2.6), there are still many gaps in scientific knowledge related to ReDoS. These gaps can
be summarized into two categories:

• To what extent is ReDoS a problem in practice? (Part II)
• How viable are the various solutions to ReDoS? (Part III)

In Part II, I report that ReDoS is a widespread problem in practice. In Part III I systemat-
ically evaluate the gamut of solutions to ReDoS.

Part II

Is ReDoS a Problem in Practice?

45

Outline and summary

“ If it ain’t broke, don’t fix it. ”
–Anon.

In §2.5 I defined ReDoS and discussed the existing research into this security vulnerability.
These studies have been restricted either to evaluating the effectiveness of super-linear regex
detectors on a small corpus of regexes [209, 284, 297, 313, 335], or to searching for exploitable
ReDoS vulnerabilities in a handful of popular software projects [307, 341]. Although these
studies have suggested that ReDoS may be a problem in practice, they have not been con-
ducted with a broad enough scope to give a sense of how widespread the problem is. Without
large-scale measurements, regex engine developers have little reason to concern themselves
with ReDoS. In particular, we don’t know:

• ReDoS Condition 3: The extent to which small-scale estimates of super-linear regex
frequency will generalize to full software ecosystems; and

• ReDoS Condition 2: The extent to which real-world regex engines evaluate some regexes
in super-linear time.

In this part of the dissertation, I will present my research into these questions. I begin with a
series of ReDoS case studies (Chapter 3). This collection of anecdotes guides the design and
interpretation of the experiments that follow. Next, Chapter 4 describes the results of my
ecosystem-scale empirical study. I report that thousands of software modules are potentially
exploitable in ReDoS attacks, including vulnerabilities in the core libraries of Python and
Node.js. Chapter 5 shows that the findings of Chapter 4 generalize to new contexts: super-
linear regexes are common in software written in many programming languages, and the
regex engines in many programming languages commonly exhibit worst-case super-linear
behavior.

Briefly put, up to 10% of real-world regexes exhibit super-linear worst-case behavior on most
of the production regex engines we considered. This suggests that ReDoS is a threat to real
software on a larger scale than might previously have been imagined. Motivated by these
findings, in Part III I evaluate the solution space for ReDoS.

46

Chapter 3

Case studies of problematic
super-linear regex behavior

3.1 Summary

Super-linear regex evaluations have led to several well-documented actual or potential service
outages and performance issues. This section summarizes four such issues in the form of case
studies. From these studies we can learn several lessons (§3.6): that regexes are used in many
contexts, that regexes can be problematic in many contexts, and that even weakly super-
linear regex behavior can cause outages in production.

The case studies of Cloudflare and Stack Overflow describe production service outages. These
outages appear to have occurred accidentally, rather than being induced by a malicious actor.
However, they illustrate the potential impact of a ReDoS attack in practice.

The performance characteristics of the regexes in each case study are summarized in Ta-
ble 3.1.

Statement of Attribution The material presented in this section has not previously been
published.

Table 3.1: Super-linear regexes in ReDoS case studies. This table summarizes the
super-linear regexes from the ReDoS case studies. The performance measurements are on a
desktop-class machine using the typical Spencer-style regex engine used by Node.js (v12). If
a match took more than 60 seconds, it was deemed too expensive to complete. For the Atom
case study, the worst-case input corresponds to the minimal example from Listing 8. TTM:
Time to match.

Case study Worst-case behavior Worst-case input TTM 250 chars. TTM 100K chars.

MediaWiki (§3.2) Attacker’s choice Varies Too expensive Too expensive

Cloudflare (§3.3) Quartic ++ ...+ 14 seconds Too expensive

Stack Overflow (§3.4) Quadratic !\t\t...\t! 0 seconds 6.5 seconds

Atom (§3.5) Exponential ababab...! Too expensive Too expensive

47

48 Chapter 3. Case studies of problematic super-linear regex behavior

Listing 5 Attacker-controlled regex pattern from MediaWiki vulnerability. This
listing shows the PHP code surrounding the attacker-controlled regex pattern that led to
MediaWiki CVE 2015-6736. The contents of the variables value and possibility are under
the control of the attacker, and the value used as the regex pattern is neither quoted nor
escaped. Thus the attacker can craft an arbitrary regex pattern and combine it with an
input that triggers the regex’s worst-case behavior.

// $value is unsanitized and is used as a regex
if ($value == $possibility

|| (preg_match('`^' . $value . ' \(i\)$`i', $possibility))
|| (!$this->mCaseSensitive && preg_match('`^' . $value . '$`i', $possibility)))

{
...

}

3.2 CVE 2015-6736 at MediaWiki

MediaWiki is a software package that supports building scalable wiki-style websites [10].
This package is used by Wikipedia and the other Wikimedia Foundation websites [12]. In
2016 the MediaWiki engineering team disclosed a denial of service security vulnerability that
was assigned CVE 2015-6736 [45].

The regex The code snippet at the root of this vulnerability is given in Listing 5. Because
the attacker controls both the regex pattern and the input, they can craft a super-linear regex
and accompany it with a worst-case input of their choice.

The deployment context MediaWiki supports extensions that a site administrator can
use to customize their deployment [9]. These extensions include software that runs on the
server side. The problematic code snippet used this regex as part of the Quiz extension [11].
The extension used a regex to determine whether an input (possibility) matched one of
a set of prescribed values (value) in a case-insensitive manner. The regex match would be
performed on the server side, so a malicious user could force a MediaWiki server to perform
an effectively arbitrary amount of work to evaluate it.

The resolution The engineer Marius Hoch repaired this vulnerability by escaping regex
metacharacters prior to evaluating the user input as a regex pattern [190].

3.3. July 2019 service outage at Cloudflare 49

Listing 6 Super-linear regex from Cloudflare outage.

regex = /(?:(?:\"|'|\]|\}|\\|\d|(?:nan|infinity|true|false|null|undefined|symbol|math)
|\`|\-|\+)+[)]*;?((?:\s|-|~|!|{}|\|\||\+)*.*(?:.*=.*)))/
// Minimal failing example (quartic): /a*b?c?a*a*a*=/
// Minimal failing example (quadratic): /.+.+=/

3.3 July 2019 service outage at Cloudflare

Cloudflare is an Internet infrastructure company. Their primary offerings revolve around
caching and delivering content for their customers, who own a reported 20 million web
properties [4]. One industry expert estimates that they serve 5-10% of internet traffic [261],
including services by Uber, OKCupid, and Peloton [167, 168]. In July 2019 they experienced
a 27-minute service outage caused by a super-linear regex evaluation, in turn affecting the
availability of their clients’ services. The summary given here is based in part on their post
mortem analysis [180].

The regex The regex that led to the Cloudflare outage is given in Listing 6. This regex has
worst-case quartic behavior in Spencer-style engines due to the four adjacent loops that can
all match a “+” character.1 It will exhibit this behavior on any line containing a relatively
short sequence of “+” characters that does not contain an “=”, because the sequence of “+”
characters can be parsed against the ambiguous sub-pattern in many ways. This regex will
also exhibit weaker quadratic behavior on any line containing a long sequence of non-newline
characters that does not contain an “=”.

The deployment context Cloudflare used this regex as part of a Web Application Fire-
wall (WAF) security rule. WAF rules are intended to filter malicious traffic in HTTP con-
versations, e.g., cross-site scripting (XSS) or SQL injection attacks [270]. This regex was
intended to identify XSS attacks in network traffic, and was therefore being evaluated on
untrusted input.

The outage Shortly after Cloudflare’s engineers deployed this regex worldwide, the regex
encountered network traffic that triggered its worst-case behavior. There was enough network
traffic of this form that all of Cloudflare’s servers that handled HTTP/HTTPS traffic began
to spend the majority of their CPU cycles performing regex matches. For the next 27
minutes, Cloudflare’s servers did not route traffic but rather matched regexes, leading to
outages to their customers’ services.

1The regex is quartic under full-match semantics, but quintic under partial-match semantics for the
reasons discussed in §3.4.

50 Chapter 3. Case studies of problematic super-linear regex behavior

The resolution After 27 minutes, Cloudflare’s engineering team disabled the WAF rule
suite, causing traffic to flow (albeit with a lower level of protection). Cloudflare’s engineers
then performed root cause analysis and rolled back the errant rule. Within the next month
they stated that they planned to switch from the Lua regex engine to the RE2 or Rust regex
engines, both of which guarantee better performance.

Remarks Surprisingly, the analysis from Cloudflare’s engineering team actually under-
stated its worst-case behavior. They described it as a quadratic regex rather than a quartic
one. Their analysis focused on the /.*.*=/ portion and omitted the two preceding groups
that could also match a +. This regex can exhibit quadratic worst-case behavior under a
different class of inputs, so it may be that the network traffic that triggered the super-linear
behavior at Cloudflare caused the regex engine to exhibit quadratic behavior.2 This seems
likely, because any long packet that did not contain an “=” would trigger quadratic behavior,
while only a packet containing a long sequence of “+” characters would trigger the quartic
behavior.

3.4 July 2016 service outage at Stack Overflow

Stack Overflow is an online question and answer forum [22]. It is part of the Stack Exchange
Network and focuses on supporting computing practitioners. In July 2016 they experienced
a 34-minute service outage caused by a super-linear regex evaluation, preventing users from
posing questions or answering them. In early 2020, Stack Overflow received about 10 million
visits per day [58], so a rough estimate suggests that this outage affected over 200,000 possible
visits.3 The summary given here is based in part on their post mortem analysis [153].

The regex The regex that led to the Stack Overflow outage is given in Listing 7. This regex
has worst-case quadratic behavior in Spencer-style engines due to the use of partial-match
semantics on the right-hand operand of the disjunction. It will exhibit this behavior on any
line containing a long sequence of whitespace surrounded by non-whitespace character(s).

The deployment context This regex was used on the Stack Overflow server side to clean
(and reduce the size of) all posts prior to delivering them to users. Its specific purpose was
to trim whitespace from the beginning and end of the lines of posts.

2Specifically, the inputs might trigger the first and third loop and end in a newline, or they might trigger
the two “DOTALL” loops and end without a “=”.

3Assuming that visits are distributed evenly throughout the day, 10M ∗ 34
24∗60 = 236, 111.

3.5. Performance problem in the Atom editor 51

Listing 7 Super-linear regex from Stack Overflow outage. This listing shows the
super-linear regex that led to the Stack Overflow outage. Note that disjunction has higher
precedence than the anchors ˆ and $, so this regex is correctly read “A string beginning with
whitespace, or a string ending with whitespace.”

regex = /^[\s\u200c]+|[\s\u200c]+$/
// Minimal failing example: /\s+$/

The outage On July 20, 2016, post #384884433 appeared on the home page. At the time,
this post contained a line with a sequence of 20,507 whitespace characters that did not end
in whitespace [46], triggering the quadratic worst-case behavior for all visitors.4 Once post
#384884433 appeared on the home page, all visitors to Stack Overflow triggered about 200
milliseconds’ worth of unanticipated compute-intensive regex matching on the server side.
Given the popularity of the website, Stack Overflow’s servers were presumably unable to
sustain this load and serve requests for the home page. Although other pages might still
have been accessible, Stack Overflow’s load balancing system determined their servers’ health
by requesting them to provide the home page, and no backend server could serve requests
for this page in a timely manner. Thus, the load balancing system declared each server
unhealthy one by one. Eventually no servers were available to serve any client requests, for
the home page or otherwise.

The resolution It took Stack Overflow’s engineers 34 minutes to discover the outage,
identify the problematic regex, and replace it with equivalent linear-time string functions.
After the outage, their engineering team took ameliorative steps including auditing their
regexes and their validation workflow for posts, and modifying how the health of their servers
was measured.

3.5 Performance problem in the Atom editor

Atom is a popular text editor [2]. It was released as open-source software in 2014, and as
of 2015 had about 300,000 monthly users. In June 2016, a user identified benign-looking
file contents that caused a local Atom session to exhibit a 30-minute lag before handling
a keystroke. The summary of the performance problem given here is based in part on an
investigation by David Galbraith [165].

The regex The regex that caused the Atom performance issue is given in Listing 8. This
regex has worst-case exponential behavior in Spencer-style engines due to the presence of

4For unclear reasons, the post has since been edited to remove the whitespace characters.

52 Chapter 3. Case studies of problematic super-linear regex behavior

Listing 8 Super-linear regex from Atom performance issue. This listing shows the
super-linear regex that caused the Atom performance issue.

regex = /^\s*[^\s()}]+(?<m>[^()]*\((?:\g<m>|[^()]*)\)[^()]*)*[^()]*\)[,]?$/
// Simplified by Galbraith: /^([^()]*\(\)[^()]*)*\)$/
// Minimal failing example: /^(a*ba*)*$/
// Repaired by Galbraith (quadratic):
// /^\s*[^\s()}]+([^()]*\((?:\1[^()]*|[^()]*)\))*[^()]*\)[,]?$/

“book-end” identical quantified sub-groups within a quantified group.

For the “Minimal failing example” in Listing 8, consider the behavior of the NFA simulation
on a candidate string of the form “abab...!”. Once the simulation passes the first /a*/ and
reaches the second /a*/, the next a it sees can be consumed either in the second /a*/ or
the first one. Since both sub-patterns are optional, either consumption is valid, creating
ambiguity. The subsequent b will always be consumed and the NFA simulation will then
return to the second /a*/. The effect is that for every ab, there is a compounding of two paths
to explore, leading to an exponential number of paths to try in the worst case. Additional
a’s between each b would linearly increase the number of paths to explore in that “round”,
with each subsequent b incurring the compounding effect.

Based on this analysis, for the full regex the compounding would occur for each additional
function call in a line. Any text between the “()” of each function call could be consumed
in either of the “book-end” quantified groups, increasing the effect of the compounding.

The deployment context Atom used this regex to determine whether or not to reduce
the level of indentation when a user entered a new line. The regex matches lines with
unbalanced parentheses, specifically those with more “)” than “(”. When Atom observed
such a line, it would decrease the indentation by one level on the next line, supporting
“pretty printing” of a coding convention within Google’s Go programming language.

The performance problem At the time of Galbraith’s report, this exponential behavior
would be triggered any time that a user pressed “Enter” under the following circumstances:
the cursor was at the end of a line of Go code that contained a large number of function
calls and did not end in a closing parentheses.

The resolution Galbraith worked with the Atom development team to replace the regex
with a semantically equivalent one that does not exhibit exponential worst-case behavior.

3.6. Lessons learned 53

Remarks The exponential regex in Atom would not cause a service outage in typical use
cases. Atom is usually used on a developer’s machine, and so this performance problem
would only affect users that had the relevant file contents. Were Atom offered as a service,
this regex could be used by one user to deny access to others.

As in the Cloudflare case study, in this case study the worst-case behavior can be triggered
by legitimate and typical-seeming input. In contrast, in the Stack Overflow case study
the super-linear worst-case behavior would only be triggered by abnormal input. It had
presumably been used without issue until the unfortunate appearance of post #384884433
on the home page.

The repaired regex introduced by Galbraith in his pull request [166] is still super-linear, but
its worst-case performance was improved from exponential to quadratic. Galbraith’s failure
to produce a linear-time regex is perhaps unsurprising, given that he described never having
heard of super-linear regex evaluations until after identifying that a regex was the cause of
the performance problem [165]. However, in the context of a text editor, quadratic worst-
case performance on a single line of code is acceptable. According to my measurements,
under Galbraith’s repaired regex a line of code would need to be about 2,000 characters long
before its worst-case match time exceeded 5 milliseconds. This is well below the threshold
of human perception [137]. Galbraith’s improvement thus moves the input space that will
trigger the performance issue, from the realm of function-heavy Go code to the realm of the
esoteric.

3.6 Lessons learned

There are three lessons to be learned from these case studies.

First, worst-case behavior notwithstanding, it is apparent that regexes are a useful and flex-
ible tool. These case studies showed regexes being used at many points in the computing
stack, for diverse purposes. These software projects had successfully used regexes (including
several of the problematic regexes) without an issue in the common case, and only expe-
rienced problems under exceptional circumstances. As a general rule, it appears that the
typical space and time complexity of a Spencer-style backtracking regex engine is acceptable
in production deployments.

Second, because of their utility, we see that regexes can be problematic in many contexts.
In these case studies they caused performance and security issues while being applied: to
test user input by the wiki platform MediaWiki; as part of packet inspection by the CDN
Cloudflare; to reduce network costs by the discussion forum Stack Overflow; and while
performing pretty-printing in the text editor Atom. Unless they rely on a linear-time regex
engine, engineers should certainly not permit users to define their own regexes to be evaluated
on the server side, and they should remain wary whenever they deploy a regex on untrusted
input.

54 Chapter 3. Case studies of problematic super-linear regex behavior

Third, even weakly super-linear regex behavior can be problematic. It is unsurprising that
worst-case exponential behavior can cause performance problems (as in Atom) or security
vulnerabilities (as at MediaWiki). But even low-polynomial behavior, e.g., the quadratic
performance experienced at Cloudflare and Stack Overflow, can have serious repercussions.

Chapter 4

Measuring the use of super-linear
regexes in practice

4.1 Summary

In Part II I observed that the risk of ReDoS in practice was unknown because no large-
scale measurement study had been performed. This chapter summarizes the results of my
ecosystem-scale study of super-linear regexes in the JavaScript and Python ecosystems.

Methodology In this work, my collaborators and I performed the first large-scale em-
pirical study to understand the extent of super-linear regexes in practice as well as the
mechanisms that could be used to identify them. We analyzed the ecosystems of two of the
most popular programming languages to understand the incidence of super-linear regexes.
Our study covers the Node.js (JavaScript) and Python core libraries, as well as 448,402
(over 50%) of the modules in the npm [56] and pypi [57] module registries. For each software
project we studied, we statically extracted its regexes and applied an ensemble of super-
linear regex detectors to determine whether they might be super-linear. We then evaluated
the degree of super-linearity in real regex engines, and estimated the application domains in
which they were employed.

Findings We found that super-linear regexes occur in practice and in prominent places:
they appear in the core Node.js and Python libraries as well as in thousands of modules in the
npm and pypi registries, including popular modules with millions of downloads per month.
We found over 4,000 unique super-linear regexes across npm and pypi, covering a wide range
of application domains. Furthermore, nearly 300 of these regexes are high-risk because they
have exponential complexity. Super-linear regexes comprise approximately 1% of the unique
regexes we examined. In Chapter 5, I will improve on the methods presented here to show
that super-linear regexes are approximately an order of magnitude more frequent under
partial-match semantics.

Statement of Attribution The material presented here is excerpted from a paper that
I presented at ESEC/FSE 2018 [139].

55

56 Chapter 4. Measuring the use of super-linear regexes in practice

4.2 Study design and research questions

Our goal in this study is to understand the extent of potential ReDoS vulnerabilities in
practice. In particular, we focus our investigation on studying super-linear regexes, which
can be exploited to cause ReDoS. We consider three research questions:

RQ1: How prevalent are super-linear regexes in practice?
RQ2: How strongly vulnerable are the super-linear regexes?
RQ3: Which application domains do super-linear regexes affect?

4.3 RQ1: How prevalent are super-linear regexes in
practice?

In answering this research question, our goal is to obtain large-scale measurements of the
incidence of super-linear regexes in practice.

4.3.1 Methodology

In brief, this is how we measured the incidence of super-linear regexes in the wild. We used
static analysis to extract all the regexes used in the Node.js and Python core libraries as
well as more than half of the modules in the npm (JavaScript) and pypi (Python) registries.
We applied super-linear regex detectors to filter for potentially-super-linear regexes, and
concluded with a dynamic validation phase to prove that a regex was actually vulnerable.

Software We chose to study the largest software ecosystem as measured by number of
open-source projects, that associated with JavaScript [144]. To gauge the generality of our
results, we also studied the Python software ecosystem.

The source code in software ecosystems can be divided into the language core (“platform”),
3rd-party libraries, and applications [229]. We studied the regexes used in two portions of
these ecosystems: the language core and in 3rd-party libraries. While super-linear regexes
in a language’s core modules and in 3rd-party libraries are not always exploitable in ReDoS
attacks (e.g., because an application might never call a vulnerable API), they have a much
broader potential impact. In the worst case, all applications using a module could be affected,
including both open-source and closed-source applications [286]. As a practical considera-
tion, production applications are often closed-source. In contrast, in modern ecosystems the
language core and 3rd-party libraries are generally open-source, and 3rd-party libraries are
conveniently organized in a registry that tracks metadata like where to find the module’s
source code.

4.3. RQ1: How prevalent are super-linear regexes in practice? 57

For each language’s core, we tested each supported version. For 3rd-party libraries, we
examined the master branch of every module listed in the npm and pypi registries that
had a URL on which we could run git clone. We chose not to use the packaged version of
modules provided by the registries because these are sometimes packed, minified, or otherwise
obfuscated in ways that complicate analysis, attribution, and vulnerability reporting.

Extracting regexes After cloning each module, we statically extracted its regexes. We
cloned the latest master branch, with no history to minimize the impact on the VCS hosting
service. Then we scanned it for source code based on file extensions (.js or .py). We built
an abstract syntax tree (AST) from each source file, using babylon [49] for JavaScript files
and the Python AST API for Python files. Walking the ASTs, we identified every regex
declaration and extracted the pattern, skipping any uses of dynamic patterns. Excluding
these dynamic patterns means our results provide lower bounds on the number of super-linear
regexes.

Identifying super-linear regexes After extracting the regexes used in each module un-
der study, we created a mapping from unique patterns to the modules using them. We then
analyzed these unique patterns.

Our super-linear regex identification process has a static detection phase and a dynamic
validation phase. For the static detection phase, we queried an ensemble of three super-linear
regex detectors: rxxr2 [284], regex-static-analysis [335], and rexploiter [341].1 These
detectors use different algorithms to report whether or not a regex may exhibit super-linear
behavior, and if so will recommend malign input to trigger it. Our static phase collects each
detector’s opinion and produces a summary. The detectors, most frequently regex-static-
analysis, may consume excessive time or memory in making their decision, so we limited
the detectors to 5 minutes and 1 GB of memory on each regex and discarded unanswered
queries. These super-linear regex detectors are research prototypes, so they do not support
all regex features nor guarantee correctness.

Our dynamic validation phase uses this summary to test the accuracy of each detector’s
prediction for the regex engine of the language of interest. The detectors follow different
algorithms based on assumptions about the implementation of the regex engine, and these
assumptions may or may not hold in each language of interest. To validate a detector’s
predicted malign input, our validator tests this malign input on the possibly-super-linear
regex in small Node.js and Python applications we created.

This is how we identified super-linear regexes. To permit differentiating regexes by their
degree of vulnerability (§4.4), we measured how long each regex took to match a sequence
of malign inputs with varying numbers of pumps. We began with one pump and followed

1cf. §2.5.2. Sullivan’s SDL regex fuzzer [315] is no longer available, Sugiyama et al. [313] did not publish
their analysis tool, and Shen et al. [297] had not yet presented their work at the time of our study.

58 Chapter 4. Measuring the use of super-linear regexes in practice

a geometric sequence with a factor of 1.1, rounding up. We tested 100 inputs, the last
with 85,615 pumps, and marked the regex super-linear if the regex match took more than
10 seconds on a match, as this is far longer than a linear-time regex match would take.
We stopped at 85,615 pumps for two reasons. First, this number was sufficient to cause
super-linear complexity to manifest without being attributable to the overheads of enormous
strings. Second, this many pumps results in malign inputs 100K-1M characters long, long
enough to become potentially expensive for attackers to exploit. We distributed this analysis
and ran multiple tests on each machine in parallel, dedicating one core to each test with
taskset [42] to remove computational interference between co-located tests.

4.3.2 Results

We found that super-linear regexes are surprisingly common in practice. The Node.js and
Python core libraries both contained super-linear regexes, and about 1% of all unique regexes
in both npm and pypi were super-linear regexes. In all, 3% of npm modules and 1% of pypi
modules contained at least one super-linear regex.

Language Core We found one super-linear regex in the core libraries of Node.js (server-
side JavaScript). At the time of this study, the supported versions of Node.js were v4, v6,
v8, and v9. We scanned the core libraries (lib/) of each of these versions. In v4 we identified
and disclosed two super-linear regexes used to parse UNIX and Windows file paths. These
regexes had been removed for performance reasons in v6 so the other versions of Node were
not affected.2 This vulnerability was published as CVE-2018-7158 and fixed by the Node.js
core team.

We found three super-linear regexes in the core libraries of Python. At the time of this study,
the supported versions of Python were v2 and v3. We scanned the core libraries (Libs/)
of each of these versions. Both versions shared two super-linear regexes, one in poplib and
one in difflib. We identified an additional vulnerability in the v2.7.14 fpformat library.
These vulnerabilities were published as CVE-2018-1060 and CVE-2018-1061; we authored
the patches.

Third-party modules Table 4.1 summarizes the results of our registry analysis. We were
able to clone 66% of npm (375,652 modules) and 58% of pypi (72,750 modules). In this
sample of each registry we found that about 1% of the unique regexes were super-linear
regexes (3,589 in npm, and 704 in pypi).

Figure 4.1 summarizes two different distributions in the npm and pypi datasets using Cumu-
lative Distribution Functions (CDFs). The dotted lines show the distribution of the number

2They were replaced with a custom parser that optimized matching for non-malicious input. The Node.js
development team was not aware that these regexes could lead to ReDoS under malicious input.

4.3. RQ1: How prevalent are super-linear regexes in practice? 59

Table 4.1: Summary of our measurements of super-linear regexes in the npm
and pypi module registries. Troublingly, 1% of unique regexes were super-linear regexes,
affecting over 10,000 modules.

Registry Total modules Scanned mod. Unique regexes Super-linear regexes Affected mod.

npm 565,219 375,652 (66%) 349,852 3,589 (1%) 13,018 (3%)
pypi 126,304 72,750 (58%) 63,352 704 (1%) 705 (1%)

of unique regexes in each module. Consistent with prior small-scale empirical measure-
ments [115, 341], observe that more than 30% of npm and pypi modules use at least one
regex. The npm modules tend to contain more distinct regexes than the pypi modules do.
The solid lines show the distribution of the number of modules in which each super-linear
regex appears: in the npm registry some super-linear regexes appear in hundreds or thou-
sands of modules, while in the pypi registry the most ubiquitous super-linear regexes are
only used in about 50 modules. This suggests that regex re-use may be more common in
JavaScript than in Python, something we investigate in a subsequent chapter.

Figure 4.1: Distribution of regexes and super-linear regexes in npm and pypi
modules. This figure shows two CDFs. The dotted lines indicate the distribution of the
number of unique regexes used in modules, while the solid lines show the distribution of the
number of modules affected by super-linear regexes. Note the log scale on the x-axis.

To give a sense of how impactful these super-linear regexes might be, for each module we
obtained the popularity (registry downloads/month) and computed the project size based
on the source files we scanned [55]. Modules with super-linear regexes are indicated in black

60 Chapter 4. Measuring the use of super-linear regexes in practice

Figure 4.2: The code size and popularity of npm modules, marked if they contain
super-linear regexes. npm modules by size and popularity (log-log). The 13,018 modules
with super-linear regexes are in black. Note the “trivial packages” on the left side [59].

Figure 4.3: The code size and popularity of pypi modules, marked if they contain
super-linear regexes. pypi modules by size and popularity (log-log). The 705 modules with
super-linear regexes are in black.

4.4. RQ2: How strongly vulnerable are the super-linear regexes? 61

in Figure 4.2 (npm) and Figure 4.3 (pypi). In both registries, larger modules are more
likely to contain super-linear regexes, and super-linear regexes are slightly more common in
modules with lower download rates.

4.4 RQ2: How strongly vulnerable are the super-linear
regexes?

From an engineering perspective, some super-linear regexes are worse than others. Super-
linear regexes whose super-linear behavior manifests on shorter malign inputs are of greater
concern than those only affected by longer malign inputs. Longer malign inputs could be
prevented by other parts of the software stack (e.g., limits on HTTP headers), while short
malign inputs may only be prevented by modifications to the vulnerable software itself. In
this section we refine our measure of super-linear regexes, differentiating between exponential
and polynomial vulnerabilities.

4.4.1 Methodology

While the degree of vulnerability of a super-linear regex can be predicted by theoretical
analyses, we are not confident of the accuracy of such predictions because they are based on
a regex engine model that may not hold on production regex engines. Thus, we used curve
fitting to differentiate between exponential and polynomial super-linear regexes, and between
different degrees of the polynomial. As discussed in §4.3, our dynamic validation step tests
the match time of the appropriate regex engine (JavaScript-V8 or Python) on a sequence
of malign inputs with a geometrically increasing number of pumps. We measured the time
that it took to compute each match. We then fit the time taken for different numbers of
pumps against both exponential (f(x) = abx) and polynomial (power-law: f(x) = axb)
curves, and chose the curve that provided the better fit by r2 value. When the malign inputs
from the different super-linear regex detectors resulted in different curves (e.g., the regex
/^a*a*(b*)*$/ has inputs that will induce quadratic or exponential worst-case behavior),
we used the steepest, deadliest curve. As in §4.3, we distributed the work across multiple
machines. As result, the multiplicative factors of the curves are not comparable, but the
bases or exponents are.

This analysis allows us to create a hierarchy of vulnerabilities. Exponential super-linear
regexes are more vulnerable than polynomial super-linear regexes, because the number of
pumps (length of malign input) required to achieve noticeable delays is smaller. For the
same reason, among polynomial super-linear regexes, those with larger b values are more
vulnerable than those with smaller b values. The curve type and the b values influence the
degree of vulnerability more strongly than the a values.

62 Chapter 4. Measuring the use of super-linear regexes in practice

Table 4.2: Measured worst-case behavior of super-linear regexes. This table shows
the degree of vulnerabilities in the npm and pypi datasets. The polynomial vulnerabilities
are further broken down by the degree of the polynomial, b, which we rounded to the nearest
integer. This excluded some regexes whose polynomial degree rounded down to 1.

Degree of vulnerability npm (3,589 vulns) pypi (704 vulns)
Exponential O(2n) 245 (7%) 41 (6%)

Polynomial O(nb>4) 100 (3%) 15 (2%)
Polynomial O(n4) 44 (1%) 5 (1%)
Polynomial O(n3) 535 (15%) 107 (15%)
Polynomial O(n2) 2,638 (74%) 534 (76%)

4.4.2 Results and Analysis

A breakdown of the regexes by their degree of vulnerability is in Table 4.2. Exponential
super-linear regexes were rare in both registries: only 7% of the super-linear regexes from
npm, and 6% of those from pypi were exponential. The majority of the super-linear regexes in
both registries were polynomial, tending to O(n2) and O(n3). This finding has implications
for super-linear regex detectors as well as for software developers.

Contribution of the ensemble members The contribution of each ReDoS detector is
shown in Table 4.3. regex-static-analysis [335] was the most valuable detector in our
ensemble. It was the only detector to identify 87% of the super-linear regexes in npm and
92% of the super-linear regexes in pypi. rxxr2 found relatively few vulnerabilities because it
only searches for regexes with exponential vulnerabilities, while the majority of super-linear
regexes were polynomially vulnerable. Both rexploiter and regex-static-analysis were
more ambitious, searching for both exponential and polynomial vulnerabilities. rexploiter’s
low success rate may be due to a bug in its output generation which prevented us from
automatically parsing some of its reports. Unfortunately, rexploiter is closed source and
the authors would not share their source code with us, so we could not investigate further.
regex-static-analysis initially had a similar bug. As it is open-source, we improved its
success rate by patching this bug.

Implications for software engineering with regexes The super-linear behavior of
polynomial regexes typically manifests for malign inputs on the order of many hundreds or
thousands of characters long. Such strings are often longer than any legitimate strings, as
is the case for strings with many of the semantic meanings listed in Table 4.4 (§4.5). Thus,
rejecting too-long strings before testing them against a regex would be a cheap and effective
defense approach and should be considered as a best practice when writing regexes. We

4.5. RQ3: Which application domains do super-linear regexes affect? 63

Table 4.3: Performance of each ReDoS detector in our ensemble. This table
estimates the areas of strength and value added by each ReDoS detector in our ensemble.
Exp and Poly indicate the number of exponential and polynomial super-linear regexes found
by this detector, respectively. Solo is the number of “solo” finds — regexes that only that
detector correctly identified as super-linear.

Detector npm pypi
Exp Poly Solo Exp Poly Solo

regex-static-analysis [335] 150 3,227 3,122 25 667 649
rexploiter [341] 34 248 157 10 24 4

rxxr2 [284] 165 107 35 27 19 6

measure the popularity of this defense in Chapter 6.

4.5 RQ3: Which application domains do super-linear
regexes affect?

Regexes are used in a variety of application domains. From our own experience in writing
regexes, and from a manual analysis of 400 regex uses in npm modules, we posit that develop-
ers often write regexes with one of the semantic meanings listed in Table 4.4. These semantic
meanings may be of interest in some application domains but not others. For example, we
conjecture that identifying source code or naming conventions is the domain of linters and
compilers, that webservers are more interested in identifying HTML and user-agent strings,
and that servers or scripts may be prepared to change their behavior based on the error
messages that they encounter.

4.5.1 Methodology

In this section, we describe our techniques to automatically categorize regexes into these
semantic groups. We began by manually labeling the semantic meaning of 400 regex usage
examples based on inspection of the regex itself as well as how it was used in the project(s)
in which we found it. Although some of the regexes we encountered were obscure and their
purpose could only be identified by looking for comments and other clues in the surrounding
source code, it became clear to us that many regexes with the semantic meanings listed
in Table 4.4 could be automatically classified. There were 200 unique regexes among these
400 examples, and we found that the duplicated regexes were always used with the same
semantic meaning in different modules.

We developed an automatic labeling scheme that uses a combination of parsing and “meta-

64 Chapter 4. Measuring the use of super-linear regexes in practice

Table 4.4: Proposed common semantic meanings for regexes, with results from
automatic labeling. Proposed common semantic meanings for regexes. The examples
are automatically-labeled (SL) regexes from our npm dataset. The last two columns are the
number of regexes labeled with each semantic meaning in our npm and pypi datasets.

Meaning Example npm pypi

Error messages /no such file '.+[/\\](.+)'/ 22,197 881
File names /[a-zA-Z-0-9_\/-]+\.json/ 10,151 497
HTML /href="(.+\.css)(\?v=.+?)?"/ 8,786 2,504
URL /^.+:\/\/[^\n\\]+$/ 6,986 2,048

Naming convention /^[$_a-z]+[$_a-z0-9-]*$/ 4,096 1,056
Source code /function.*?\(.*?\)\s*\{\s*/ 3,941 105

User-agent strings /Chrome\/([\w\W]*?)\./ 3,135 124
Whitespace /(\n\s*)+$/ 2,016 441
Number /^(\d+|(\d*\.\d+))+$/ 762 238
Email /^\S+@\S+\.\w+$/ 444 97

Classification rate — 18% 13%

regexes” to label regexes based on the proposed semantic meanings. For example, here is a
simplified version of our meta-regex to label regexes as describing whitespace:

/^\^?(\\s|\\n|\\t| |[\|*\+\[\]\(\)]|)+\$?$/

This simplified regex looks for a string (regex pattern) containing only whitespace characters,
as well as meta-characters that might be used to anchor the pattern (‘^’ and ‘$’) or to encode
varying quantities of whitespace (‘+’, ‘*’, etc.).

We iteratively improved our regex labeler. In each iteration, we labeled a randomly selected
subset of 10,000-30,000 regexes from our npm regex dataset. We manually examined 100
of the regexes assigned to each semantic meaning. One or more representatives of any mis-
labeled regexes were added to a test suite, and the iteration was complete once the regex
labeler correctly identified all the regexes in the suite.

This process resulted in a precise regex labeler for regexes that are reasonably specific. As
you might expect based on how we derived it, our labeler works well for “easy to classify”
regexes that restrict the input to something close to the expected language. Our labeler’s
recall is unknown because it is difficult to know what semantic meaning a developer intended
for a regex. An overly-permissive regex will not give many clues as to its intended language
because it will capture its target language as well as a broader set of strings.

We refined our labeler through 17 iterations. At the conclusion of this process our test suite
contained 358 regexes, and we were reasonably confident in its precision. We then applied
it to our npm and pypi datasets. Irrespective of whether our list of semantic meanings for

4.6. Discussion 65

regexes is complete, it serves the goal of studying how different domains may be affected by
ReDoS. We leave the search for a complete list of regex semantic meanings to future work.

4.5.2 Results

I will highlight two results from this experiment. First, as summarized in Table 4.4, we found
regexes in all of these domains in both npm and pypi. Second, some semantic meanings
are more prone to being expressed with super-linear regexes than others. As can be seen
in Figure 4.4, developers should be cautious when writing regexes for emails, user-agent
strings, source code, and HTML.

Figure 4.4: Proportion of super-linear regexes from the npm and pypi datasets
that bear each semantic meaning.

4.6 Discussion

Many regexes are super-linear In RQ1 we found that about 1% of unique regexes
exhibit super-linear worst-case behavior; later we update this finding to a proportion of
about 10%. This is a substantial fraction of regexes, and we believe the implication is that
ReDoS vulnerabilities are surprisingly common in practice.

66 Chapter 4. Measuring the use of super-linear regexes in practice

Most super-linear regexes are quadratic In RQ2 we showed that most of these super-
linear regexes exhibit polynomial worst-case behavior, typically quadratic. Although this
behavior is less concerning than exponential behavior or higher-order polynomials, several
of the ReDoS case studies described in Chapter 3 involved quadratic polynomials. The risk
of ReDoS should not be dismissed on these grounds.

Not all super-linear regexes are ReDoS vulnerabilities To be a ReDoS vulnerability,
a super-linear regex must be used in an attacker-triggerable manner (ReDoS Condition 3
from §2.5.1). For example, super-linear regexes used in test suites to validate a program’s
output are unlikely exploit candidates. This study does not distinguish between regex usage
contexts. However, smaller-scale studies have shown that many super-linear regexes are user-
facing [341], which aligns with qualitative reports about engineering practices [115, 237].

4.7 Threats to validity

Internal Validity. In §4.6 we discussed the primary internal threat to the validity of this
study — that not all super-linear regexes are ReDoS vulnerabilities

External Validity. A threat to external validity concerns whether our findings will hold for
other ecosystems and scenarios. We partially addressed this threat by studying two popular
programming languages with large ecosystems. As the general theme of our findings was
consistent across these ecosystems, we expect our results to generalize to other ecosystems
as well. Chapter 5 examines this threat in more detail.

In this study we did not investigate the proportion of regex usages that involve super-
linear regexes, rather the proportion of unique regexes that are super-linear. Weighting our
findings by regex popularity might appear to affect our results. Later in this work, however,
it becomes clear that most regex usages involve unique regexes, so weighting usage would not
affect our conclusions. An independent analysis of our data can be found elsewhere [205].

Construct Validity. In RQ1 we reported on the proportion of regexes that exhibit super-
linear worst-case behavior. Our results may be affected by inaccuracies in the super-linear
regex detectors. We address false positives by dynamically confirming the report from the
super-linear regex detectors. But false negatives are also possible: we report only the super-
linear regexes that can be detected by existing techniques (e.g., none of them considers the
use of inherently super-linear features like backreferences). This means that the super-linear
regexes we identified represent a lower bound on the number of such regexes in practice.

In RQ3, our method of labeling regex application domains was ad hoc, and we do not claim
to have identified all application domains in which regexes could be applied. Our goal in
studying RQ3 was to understand whether super-linear regexes appear across application

4.7. Threats to validity 67

domains, and whether different application domains are affected differently by them. Our
precise but otherwise potentially incomplete set of application domains still allowed us to
answer these questions in the affirmative.

Finally, a super-linear regex is only one of the criteria for a ReDoS attack (§2.5). This study
is focused on identifying super-linear regexes, and did not confirm that they are exploitable.
We did not perform taint analysis to confirm that malign input could reach these regexes,
nor did we attempt to filter out modules used on the client side.

Chapter 5

Generalizing regex measurements

“There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy ”
–Hamlet

5.1 Summary

In Chapter 4 I conducted experiments to determine whether super-linear regexes were com-
mon enough in practice. The initial findings were troubling – super-linear regexes appear
to be fairly common in practice, with denial-of-service implications via ReDoS. However,
those experiments were restricted in two ways: (1) They did not consider the regexes that
a program dynamically constructs; and (2) They considered regexes only two programming
languages. This chapter summarizes the results of a many-language regex comparison to
test the generalizability of those and other prior findings. If the findings from Chapter 4
generalize, then super-linear regexes (and ReDoS) may be a widespread problem that the
web services community should address. If they do not generalize, then perhaps only smaller
engineering communities need concern themselves.

Methodology This chapter describes the first large-scale many-language comparison of
regexes. Generalizing the findings from existing research depends on validating two hypothe-
ses: (1) Various regex extraction methodologies yield similar results; and (2) Regex charac-
teristics are similar across programming languages. To test these hypotheses, we collected
a corpus of regexes from software written in eight programming languages, and compared
these regexes across eight regex metrics to capture the dimensions of regex representation,
string language diversity, and worst-case match complexity.

Findings These two generalizability hypotheses generally held. Our findings support a
nuanced notion of universal regex practices. In our first experiment, we show that the
regex extraction methodology does not produce significantly different regex corpuses. In
our second experiment, we found that the regexes from different programming languages are
not significantly different on four of our eight metrics, and on the other metrics only a few
languages are outliers. Because regexes appear to be similar across programming languages,
we were able to replicate many findings from prior research in new programming languages

68

5.2. Motivation 69

on a larger regex corpus. Thus, our regex corpus is a reasonable approximation of the ways
software engineers use regexes. Measurements on this corpus can guide data-driven designs
of a new generation of regex tools and regex engines. We apply the corpus for this purpose
in Chapter 8.

Statement of Attribution The material presented here draws primarily from work pre-
sented at ASE 2019 [142]. Where noted, relevant material is excerpted from work presented
at ESEC/FSE 2019 [141].

5.2 Motivation

The better we understand how and why software engineers use regexes, the better tools we
can build to support them. This dissertation is specifically focused on the ReDoS problem,
and there are many other opportunities for support as well. To guide this endeavor, em-
pirical regex researchers have sought to understand the characteristics of real-world regexes.
As described in §2.6, the efforts of these researchers have provided many hints about how
engineers use regexes in practice. Regexes are widely used, reportedly appearing in 30–40%
of software projects with applications like input sanitization, error checking, document ren-
dering, linting, and unit testing [115, 139, 332]. Software engineers may rely more heavily
on some regex features than others, possibly tied to the relative comprehensibility of dif-
ferent features [116]. Features like quantifiers, capture groups, and character classes are
commonly used in Python, while backreferences and lookaround assertions rarely appear
in practical regexes [115]. Engineers may under-test their regexes, perhaps relying on line
coverage instead of automaton graph coverage [332]. Most regexes may go unmodified after
entering version control [333]. And many prominent software modules and web services rely
on super-linear regexes and are vulnerable to ReDoS [139, 297, 341].

If these preliminary empirical regex findings generalize, they can guide research into more
fruitful directions and nip others in the bud [102]. For example, if regexes are as widely
used as is thought, then visualization and input generation tools can be valuable aids for
many developers. And if super-linear worst-case time complexity is as common as has
been estimated, then addressing this behavior by overhauling regex engines seems natural.
Conversely, if regexes do not change after entering version control [333], then regex-specific
differencing tools (e.g., for code review) may not have great utility. And if non-regular
regex extensions like backreferences and lookaround assertions are as rare universally as
initial results suggest, then they should be a low priority for tool support and regex engine
optimizations.

Empirical regex research depends on two generalizability hypotheses. Generalizing this re-
search will permit us to guide the design of future research prototypes and engineering sys-
tems. As summarized in Table 5.1, the corpuses used in prior empirical regex research were

70 Chapter 5. Generalizing regex measurements

Table 5.1: Comparison of existing regex corpuses by extraction method, pro-
gramming language, and scale. This table compares existing regex corpuses by ex-
traction method, programming language, and scale. No comparison has been made between
extraction methods (static analysis vs. program instrumentation). Regex characteristics have
been studied in only three programming languages (Python, JavaScript, and Java).

Corpus Extraction method Languages # Projects
[297] Static analysis Python, JavaScript 50
[341] Static analysis Java 150
[115] Static analysis Python 4K

[139] (Chapter 4) Static analysis JavaScript, Python 375K, 72K

[332] Program instrumentation Java 1.2K

This work Validated static analysis Eight languages 200K

created using one of two regex extraction methodologies, and cover only three programming
languages.

Comparing regex extraction methodologies When a software engineer matches a
string against a regex, they must specify the regex pattern and construct a Regex object. The
regex pattern can be provided as a static string to the Regex constructor. Or the developer
might wish to supply a variable string, e.g., to build a complex regex by concatenating its
constituent parts. Rasool and Asif suggest that this practice of regex templating, which they
call “abstract regexes,” may make regexes easier to debug [283]. For a real-world example,
the widely-used marked Markdown parser relies heavily on regex templating.1 We illustrate
these concepts in Listing 9.

Regex corpuses have been constructed using either static analysis or program instrumentation
(Table 5.1). These approaches have familiar tradeoffs. Using static analysis, researchers can
analyze an entire software project, but may not be able to extract dynamically defined
regex patterns like those in Listing 9 without intra- and inter-function dataflow analysis. In
contrast, runtime analysis can extract both statically and dynamically defined regex patterns
so long as the relevant call sites are evaluated during execution. It is not clear whether a
regex corpus based on one extraction methodology would be comparable to a regex corpus
based on the other.

Regex variation by language? Regex research has provided hints about how engineers
use regexes in practice, but these works have been isolated to practices in three programming
languages. Engineers may choose a programming language based in part on their task [268,
280] (“the right tool for the job”), and some tasks may have greater call for pattern matching.

1See https://github.com/markedjs/marked.

https://github.com/markedjs/marked

5.3. Study design and research questions 71

Listing 9 Code snippet illustrating regexes more and less amenable to different
extraction methodologies. Regex corpuses based on static analysis or program instru-
mentation may yield different results. For example, the regex used to match the emailStr is
of varying complexity depending on the regexType flag. Static analysis might only be able
to retrieve the simplest regex pattern, while an instrumented application or runtime might
identify all three patterns if the software can be exercised thoroughly.
def isEmail(emailStr, regexType, externalRegex):
if regexType == "SIMPLE_REGEX":
reg = Regex(".+@.+")

elif regexType == "COMPLEX_REGEX":
NAME_REGEX = "[a-z0-9]+"
DOMAIN_REGEX = "[a-z0-9]+(\.[a-z0-9]+)+"
regex = NAME_REGEX + "@" + DOMAIN_REGEX
reg = Regex(regex)

else:
reg = Regex(externalRegex)

return reg.match(emailStr)

It is not unreasonable to suppose that the characteristics of the regexes used to solve these
problems may likewise vary by programming language. For example, in our own professional
software engineering experience, we used complex regexes in scripting languages like Perl
but rarely did so in “systems” contexts (C++).

5.3 Study design and research questions

Empirical software engineering research has taught us much about the characteristics of real
regexes. But empirical software engineering shares the properties of any other experimental
discipline. We hypothesize, sample, measure, and analyze. Then we generalize from our
sample to a larger population. However, generalization takes care — it requires understand-
ing how well the sample represents the population, and sometimes this relies on hypotheses
about the relationship between the sample and the population.

In this work we formulate and test two generalizability hypotheses underlying prior research
(including that presented in Chapter 4). First, we test whether prior results may have
been biased by following different regex extraction methodologies (§5.5). Researchers have
extracted regexes using static analysis or runtime instrumentation, and to generalize from
one methodology to the other we must show that the extracted regexes are similar. Second,
we test whether prior results generalize to other programming languages.

We therefore propose two regex generalizability hypotheses: the Extraction Methodology
(EM) and Cross-Language (CL) hypotheses. These hypotheses must be tested before prior
regex research can be generalized to other software and other programming languages.

72 Chapter 5. Generalizing regex measurements

H-EM It does not matter whether a regex corpus is constructed using static analysis or
program instrumentation. At scale, using either extraction methodology will yield a
corpus with similar distributions of regex metrics.

H-CL Regex characteristics are similar across programming language. The distributions of
regex metrics will be similar for software from different programming languages.

It is not clear what inferences can be drawn from existing regex corpuses until we have
tested these hypotheses. Until they are tested, generalization is tempting but unsound. For
example, the recently-published contention that “over 80% of regular expressions written in
GitHub projects are not tested” [333] generalizes from Wang et al.’s findings [332], which as
shown in Table 5.1 considered only 1.2K projects written in only one programming language.
Although we agree that [332] raised the interesting prospect of regex under-testing, we think
it is premature to generalize from a small number of projects written in one programming
language to millions of projects written in hundreds of programming languages.

With all this in mind, our research questions can be summarized as follows:

Theme 1: Hypothesis testing
RQ1: Does the Extraction Methodology Hypothesis hold?
RQ2: Does the Cross-Language Hypothesis hold?

Theme 2: Replicating prior results
RQ3: Does super-linear behavior generalize to other regex engines?
RQ4: Can we replicate other previous regex research?

5.4 Regex metrics for use in hypothesis testing

In this section we introduce our comprehensive collection of regex metrics (Table 5.2). These
metrics are used to compare the regexes considered while testing H-EM and H-CL in subse-
quent sections.

We selected metrics to characterize a regex in three dimensions: its representation, the
diversity of the language it describes, and the complexity of various algorithms to solve its
membership problem. These metrics fulfill two purposes. First, they include most regex
metrics considered in prior research, allowing us to evaluate generalizability. Second, our
metrics include those of particular interest to the developers of regex tools and regex engines.
In testing these hypotheses, we characterize the largest extant regex corpus in support of
data-driven tool and engine designs.

5.4. Regex metrics for use in hypothesis testing 73

Table 5.2: Regex metrics organized by representation, language diversity, and
worst-case match complexity. The final column references previous studies that measure
or apply this metric. *: no prior scientific measurements.

Dimension Metric Description Implications Prior Studies

Representation
Pattern length Characters in the regex

(C# translation)
Length affects visualization, comprehension *

Feature vector sparseness Number of distinct features
used

More features: harder to comprehend *

NFA vertices Number of vertices in an
epsilon-free NFA

Size affects visualization, comprehension [332]

Lang. diversity # simple paths Num. of representative
matching strings

Comprehension; Test suite size [220] (basis)

Complexity

DFA blow-up Ratio of DFA vertices to
NFA vertices

Feasibility of static DFA-based algorithm *

Mismatch ambiguity Worst-case match time for
backtracking NFA
simulation

Feasibility of Spencer’s algorithm [139, 341]

Average outdegree density Average completeness of
outgoing edge set

Cost of Thompson’s algorithm *

Has super-linear features Whether regex relies on
super-linear regex features
(backreferences, lookaround
assertions)

Unavoidable super-linear match complexity [115, 139, 332]

5.4.1 Metrics for Regex Representation

We measure the representation of a regex in terms of the pattern and its corresponding
automata. The features and structural complexity of a regex may impact regex comprehen-
sion [116], affecting areas like code re-use and code review. These metrics may also influence
the design of visualization tools (“Which features does my visualization need to support?
How will typical regexes look in my visualization?”).

A regex’s pattern representation is the face it shows to engineers. Measures on the pattern
representation give some sense of the impression an engineer has when examining the regex.
We first measure the length of this representation in terms of the number of characters in the
string encoding of the pattern. Then we measure its Chapman feature vector [115], counting
the number of times each regex feature is used. For example, for the regex /(a+)\1+/ we
would compute a regex length of 7 and report two uses of the + feature and one use of the
capture group and backreference features.

The pattern representation of an (automata-theoretic) regex corresponds to an NFA and
DFA representation used by a regex engine to answer regex language membership queries.
As we discuss during our analysis, measures of the automata complexity can inform the
design of a regex engine. We apply a Thompson-style construction [321] to generate an
(epsilon-free) NFA: a graph with vertices corresponding to NFA states connected by labeled
edges indicating the character to consume to transition from one state to another.2 We
measure the number of vertices in the NFA graph.

2There are other NFA constructions optimized for fewer vertices or fewer edges, and a rich literature on
the automata minimization problem [192]. We considered using minimized NFAs but found the algorithmic
complexity was too great to handle the longer regexes in our corpus.

74 Chapter 5. Generalizing regex measurements

5.4.2 Metrics for Regex Language Diversity

A regex pattern encodes a string language, i.e., the family of strings that its corresponding
automaton will match. We measure the diversity of each regex’s language with an eye to
its testability. The larger and more diverse a regex’s language, the larger the variety in the
strings the regex accepts, and the more difficult it is to completely test and validate it.

We operationalize the notion of diversity by measuring the size of a set of representative
matching strings for that language. We do this by measuring the number of distinct paths
from the start state to the accept state that use each node at most once (i.e., the automaton
graph’s simple paths [14]). Each of these paths corresponds to a string in the language of
the regex and is distinct in some way from each other path. In particular, for every optional
node there is a simple path that does and does not take it; for every disjunction /a|b/ there
are separate sets of simple paths exploring each option. This family of strings is illustrated
in Figure 5.1.3

/a?b?c/ Simple paths
abc
ac
bc
c

Figure 5.1: Illustration of the “simple paths” regex metric. This figure shows the
simple paths for the regex /a?b?c/.

Using simple paths to measure language diversity is similar in spirit to using basis paths
as proposed by Larson and Kirk [220]. However, their goal was to obtain a manageable
set of test strings. We believe succinctness comes at the cost of reduced comprehension.
Basis paths can be used to ensure node coverage, but may not fully illustrate the range of
“equivalence classes” in the regex’s language the way that simple paths will.

5.4.3 Metrics for Regex Worst-Case Complexity

The worst-case time complexity of a regex match depends on the algorithm used to solve
it, and several regex membership algorithms have been proposed with complexity ranging
from linear to exponential. Our metrics in this dimension are intended to inform the design

3This family can also be thought of as the (finite) set of strings in the language of the regex rloop−free after
removing all loops from an original regex r. The size of this family can be determined recursively from the
regex representation using rules like: |characters| = 1; |A ∗ | = |A?| = |A{0, }| = |A|+1; |A∨B| = |A|+ |B|;
|AB| = |A| ∗ |B|.

5.4. Regex metrics for use in hypothesis testing 75

and application of regex engines based on these different algorithms. We described these
algorithms in detail in §2.3, and reiterate relevant aspects here to clarify our choice of
metrics.

First, we consider algorithms that have super-linear worst-case complexity as a function of
the regex (and input). Regex engines based on these algorithms are reportedly easier to
implement and maintain [305], and so there is a tension between language designers’ desires
and the needs of software engineers who rely on “pathological” regexes in practice. If a
high-complexity algorithm is used, pathological regexes become security liabilities — they
can [135, 139] and have [140, 307] led to denial of service exploits (ReDoS).

Complexity in static DFA engines One super-linear regex match algorithm statically
converts the NFA to an equivalent DFA, offering linear time matches in the size of the input
and the DFA. A DFA representation, however, is well known to have worst-case exponentially
more states than its corresponding NFA representation [301]. If regexes with enormous DFA
representations are common, this kind of algorithm is impractical; if they are rare, then it
could be used alone or as the first approach in a hybrid regex engine.

To inform static DFA-based regex engines, we compute the following metric. Using the ma-
chinery from the representation metrics, we convert each regex NFA to a DFA. We compute
the ratio of DFA to NFA states to evaluate how frequently this conversion results in an
exponential state blow-up.

Complexity in Spencer engines The Spencer algorithm [305] is a super-linear matching
algorithm that relies on a backtracking-based NFA simulation. Spencer’s algorithm is used
in most programming languages, including JavaScript, Java, and Python [132, 141]. Each
time this algorithm has a choice of edges, it takes one and saves the others to try later if
the first path does not lead to a match. Several researchers have formalized the conditions
for super-linear Spencer-style simulation due to NFA ambiguity [284, 335, 341], and shown
that the worst-case simulation cost for a regex on a pathological input may be classified into
linear, polynomial, or exponential as a function of the input string.

To inform Spencer-style regex engines, we compute the following metric. We measure a
regex’s worst-case partial-match complexity in a Spencer-style engine. For this measurement
we use Weideman et al.’s analysis [335].4 In our measurements we report the proportion of
regexes that this analysis marks as polynomial and exponential among those it successfully
analyzes. If super-linear regexes are common in software written in programming languages
that use Spencer-style regex engines, the designers of those programming languages may
wish to consider an alternative algorithm to reduce the risk of ReDoS vulnerabilities.

4Weideman et al.’s analysis was the most successful among those we applied in Chapter 4.

76 Chapter 5. Generalizing regex measurements

Complexity in Thompson engines The Thompson algorithm [321], popularized by
Cox [132], uses a dynamic-DFA based NFA simulation. It forms the basis of the Go and
Rust regex engines. Each time a Thompson-style matching algorithm has a choice of edges, it
simulates taking all of them, tracking the current set of possible NFA vertices and repeatedly
computing the next set of vertices based on the available edges in the NFA transition table.
In effect, a Thompson-style engine computes the DFA dynamically, not statically, and only
computes the state-sets that are actually encountered on the input in question. It offers
worst-case O(|Q|2 ∗ |w|) complexity for a candidate string w on a regex whose NFA has |Q|
vertices, with the cost of each transition bounded by the number of outgoing edges that
must be considered for each vertex in the current state-set. Note that each vertex may have
outgoing edges to between zero and all m of the vertices in the graph, and the cost of each
step of the Thompson algorithm depends on the number of outgoing edges from the current
state-set.

We use the following metric to inform the design of a Thompson-style engine: the average
vertex outdegree density, 1

|Q|
∑|Q|

1

degvertexi
|Q| = |E|

|Q|2 , where E is the edge set of the automaton.
This is a [0, 1] metric, 0 for completely unconnected graphs and 1 for completely connected
graphs. For a Thompson-style engine, for the current state-set Φcurr, it will cost an average
of |Φcurr| times this metric to compute the next state-set.5

Unavoidable super-linear complexity Most regex engines support a feature set beyond
traditional automata-theoretic regular expressions. Of particular note are backreferences, a
self-referential construct proved to be worst-case exponential in the length of the input [63],
and lookaround assertions, which are typically implemented with super-linear complexity.
To round out our complexity metrics, we measure the proportion of regexes that rely on
these super-linear features, through reference to the feature vector computed as part of the
regex representation metrics. Understanding the popularity of these features may guide
future regex engine developers in deciding whether or not to support these features. The
most recent programming languages to gain mainstream adoption, Rust and Go, decided
not to support these features, and it is not clear whether this decision will impose significant
portability problems on engineers transitioning software from other languages to these ones.

5.4.4 Implementation of metric measurements

We built our measurement instruments on Microsoft’s Automata library [241], which under-
lies the Rex regex input generation tool [328]. To the best of our knowledge this is the most
advanced open-source regex manipulation library. Our fork extends the Automata library
in several ways:

5Assuming that vertices are visited with equal probability.

5.5. RQ1: Does the Extraction Methodology Hypothesis hold? 77

• We fixed several bugs in its automaton manipulations, eliminating long-running compu-
tation and memory exhaustion.

• We added support for generating the Chapman feature vector of a regex.
• We added support for collapsing certain expensive portions of a regex to facilitate simple

path computation.
• We added support for emitting an automaton’s graph in a format suitable for subsequent

analysis.
• We introduced a command-line interface for automation.

The Automata library only supports .NET-compliant regexes. We therefore implemented
an ad hoc syntactic regex conversion tool to translate regexes from other languages into a
semantically equivalent .NET regex before measuring them. To reduce bias, we converted
at least 95% of the regexes originating in each language. These translations sufficed:

1. We replaced Python-style named capture groups and backreferences,
(?P<name>A)...(?P=<name>), with the .NET equivalent, (?<name>A)...\k<name>.

2. .NET only permits curly brackets to indicate repetition, while some other languages
interpret curly brackets with non-numeric contents as a literal string. We escaped any
curly bracket constructions of this form.

3. .NET does not support the /\Q...\E/ escape notation. We removed the Q-E bookends
and escaped the innards.

4. .NET does not support certain inline flags. We replaced the Unicode support flag with
the “case insensitive” flag to preserve the presence of the feature while ensuring .NET
compatibility.

The Automata library does not support simple path measurements, so we analyzed the NFA
graph it produced using the NetworkX library [183].

The Automata library can parse all .NET-compliant regexes, but it can only produce NFAs
for regexes that are regular (i.e., K-regexes, e.g., no support for backreferences). We therefore
omit automata measurements when necessary. We also omit automata measurements when
the Automata library took more than 5 seconds to generate them.

5.5 RQ1: Does the Extraction Methodology Hypothe-
sis hold?

Here we test the H-EM hypothesis: “It does not matter whether a regex corpus is con-
structed using static analysis or program instrumentation.” We found no reason to reject
this hypothesis in the software we studied.

We tested H-EM in the context of open-source software modules (libraries). Lacking access
to closed-source software, we studied open-source software out of necessity. We opted to
study modules rather than applications by choice. In our experience, modules have less vari-

78 Chapter 5. Generalizing regex measurements

ability in design and structure than do projects randomly sampled from GitHub, facilitating
automated analysis. In addition, the ecosystem of most popular programming languages
includes a large module registry, and so modules were a convenient target for our cross-
language comparison experiment (H-CL). Using modules to test H-EM as well unified our
methodology.

5.5.1 Methodology

Summary Our methodology is summarized in Figure 5.2, and Table 5.3 provides the
details. We targeted software modules written in the three most popular programming
languages on GitHub: JavaScript, Java, and Python [169]. We extracted regexes using
both static analysis and program instrumentation. After creating a regex corpus, we used
statistical tests to determine whether there were significant differences between the regexes
extracted using each methodology in any programming language.

Translate to C#

Clone module
(HEAD)

Static regex
extraction

Instrument
regex callsites

H-EM, H-CL H-EM only

Run module
test suite

Collect
regexes

Map modules
to GitHub

∀ registries

∀ modules

Regex extraction Regex metrics
∀ regexes

Representation
metrics

Diversity
metrics

Complexity
metrics

Hypothesis
testing

Filter outlier
projects

Figure 5.2: Methodology followed in our study of regex generalizability. This
figure shows our analysis flowchart. We performed regex extraction for H-EM, and for H-CL
we leveraged an existing corpus derived using similar methodology.

Software Modules were chosen by identifying the most prominent module registry for each
language, mapping its modules to GitHub, and examining approximately the most important
25,000 modules from each. For JavaScript we used npm modules [32], for Python we used
pypi modules [34], and for Java we used Maven modules [28]. Because software engineers

5.5. RQ1: Does the Extraction Methodology Hypothesis hold? 79

commonly star modules that they depend on, we used a module’s GitHub stars as a proxy for
importance [95]. We extracted regexes from the entire module source code, both production
code (e.g., src/) and test code (e.g., test/). We considered only source code written in the
language appropriate for the module registry (e.g., only Python files for pypi modules, as
determined by the cloc tool [55]).

Extraction through static analysis We followed the methodology described in [115,
139, 141]. In each language, we used an AST builder to parse the module source code and
visit the regex-creating call sites. We extracted statically-defined regex patterns from each
such call site. We did not perform any dataflow analysis: we extracted string literals used as
the regex pattern, and did not attempt to resolve non-literal arguments. For example, this
extraction would only retrieve the “SIMPLE_REGEX” from Listing 9.

We examined the documentation for each programming language to learn the regex-creating
call sites. Generally, regexes can be created directly through the language’s Regex type and
indirectly through methods on the language’s String type. For example, in JavaScript you
can create a regex directly using a regex literal, /pattern/, or the RegExp constructor, new
RegExp(pattern), or indirectly using a String method like s.search(pattern). The AST
libraries and regex-creating call sites we identified for each language are listed in Table 5.3.

Extraction through program instrumentation We followed a methodology similar to
that of Wang and Stolee [332], but repaired one of their threats to validity. We targeted
the same regex-creating call sites as we did in the static analysis. We applied a program
transformation to instrument the (potentially variable) regex pattern argument at these call
sites. Our instrumentation consisted of an inline anonymous function to log the pattern
and return it, avoiding side effects. We then executed the test suites for the modules and
collected the regexes that reached our instrumentation code. For example, this extraction
would retrieve each of the regexes from Listing 9, provided the test suite covered each path.

We automatically executed the test suite for each module that used one of the common build
systems for its registry (Table 5.3). We identified these build systems using a mix of Internet
searches and iterative analysis of modules from each registry. Because our source code-level
instrumentation did not follow the coding conventions of the projects, some build attempts
initially failed during an early linting stage. We configured our builds to skip or ignore the
results of linting.

We found that many modules did not have test suites [59], and others failed to build due
to external dependencies. We took several measures to increase the number of successful
test executions. In Java, we installed all Android SDKs and Build Tools using Google’s
sdkmanager, permitting us to build many modules intended for use on Android. In Python,
we attempted to run test suites under Python 2.7 and Python 3.5/6 using many different
build systems. However, these ad hoc approaches may have caused us to miss projects with

80 Chapter 5. Generalizing regex measurements

Table 5.3: Details of the regex extraction techniques used to compare the regexes
extracted using static analysis and program instrumentation. Regex extraction
details for H-EM. For static analysis, we extracted any constant regex patterns used at these
call sites. For program instrumentation, we wrapped these call sites with a call to a log
routine.

Language Regex call sites AST modules Build systems Sample invocation

JavaScript RegExp: RegExp literals,
RegExp constructor
String methods: match,
matchAll, search

Babel [3] npm [33] npm install-build-test

Java java.util.regex.Pattern:
compile, matches
String methods: matches,
replaceFirst, replaceAll, split

JavaParser [6] Maven [29],
Gradle [26]

mvn clean-compile-test

Python re module: compile, escape,
findall, finditer,
fullmatch, match, search,
split, sub, subn

ast, astor[1] Distutils [24],
Tox [39],
Nox [31],
Pytest [35],
Nose [30]

python3 setup.py test

other build systems or dependencies.

Collecting regexes via source code instrumentation ensured that we captured only the regexes
created within each module, permitting direct comparison of the regexes extracted through
the two different methodologies. This approach counters one of the threats to [332], which
instrumented the language runtime and attempted to filter out third-party regexes.

Constructing the regex corpus After extracting regexes from each module using the
two methods, we combined the results into a corpus of unique regex patterns based on
string equality of the regex pattern representations. We then noticed that some projects
contributed orders of magnitude more regexes to the corpus than others did. The median
number of unique regexes in regex-using projects was 1–3 in our experiment, while a few
outlier libraries defined hundreds or thousands of distinct regexes — enough to bias statistical
summaries of the regex corpus.6 We therefore omitted regexes from projects at or above the
99th percentile of the number of unique regexes per project.

The regex corpus used to test the H-EM hypothesis is summarized in Table 5.4. Sev-
eral elements of this corpus are worth noting. The corpus contains a moderate number of
regexes extracted using static analysis and program instrumentation, ranging from around
15K (Java) to around 80K (JavaScript). We found that 30–50% of the modules in each

6For example, the most prolific regex producers were pypi’s device_detector module, which has 4,953
distinct regexes to match user-agent strings, and Maven’s recursive-expressions module, which creates
3,398 regexes to test its extended regex APIs.

5.5. RQ1: Does the Extraction Methodology Hypothesis hold? 81

Table 5.4: Summary of the corpuses resulting from the two regex extraction
methodologies. Summary of corpus used to test H-EM. For each cell “X (Y)”, we obtained
X unique regexes across Y regex-using modules. The final row gives the regex intersection.
This corpus contains 124,800 unique regexes.

Extraction method JavaScript Java Python
Static 71,799 (13.1K) 10,237 (8.2K) 27,641 (9.1K)

Instrumentation 21,759 (4.4K) 9,236 (3.1K) 11,514 (3.7K)

Static ∩ Inst. 13,633 3,463 5,690

language used at least one regex, supporting previous estimates [115, 139, 332]. We were
able to extract regexes from 3K–4K modules using program instrumentation, or about one
third of the number from which we obtained regexes through static analysis.7 Lastly, as you
can see in the final row of Table 5.4, about half of the regexes obtained through program
instrumentation were not obtained through static analysis and would thus not have been
captured by a static-only extraction methodology.

Threats and considerations Our approach is best-effort, neither sound nor complete.
JavaScript and Python are dynamically typed, which could lead to false positives (non-
regexes entering our corpus). For example, our JavaScript instrumentation relies on method
names and signatures to find regexes, and for example may emit non-regexes if a class has a
“match” method that shares the signature of the corresponding String method (Table 5.3).
Our analysis is also subject to false negatives, through modules that could not be parsed
or built by our analyses (e.g., unsupported language versions or unfamiliar build systems),
and through modules that create regexes via third-party APIs (e.g., using an “escape special
chars and return a Regex” API). We appeal to the scale of our dataset to ameliorate concerns
about corpus validity.

For each module, we limited the static and dynamic phases of regex extraction to 10 minutes,
and included in our corpus all regexes extracted during this time limit. Regex extraction
and metric calculation were performed on a 10-node cluster of server-class nodes: Ubuntu
16.04, 48-core Intel Xeon E5-2650 CPU, 256 GB RAM.

5.5.2 Statistical Methods

We used statistical methods to determine whether there is evidence to reject H-EM —
whether the regexes extracted using these two methodologies exhibited significant differ-
ences along any of our regex metrics. The statistical tests we chose were influenced by the

7We attribute this proportion to a combination of our failure to run the test suite, and poor code coverage
within successful test suites.

82 Chapter 5. Generalizing regex measurements

JS Java Python

10

20

30

40

50

60

70

80

Pa
tte

rn
 le

ng
th
 (C

#)

71K 22K 10K 9K 28K 12K

Regex Pattern Lengths
Static analysis
Program instrumentation

Figure 5.3: H-EM: Regex pattern lengths by programming language. Lengths of
regexes extracted statically and dynamically, grouped by language. Whiskers indicate the (10,
90)th percentiles. Outliers are not shown. The text in each box shows the total number of
regexes included in that group. This figure resembles the figures for the other metrics. We
found negligible-to-small effect sizes for intra-language regex extraction comparisons across
all metrics.

distribution of the regex characteristics. Tests such as the Analysis of Variance (ANOVA)
are typically used to evaluate such hypotheses. However, these tests require normality and
homogeneity of variance, and none of the regex metric distributions met these assumptions.
Therefore, we instead used the nonparametric Kruskal-Wallis test [215], with language and
extraction mode as the treatment variables and our metrics as the dependent variables.

We found that hypothesis tests alone did not usefully describe our data. The scale of
our regex corpus gave us tremendous statistical power, causing hypothesis tests to detect
statistically significant but practically irrelevant differences in the data. So, after performing
the Kruskal-Wallis hypothesis test, we calculated effect sizes for pairwise differences between
groups. Because the distributions of regex characteristics do not meet the conditions assumed
by parametric statistical tests, we applied a nonparametric difference effect size measurement
dr derived from the commonly used Cohen’s d [126]. The dr measure is a scaled robust
estimator of Cohen’s d proposed by Algina et al. [67], and shown to be robust to non-normal
and non-homogeneous data [222]. It takes on scaled values indicating the size of the difference
between two samples, ranging from 0 (no difference) to 1 (large difference).

5.5.3 Results

As indicated in Table 5.4, to test H-EM we split the regex corpus into two subsets: those
extracted using static analysis, and those extracted using program instrumentation. Regexes
found using both techniques were included in both subsets.

5.6. RQ2: Does the Cross-Language Hypothesis hold? 83

We compared the two subsets in terms of the metrics described in §5.4. For all metrics, we
found negligible-to-small effect sizes (dr <= 0.3) between the static and dynamic subsets
within each language. Figure 5.3 is illustrative: the similarity of regex lengths between the
two subsets in each language is visually apparent. Other metrics look similar.

Therefore, we are unable to reject the null hypothesis H-EM. This conclusion supports the
generalizability of prior empirical regex findings — from regexes declared using string literals
to those generated dynamically, and vice versa.

5.6 RQ2: Does the Cross-Language Hypothesis hold?

Here we test the H-CL hypothesis: “Regex characteristics are similar across programming
languages.” The H-CL hypothesis held for many characteristics. However, we identified
several metrics on which there were moderate to large effect sizes between programming lan-
guages. Not all regex characteristics span programming languages. Some differ significantly.

5.6.1 Methodology

5.6.1.1 Experimental Design

As we reported in §5.5, we did not reject the H-EM hypothesis in any of the three program-
ming languages we studied. We used this finding as a basis for our methodology for testing
H-CL: under the assumption that H-EM holds more broadly, we evaluated the regex char-
acteristics for software in many languages based on regexes obtained solely through static
analysis. For this comparison, we developed a polyglot regex corpus (§5.6.1.2).8 This cor-
pus contains 537,806 unique static regexes extracted from 193,524 popular software modules
written in eight programming languages: JavaScript, Java, PHP, Python, Ruby, Go, Perl,
and Rust. These regexes were obtained statically using extraction methods similar to those
described in §5.5.1.

After collecting this corpus, we followed the same measurement and statistical approach
for H-CL that we did for H-EM. We measured the characteristics of the regexes in the
polyglot regex corpus and again found that the distributions did not meet the conditions of
normality and homogeneity of variance. Again the large sample size caused nonparametric
Kruskal-Wallis hypothesis tests to yield uniformly significant differences. Thus, we report
programming languages with a moderate (dr > 0.5) or large (dr > 0.7) pairwise effect size.

8This corpus was originally published in my ESEC/FSE 2019 work [141].

84 Chapter 5. Generalizing regex measurements

Table 5.5: Summary of the polyglot regex corpus. Our regex corpus was derived from
software written in 8 programming languages. The first five languages are ranked by the
most available libraries (ModuleCounts [144]) and popularity in open-source (GitHub). We
also studied Go, Perl, and Rust out of scientific interest. The two final columns show the
contribution to our corpus. JavaScript*: We also extracted regexes from TypeScript source
code, by transpiling it to JavaScript.

Lang. (Registry) Libs. GH # mod. anal. Unique regexes (avg.)
JavaScript* (npm) 1 1 24,997 150,922 (6.0)
Java (Maven) 2 3 24,986 19,332 (0.8)
PHP (Packagist) 3 5 24,995 44,237 (1.2)
Python (pypi) 4 2 24,997 43,896 (1.8)
Ruby (RubyGems) 5 4 24,999 153,334 (6.1)

Go (Gopm) 9 9 24,997 22,105 (0.9)
Perl (CPAN) 7 — 31,827 (all) 142,777 (4.5)
Rust (Crates.io) 10 — 11,724 (all) 2,025 (0.2)

Sum: 193,524 578,628

5.6.1.2 Polyglot Regex Corpus

In order to answer our remaining research questions we needed a polyglot regex corpus: a
set of regexes extracted from a large sample of software projects written in many program-
ming languages. The existing regex corpuses are small-scale [115, 341] or include only two
programming languages [139]. As summarized in Table 5.5, our corpus covers about 200,000
projects in 8 programming languages.

Programming languages We are interested in studying common regex practices, and as a
result we focus our attention on “major” programming languages defined by two conditions:
(1) The language has a large module ecosystem; (2) The language is widely used by the
open-source community. We operationalized these concepts by consulting the ModuleCounts
website [144] and the GitHub language popularity report [169]. We also considered Go, Perl,
and Rust for scientific interest; Perl popularized the idea of regexes as a first-class language
feature, and Go and Rust are relatively new mainstream languages. The languages we used
are listed in Table 5.5.

Software projects Within these languages, we chose to study the software modules pub-
lished in each language’s primarymodule registry for two reasons. First, it permits a relatively
fair cross-language comparison, since we observe that many modules fill equivalent ecolog-
ical niches, e.g., logging or schema validation. Second, we feel that modules are of greater
general interest than applications. Modules are published, maintained, and used by a mix
of open-source and commercial software developers, and bugs and security vulnerabilities in

5.6. RQ2: Does the Cross-Language Hypothesis hold? 85

modules have a significant ripple effect.

Our goal was to analyze the most important modules in each language’s primary module
registry. Borges and Valente recently showed that GitHub star count is a reasonable proxy for
importance [95]. To have a uniform measure of importance across languages and registries,
we filtered each registry for the modules available on GitHub, sorted those by the number
of stars, and analyzed the most-starred modules.

Software modules on GitHub: Most registries offer an API for module metadata, which
includes the location of a module’s source code. Where such an API was available, we
considered the modules whose source code was hosted on GitHub. CPAN (Perl) and Maven
(Java) were exceptions to this rule. CPAN does not consistently list project URLs, but it
does offer a way to enumerate source code artifacts; we mirrored the entire registry and
analyzed all 30K of the modules therein. Maven does not consistently list project URLs, and
does not permit easy enumeration of source code artifacts. Hence, we performed a reverse
mapping from GitHub projects to Maven artifacts. We enumerated the Java projects on
GitHub using the GitHub search API,9 and used heuristics on their READMEs to identify
those that listed Maven artifacts. We manually determined that the README files for
GitHub projects with corresponding Maven artifacts commonly denote this in one of two
ways — they display a Maven badge, or they include a snippet for a dependent’s pom.xml
file to include their project as a dependency. For each of the 184,099 projects enumerated by
our search (93% of all such projects), we visited the README on GitHub and used regular
expressions to filter for those that include one of these elements, reducing the set to 29,268
projects that advertise a Maven artifact.

Most important modules: As Figure 5.4 shows, the distribution of GitHub stars was similar
for the modules in each programming language. We chose to analyze the top 25,000 modules
by GitHub stars, which in most languages captured all but the (very long) tail of modules
with 0-2 stars. Perl and Rust had relatively few modules in their registries, and we analyzed
all of their modules.

Regex extraction Following the methodology in Chapter 4, for each module we cloned
the HEAD of its default branch from GitHub and extracted any statically-declared regexes.
We extracted regexes declared in regex evaluations as well as regexes compiled and stored
in variables for later use. In each module we extracted regexes only from source files in the
programming language corresponding to the registry (e.g., JavaScript and TypeScript for
npm, Perl for CPAN, etc.), omitting regexes in places like build scripts written in another
language.

9On 7 January 2019, about 198,595 GitHub projects matched the query maven in:readme
language:java. Due to GitHub’s limit of 1000 responses per query, we partitioned this space by project
size and creation date to increase the number of projects we captured.

86 Chapter 5. Generalizing regex measurements

Figure 5.4: Distribution of module stars by programming language. This figure
shows the top modules in a registry sorted by star count. Note the log-log scale, on which
projects with 0 stars are represented as having 0.5 stars. The vertical bar denotes the 25,000
position in this ranking, which was the cutoff point that we selected for analysis.

Summary of polyglot regex corpus Our corpus contains 537,806 unique regexes ex-
tracted from 193,524 projects written in 8 programming languages. Each language’s con-
tributions are listed in Table 5.5. Average regex use varies widely by language, from 0.2
regexes per module (Rust) up to 6.1 regexes per module (Ruby). The total unique regexes
by language exceeds 537,806 due to inter-language duplicates.

5.6.2 Results

Having collected and measured the polyglot regex corpus, we applied statistical tests as
described in §5.6.1. Table 5.6 summarizes the results for each metric. We report the details
for the metrics with significant effect sizes below. In §5.9 we discuss some of the implications
of these and other measurements.

• Pattern length. Perl regexes tend to be shorter than those in Go and Rust, with moderate
effect sizes (Figure 5.5a).

• Features used. Regexes in Ruby (large effects) and JavaScript (moderate) tend to use
fewer features than regexes in PHP, Python, Go, and Rust (Figure 5.5b).

• # NFA vertices. Regexes in Ruby tend to have more NFA vertices than those in Java
and Perl (moderate) (Figure 5.5c).

• Average outdegree density. Regexes inRuby have a significantly smaller outdegree density

5.6. RQ2: Does the Cross-Language Hypothesis hold? 87

Table 5.6: Measurements of regexes extracted from different programming lan-
guages. Metrics for each programming language in the H-CL experiment. The second
column gives the range of the median or the observed percentage, and the third notes pro-
gramming languages with significant differences from other languages.

Metric Low / High Unusual langs.

Length Perl: 14 / Go: 21 Perl
Feat. vect. sparseness Ruby: 2 / Go: 4 Ruby, JS

NFA vertices Java: 7 / Ruby 14 Ruby

simple paths Go: 1 / Python: 2 –

DFA blow-up Perl 1.1 / Ruby 1.7 –
Mismatch ambiguity Ruby: 19.1% / Python: 38.4% –

Avg. outdegree density Ruby: 0.08 / Java: 0.19 Ruby
Has super-linear features Perl: 2.3% / JS: 4.3% –

than those in Perl, PHP, and Rust (moderate), and Java (large) (Figure 5.5d).

88 Chapter 5. Generalizing regex measurements

JS Java PHP Python Ruby Go Perl Rust

10

20

30

40

50

60

70

Re
ge

x
pa

tte
rn

 le
ng

th
 (C

#)

149K
19K

44K 43K 152K 22K
141K

2K

Regex Pattern Lengths By Language

(a) Regex lengths.

JS Java PHP Python Ruby Go Perl Rust
0

1

2

3

4

5

6

7

8

Di
st
in
ct
 F
ea
tu
re
s U
se
d

149K 19K

44K 43K

152K

22K

141K

2K

Number of Distinct Features By Language

(b) Number of distinct features used.

JS Java PHP Python Ruby Go Perl Rust0

10

20

30

40

50

NF

A
St

at
es

 (n
o

ou
tli

er
s)

141K
18K

40K 41K

135K
21K

112K 2K

NFA Size By Language

(c) Regex NFA size (# vertices).

JS Java PHP Python Ruby Go Perl Rust0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
g.

 o
ut

de
gr

ee
 d

en
sit

y

141K
18K

40K 41K
135K

21K 112K 2K

Average Outdegree Densities

(d) Average outdegree density.

Figure 5.5: H-CL: Cross-language regex comparisons on various metrics.
Whiskers are (10, 90)th percentiles. Outliers are not shown.

5.7. RQ3: Does super-linear behavior generalize to other regex engines? 89

5.7 RQ3: Does super-linear behavior generalize to other
regex engines?

The regex engines in different programming languages may employ different algorithms, op-
timizations, and defenses. Prior work has estimated the proportion of regexes that exhibit
super-linear (typically polynomial) behavior in JavaScript and Python at 1% [139] (Chap-
ter 4, and in Java at 20% [341]. Cox has presented anecdotal examples of super-linear
behavior in other regex engines [132], but without an empirical study to better characterize
the state of practice it should not be assumed that ReDoS Condition 2 (use of a super-linear
regex engine) affects typical regexes.

The documentation of most regex engines does not describe their worst-case performance.
This section therefore measures the degree to which regexes exhibit super-linear behavior in
many programming languages, due to those languages’ use of a Spencer-style regex engine.10
It thus replicates and updates prior findings in many programming languages.

5.7.1 Methodology

We generally followed the methodology described in §4.3. For each regex we (1) query an
ensemble of state-of-the-art super-linear regex detectors, and then (2) evaluate any predicted
super-linear regex behaviors in each language of interest. We enhanced this methodology to
address two causes of false negatives.

Experimental parameters We allowed each of the detectors to evaluate a regex for up
to 60 seconds using no more than 2 GB of memory. If a detector predicted that a regex
would be super-linear, we evaluated its proposed worst-case input in each of the 8 languages
in our study using input strings intended to trigger exponential or polynomial behavior11. If
a regex match took more than 10 seconds in some language, we marked it as super-linear.

Techniques to reduce false negatives We extended our previous methodology in two
ways to reduce the number of false negatives (i.e., super-linear regexes marked as linear-time).
First, we added Shen et al.’s dynamic super-linear regex detector [297] to their ensemble
([284, 335, 341]). Shen et al.’s detector was published after the earlier experiments were
completed. Second, and more critically, we introduce a new technique that identifies both
polynomial and exponential super-linear regexes that their detector ensemble would not
detect. The static detectors in the ensemble: (1) assume full-match semantics, and (2) do

10This experiment was published in [141].
11We used 100 pumps for exponential and 100,000 pumps for polynomial. This methodology causes some

high-polynomial regexes to be counted as exhibiting exponential worst-case performance.

90 Chapter 5. Generalizing regex measurements

not scale well to regexes with large NFAs. We combat these problems by querying detectors
with the original regex as well as regex variants that they can more readily analyze.

The first query variant addresses an unrealistic assumption in the analysis performed by
some of the detectors in the ensemble ([284, 335, 341]). Although these detectors assume
that the regex engine is using full-match semantics, regex engines generally default to partial-
match semantics. For example, some detectors predict linear behavior for /a+$/, but it is
quadratic in many languages when used with a partial-match API. To address this assump-
tion, we query the detector ensemble with an (anchored) full-match variant of unanchored
regexes, e.g., /^[\s\S]*?a+$/. This modification thus assumes that regexes are being used
with a more expensive regex match query. We expect the presence of anchors to cause
the detectors to identify more polynomial regexes, but not additional exponential regexes;
the concatenation of “[\s\S]*” and an existing regex should add no more than polynomial
ambiguity.

The second query variant addresses inefficient implementations in the detector ensemble.
Some of the detectors cannot complete their analysis within our time limit on regexes
with large NFA representations. For example, they time out on the (exponential) regex
/(a{1,1000}){1,1000}$/ because its NFA explodes in size. To account for this ineffi-
ciency, we query the detector ensemble with variants that replace bounded quantifiers with
unbounded ones, e.g., /(a+)+$/.

In our experiments, these variants reduce the rate of false negatives without introducing
false positives. Although some of these variants may be more vulnerable than the original,
we always test any worst-case input on the original regex (dynamic validation). The first
variant may unmask polynomial regexes that would otherwise go undetected, and the second
may identify both polynomial and exponential regexes.

5.7.2 Results

The detector ensemble estimated that more than 20% of the regex corpus would exhibit
super-linear behavior in a Spencer-style backtracking regex engine. Figure 5.6 illustrates the
extent to which the regexes in our polyglot corpus actually exhibited worst-case super-linear
behavior in each of the 8 languages under study.

Figure 5.6 indicates that super-linear regexes may be more common — by up to an order
of magnitude! — than was reported in Chapter 4. It is worth noting that Figure 5.6
does not provide a direct comparison to [139]. We have a different corpus and are testing
regexes from multiple origin languages. However, the same larger proportions occur when
considering the subset of our corpus derived from JavaScript and Python (as theirs was).
Our results are of the same order of magnitude as Wüstholz et al.’s small-scale estimate
in Java [341]. The majority of the newly-discovered regexes were identified through our
variant testing technique; as expected, the new detector by Shen et al. [297] identified only

5.7. RQ3: Does super-linear behavior generalize to other regex engines? 91

Figure 5.6: Frequency of super-linear regex behavior in eight programming lan-
guages. There are three distinct families of worst-case regex performance. We identified
no regexes with exponential behavior in Go and Rust, and only 6 regexes had polynomial
behavior in those languages. Regexes with exponential behavior are rare in PHP and Perl
(Perl – 227; PHP – 0), but polynomial behavior still occurs. In contrast, over 1,000 regexes
have exponential behavior in Ruby, Java, JavaScript, and Python, and polynomial behavior
is also more common in those languages.

exponential regexes (1,421 of them). Manual examination of these regexes suggests that
they have exponentially ambiguous sub-patterns that the other detectors might in principle
have found, but that the patterns contained extended features (e.g., backreferences) not
supported by the other detectors.

5.7.3 Analysis

Two findings are clear from this experiment. First, there is a gap between the models used
by several of the super-linear regex detectors, and the real Spencer-style regex engines used
in production. Second, not all Spencer-style regex engines are created equal.

This experiment illustrates a significant gap between theoretical models of Spencer-style
regex engines and their actual implementation. The detector ensemble estimated that at
least 20% of these regexes would exhibit super-linear behavior. For three of the four detec-
tors, this prediction was based on their model of a perfectly naive Spencer-style regex en-

92 Chapter 5. Generalizing regex measurements

gine, as described in §2.3.1.2. However, Figure 5.6 indicates that no more than 10% of these
regexes actually exhibited super-linear behavior in real regex engines. The implication is that
real-world regex engines do not perfectly follow the idealized backtracking model. Manual
analysis suggests that this deviation can be explained by these engines’ use of well-known
optimizations like the Aho-Corasick [64], Knuth-Morris-Pratt [212], and Boyer-Moore [96]
string searching algorithms. These optimizations permit them to short-circuit some queries
based on the properties of the regex and/or the contents of the candidate string, without
paying the full cost of a backtracking search. These optimizations cut both ways; some
regexes may be incorrectly (statically) classified as super-linear although all queries against
them can be resolved in linear time using such optimizations, while others may be incorrectly
(dynamically) classified as linear-time if the attack inputs proposed by the super-linear en-
semble can be trivially rejected, even if some other attack input might require super-linear
behavior. Improving the accuracy of super-linear regex detection analysis by refining the
regex engine model may be a profitable line of future work.

The proportion of regexes that exhibit exponential and polynomial worst-case behavior
varies widely by language. The regex engines in these languages fall into three families:
(1) Slow (JavaScript, Java, Python, Ruby); (2) Medium (PHP, Perl); and (3) Fast (Go,
Rust). Through an investigation of regex engine internals, we have attributed the causes of
these families to two of the defenses against ReDoS that are evaluated in Part III. The regex
engines used by Go and Rust (Fast) do not use a Spencer-style backtracking regex engine,
but rather a Thompson-style engine [146, 176] (Chapter 7). The remaining six languages
all employ a Spencer-style backtracking regex engine, but the engines of PHP and Perl
(Medium) apply run-time caps on resource utilization to short-circuit certain long-running
evaluations (Chapter 9).

5.8 RQ4: Can we replicate other previous regex re-
search?

Using the H-CL corpus, we attempted to replicate and generalize many of the findings
described in §2.6.

Regex use In agreement with prior estimates of regexes in 30–40% of modules (Python,
JavaScript [115, 139]), regex use is common in the modules that contributed to the H-CL
regex corpus, ranging from 23% (Go) to 71% (Perl). This finding did not generalize to Rust;
only 5% of Rust modules contained regexes.

Regex feature popularity Feature usage rates in Python regexes were in agreement
with findings from Chapman and Stolee [115]. The relative popularity ranking of different

5.9. Discussion 93

regex features is approximately similar across all programming languages in our corpus. For
example, across languages, capture groups like /(a)/ are a popular feature, while inline flag
changes like /(?i)CaSE/ are relatively rarely used.

Use of extended regex features Prior researchers have reported that developers do
not commonly use extended regex features (backreferences, lookaround assertions), with
rates below 5% reported in JavaScript, Python, and Java [139, 332]. This rate holds in
all programming languages we studied that support those features (i.e., excepting Go and
Rust).

Automaton sizes We were not initially able to replicate findings from Wang and Stolee’s
work describing automaton sizes [332]. They reported that the (Java) regexes in their corpus,
obtained using program instrumentation, had much larger DFAs than we found, with a 75th
percentile of 70 nodes and 212 edges. The Java regexes in the corpus we analyzed (obtained
using static analysis) have a 75th percentile of only 10 nodes and 70 edges. We first confirmed
that our measurement instrument could replicate their results on their corpus. We then
wondered if a few atypical projects might dominate their corpus, as in our corpus prior to
our filtering step (§5.5.1). Indeed, we found that 19 source files in their corpus sat at or
above the 99th percentile of unique regexes, and contributed more than half of the unique
regexes in their corpus. After filtering out these files, our two corpuses had similar DFA
measures.

This comparison emphasizes the importance of considering outlier projects during regex
corpus construction. In both corpuses, a few projects contained enough regexes to bias
the statistics derived from analyzing thousands of projects. We believe filtering out the
regexes from these outlier projects offers a more accurate perspective on the population of
“average” regex-using projects. However, this may be a matter of preference; perhaps major
users of regexes deserve a greater voice in corpuses. We are grateful to Wang and Stolee’s
commitment to open science, permitting us to confirm that this phenomenon occurred in
both sets of software and that the same filtering approach was effective on both sets.

5.9 Discussion

Previous empirical research on regex characteristics focused on statically-extracted regexes
in software written in a small number of programming languages. This focus was not myopic:
based on our suite of eight metrics we found that regex corpuses are similar whether they
follow a regex extraction methodology based on static analysis or program instrumentation,
and some characteristics of regexes are similar across many programming languages. How-
ever, some regex characteristics do not generalize across programming languages, and we
encourage future empirical regex researchers to design their studies accordingly. We hope

94 Chapter 5. Generalizing regex measurements

our methodological refinements and our efforts to validate generalizability hypotheses lay
the foundation for further empirical regex research. We look forward to a new generation of
regex tools and regex engines inspired by our measurements.

In the preceding sections we applied our measurements to test the validity of the H-EM and
H-CL hypotheses. In those experiments we compared the relative values of the measures in
different subsets of regex corpuses. However, the specific values of our measurements may be
of interest to regex tool designers (cf. §2.6.4) and regex engine developers. Though there are
outliers in each category, appropriate percentiles are useful for reasoning about the common
case of regexes encountered by regex tools and engines.

Tools can be tailored to real regexes Measures of regex representation (pattern, au-
tomaton) may be the most relevant for regex visualization and debugging tools. The (25,75)th
percentile lengths of regexes in every language are between 5 and 40 characters, with medians
of between 15 and 20 characters. Pattern-based regex tools (e.g., syntax highlighters [37],
match/mismatch aids [36]) should ensure that they perform well on regexes of these lengths.
Similarly, NFA-based regex tools (e.g., railroad diagrams [37]) should accommodate NFAs
with between 5 and 30 NFA states, which will cover the (25,75)th percentile range in every
language.

Comprehensive regex testing appears feasible The 90th percentile of simple path
family size for regexes in every language is at most 10. This means that the vast majority of
regexes have at most ten simple paths through their NFA representation, so a covering set
of at most ten inputs is sufficient to enumerate the “equivalence classes” of these regexes.
Larson and Kirk’s basis path-based approach [220] would yield even fewer inputs. Thus,
exhaustive representative input generation is quite feasible for most regexes. This is not
currently a feature in existing popular regex tools, and we recommend that they incorporate
it as a cheap but potentially valuable feature.

Changing regex engines for ReDoS Our findings in this dimension can inform the
design of the next generation of regex engines. We apply some of these findings in Part III.

First, we report that a static DFA-based matching algorithm is feasible for the vast majority
of regexes (Figure 5.7). The bottom 90% of regexes have a blow-up factor of 2.5–3.75 in
every language, implying that constructing and storing the DFA will not cost much more
than the NFA would. A naive DFA approach would offer a guaranteed linear-time solution
in the size of the original regex for 90% of regexes.

Second, it appears that super-linear regexes are common in any programming language that
uses a Spencer-style engine. Encouragingly, because we found that fewer than 5% of regexes
use super-linear features (backreferences, lookaround assertions) in any programming lan-
guage, Thompson’s algorithm might be applied to almost all regexes in every programming

5.10. Threats to validity 95

JS Java PHP Python Ruby Go Perl Rust0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DF

A
St

at
es

 /

NF
A

St
at

es

141K 18K
40K

41K 135K
21K

112K
2K

Blowup Factor By Language

Figure 5.7: Distribution of DFA blowup from each programming language.
Whiskers are (10, 90)th percentiles. Outliers are not shown.

language. This change would address most ReDoS vulnerabilities, albeit with potential
portability problems (Chapter 7). Eliminating support for super-linear features seems in-
feasible in languages that already support them, but a hybrid engine that uses Thompson’s
algorithm where possible might be effective. This approach has previously been taken by
grep [163].

Lastly, were regex engine designers to incorporate Thompson’s algorithm, as have the de-
signers of Rust and Go, they should consider its average cost. This cost depends on the
number of transitions that must be considered as the algorithm updates its current state-
set. In most programming languages the 90th percentile NFA outdegree density is no larger
than that of the regexes in Rust (0.38) and Go (0.44), so lessons learned in Rust and Go
may be applicable to other programming languages. However, in Java the 90th percentile
NFA outdegree density is much higher, roughly 0.75. Thus, many languages can adopt a
Thompson-style engine by referencing the approach in Rust and Go, but in Java more careful
consideration may be required (Figure 5.5d).

5.10 Threats to validity

Internal validity As noted in §5.5.1, our regex extraction methodologies were liable to
both false positives (non-regexes included) and false negatives (real regexes excluded). Al-
though regrettable, we do not believe that these inaccuracies systematically biased our cor-
pus.

When the modules we studied accepted external regexes (e.g., the third case in Listing 9), our
program instrumentation approach would capture any regexes specified through API calls
in the test suite. These “test” regexes might resemble the other regexes in the module not
because they would be similar in production usage, but because they were authored by the

96 Chapter 5. Generalizing regex measurements

same developer(s) who wrote the other regexes in the module. Within a given module, the
regexes extracted through static analysis and program instrumentation might have similar
characteristics not because of intrinsic similarities but rather because of developer biases. We
hope, however, that we sampled a diverse enough set of modules to observe many different
developers’ styles for regexes.

We considered all unique regexes equally, deduplicating the regexes by their pattern (string
representation). Focusing on the characteristics of subsets of our corpus, e.g., popular
regexes, user-facing regexes, or regexes used in software testing, could be a topic for fu-
ture study.

External validity Part of the purpose of our study was to address threats to external
validity in prior research, by testing whether the regex extraction methodology biased regex
corpuses (§5.5) and whether previous empirical regex findings generalized to regexes written
in other languages (§5.6). We performed our experiments in the context of open-source
software modules. The generalizability of this approach to other software — e.g., applications
or closed-source software — is yet to be determined. Given the many programming languages
considered in our analyses, we would be surprised if our findings did not generalize to regexes
in other general-purpose programming languages. However, it is not clear whether they will
apply to other pattern-matching contexts, e.g., to the regexes used in firewalls and intrusion
detection systems [127, 288].

At each stage in our analysis (Figure 5.2), some regexes “leaked out.” For example, we
could not translate some regexes into the C# syntax. The losses were generally acceptable
— for all but one of the metrics our measurements included at least 90% of the regexes.
The exception was the worst-case Spencer analysis, for which we could measure only about
80% of the regexes. The missing regexes might have different characteristics, e.g., relying on
unusual features.

Construct validity Table 5.2 summarizes the metrics we used to characterize regexes.
Most of these metrics, or their relatives, have been applied in prior work, and measure fun-
damental aspects of regexes. The new metrics we introduced are based on factors considered
by existing regex engines.

We considered but omitted two metrics considered by prior work [139, 332]. First, we do not
generate mismatching strings for the language, although these may be of similar interest for
testing purposes. These could be generated in a similar way by first taking the complement
of the regex. Second, we do not attempt to label a regex based on the set of strings that it
matches, e.g., “a regex for emails”. The specific string language that a regex matches is an
application concern. Our metrics are instead intended to characterize the components with
which an engineer chose to construct a regex.

Performance portability. Our results here assume that our super-linear regex detector en-

5.10. Threats to validity 97

semble is effective. These detectors were designed with the naive Spencer-style regex engines
in mind (“Slow family”) and might miss super-linear behavior for regexes in the Medium
and Fast families. For example, it is not clear whether the defenses of PHP and Perl are
sound or simply effective against these detectors’ inputs. See Chapter 9 for more details.

Part III

Evaluating Approaches to Address
ReDoS

98

Outline and summary

“But if it is broke... ”
–Anon.

In Part II of the dissertation, I presented empirical results showing that super-linear regexes
are commonly used in practice. The implication of these findings is that ReDoS may be
a widespread security vulnerability. In Part III of the dissertation, I evaluate a range of
solutions that engineers can use to address ReDoS in their server-side applications.

To make this evaluation systematic, let us recall the ReDoS Conditions from §2.5:

1. Multi-client service: The victim operates a service that handles requests from multiple
clients, permitting a malicious client to impact the experience of other clients.

2. Super-linear regex engine: The victim application uses a regex engine for which certain
regex matches exhibit super-linear time complexity.

3. Super-linear regex on untrusted input: The victim application uses a regex that
exhibits super-linear worst-case behavior in its regex engine, and the candidate strings on
which the regex is used are not adequately sanitized.

4. No safeguards: The victim does not have appropriate safeguards in place to cap a
client’s resource usage.

I assume that software engineers will continue to use regexes to process user-defined input
(ReDoS Condition 1). Thus, the solution space is determined by addressing one of the
three remaining conditions. As a solution to ReDoS, engineers can attempt to eliminate
ReDoS Condition 2 by improving the worst-case complexity of the regex engine; or ReDoS
Condition 3 by sanitizing input or eliminating super-linear behavior in their user-facing
regexes; or ReDoS Condition 4 by adding safeguards to cap a client’s resource usage.

The subsequent chapters in this section consider each of these solutions in detail. Chap-
ter 6 shares the results of the first empirical study of super-linear regex refactoring (ReDoS
Condition 3). Chapter 7 evaluates the feasibility of improving the worst-case complexity
of a Spencer-style regex engine by the simple expedient of replacing it with a linear-time
regex engine (ReDoS Condition 2). Chapter 8 examines optimizations to the problematic
Spencer-style backtracking NFA simulation that improve its worst-case complexity through
memoization (ReDoS Condition 2). Finally, Chapter 9 considers the effectiveness of various
caps on resource utilization that can be introduced within a regex engine or software runtime
(ReDoS Condition 4).

Based on this analysis, Table 5.7 summarizes the points in the solution space that we evalu-
ate. These solutions offer varying degrees of practicality and ReDoS-proofing. Some involve
application-level changes, others require changing the regex engine in some way, and some

99

100

Table 5.7: This table presents the points in the ReDoS solution space that we evaluate. The
first approach examines the feasibility of application-level changes. The second and third
approaches focus on fundamental changes to the regex engine. The final approach considers
changes to the regex engine or application framework/runtime to cap client resource usage.

Approach ReDoS Condition Analyzed in

Refactor application Condition 3 Chapter 6

Alternative match algorithm Condition 2 Chapter 7

Optimized match algorithm Condition 2 Chapter 8

Introduce resource caps Condition 4 Chapter 9

call for both. After considering these solutions individually, Part IV compares them and
provides the conclusions of this dissertation.

Chapter 6

Application-level refactoring

6.1 Summary

An engineer might address a ReDoS vulnerability in their software by (1) identifying it, and
then (2) repairing it. This approach addresses ReDoS Condition 3: exposing a super-linear
regex to untrusted input. In this chapter I discuss experiments on the effective identification
and repair of ReDoS regexes.

Methodology In Chapter 4, I described the collection of a large corpus of regexes ex-
tracted from JavaScript and Python modules. Here I use that data in two experiments.
First, I empirically evaluate the effectiveness of the regex ambiguity anti-patterns that soft-
ware engineers currently use to identify super-linear regexes (§2.5.2.4). Then, I disclosed 284
potential ReDoS vulnerabilities and observed the strategies that software engineers followed
to repair these super-linear regexes in their software.

Findings Using automated implementations of engineering heuristics, we found that the
conventional wisdom embedded in ambiguity anti-patterns is prone to false positives. Many
regexes fit the mold of an ambiguity anti-pattern but fail other criteria for super-linearity. In
terms of repair strategies, we found that engineers fix super-linear regexes using one of three
techniques: trimming the input, revising the regex, or replacing it with alternative logic.
Among these techniques, revising the regex was the most common, regardless of whether
engineers were previously aware of the others. Fixing super-linear regexes is relatively diffi-
cult: many of the engineers’ first attempts were unsuccessful, and not all the applied fixes
fully resolved the ReDoS vulnerability as the engineers intended.

Statement of Attribution The material presented here is excerpted from [139]. It was
performed in conjunction with the work described in Chapter 4, which influenced the exper-
imental design.

101

102 Chapter 6. Application-level refactoring

6.2 Study design and research questions

In this chapter I consider research questions along two themes.

First, we study whether regex ambiguity anti-patterns are a useful signal for super-linear
regexes. As we discussed in §2.5.2.4, avoiding regex ambiguity anti-patterns is a technique
used in practice to prevent ReDoS, but the effectiveness of this approach has not been
evaluated. In this investigation we check the validity of this conventional wisdom.

Theme 1: Detecting ReDoS.
RQ1: Do ambiguity anti-patterns signal super-linear regexes?

Second, we study how ReDoS vulnerabilities are repaired in practice. The scientific and
engineering communities lack an understanding of the preferred strategies to repair super-
linear regexes. An empirical understanding will guide other engineers when they fix ReDoS
vulnerabilities, and can be applied by researchers to automatically propose palatable patches.

Theme 2: Fixing ReDoS.
RQ2: How have software engineers repaired ReDoS vulnerabilities?
RQ3: What ReDoS repair strategies do software engineers prefer?
RQ4: How effective are software engineers’ manual repairs?

6.3 RQ1: Do ambiguity anti-patterns signal SL regexes?

As discussed in §2.5.2.4, software engineers have conventional wisdom about what makes
a regex super-linear. The ambiguity anti-patterns that engineers use describe a necessary
condition for super-linear behavior, but not a sufficient one. They may have false positives,
regexes that match the anti-pattern but will not exhibit super-linear behavior. But if their
false positive rates are low, then they may be a useful heuristic for software engineers during
composition and code review.

In this experiment, we operationalize these anti-patterns and then measure their false positive
rate.

6.3.1 Methodology

Three regex ambiguity anti-patterns We know of three regex ambiguity anti-patterns.
The first, nested quantifiers or “star height”, is discussed in many places including [163, 177,
312]. The second is rather more vague: “watch out when...[different] parts of the [regex] can
match the same text” [179]. These anti-patterns are a primitive and informal description
of regex ambiguity (§2.5.2.1), which is itself a necessary condition for super-linear regex
behavior.

6.3. RQ1: Do ambiguity anti-patterns signal SL regexes? 103

We manually identified three distinct ways that such ambiguity arose in the super-linear
regexes from our corpus. The three ways all include a quantifier so that they will have
unbounded ambiguity, and rely on the use of one of the three other primitives of regular
languages to create an ambiguous sub-pattern (Grammar 2.1). One involves the combination
of a quantifier and nesting, i.e., the “star height” anti-pattern. The second and third both
involve “matching the same text”, by means of (a) the combination of a quantifier and
disjunction; or (b) the combination of a quantifier and concatenation.

The first anti-pattern is star height > 1, i.e., nested quantifiers. This leads to super-linear
behavior when the same string can be consumed by an inner quantifier or an outer one, as is
the case for the string “a” in the regex /(a+)+/. In this case, the star height of two results
in two choices for each pump, with worst-case exponential behavior on a mismatch. This
anti-pattern is commonly used in practice through the safe-regex tool [312].

The second anti-pattern is a form of ambiguity that we call Quantified Overlapping Disjunc-
tion (QOD). An example of this anti-pattern is /(\w|\d)+/. This quantified disjunction has
two nodes that overlap in the digits, 0-9. On a pump string of a digit there are two choices
of which group to use, with worst-case exponential behavior on a mismatch.

The third anti-pattern is a form of ambiguity that we call Quantified Overlapping Adjacency
(QOA). For an example of this anti-pattern, consider the regex /\s*\s*/. The two quantified
\s* nodes overlap and are adjacent. This anti-pattern has worst-case polynomial behavior
on a mismatch. See also the description given in Figure 2.11a.

Star height is the most well-known anti-pattern in the ecosystems we studied. The npm
module safe-regex, which tests for this anti-pattern, is used millions of times each month.
Software engineers frequently referenced it in our email conversations, and it is used in the
well-known eslint-plugin-security plugin for eslint. The other anti-patterns appear in
reference works on regexes, but we do not know how well known they are in practice.

Operationalizing the anti-patterns We implemented tests for the presence of these
anti-patterns using the regexp-tree regex AST generator [50].1

• To measure star height we traverse the AST and maintain a counter for each layer of
nested quantifier: +, *, and ranges where the upper bound is at least 25.2

• To detect QOD we search the AST for quantified disjunctions. When we find them we
enumerate the Unicode ranges of each member of the disjunction and test for overlap.

• To detect QOA we search the AST for quantified nodes. We test for pairs of quantified
nodes that have an overlapping set of characters.

False positives: There are two ways in which these operationalizations may incorrectly flag

1The safe-regex tool [312] is implemented incorrectly, so we used our own implementation. We provided
a patch to the author of safe-regex.

2Groups with lower quantifications do not readily exhibit super-linear behavior.

104 Chapter 6. Application-level refactoring

a linear-time regex as super-linear.

1. Ambiguity is a necessary but not sufficient condition for super-linear behavior. In keeping
with the descriptions of the anti-patterns, none of our tests includes a check for the
second condition, a mismatch-triggering suffix. For example, if a “.” means “match any
character”, then the regex /.*.*/ is ambiguous but cannot be made to mismatch. It will
run in linear time.

2. Again in keeping with written descriptions, our implementations may mark an unam-
biguous regex as ambiguous. For example, the regex /(ab*c)*/ has star height 2 but is
unambiguous.

False negatives: For QOD and QOA our prototypes only consider AST nodes containing
individual quantified characters (e.g., /\d+/ or /.*/, not /(ab)+/). Some ambiguous regexes
will thus not be detected.

6.3.2 Results and analysis

The results of applying our anti-pattern tests to our npm and pypi regex datasets are shown
in Table 6.1. We discuss this table in light of the sources of the ambiguity anti-patterns’
true and false positives, as well as their false negatives.

True positives Columns 2 and 3 show that our operationalizations of the ambiguity anti-
patterns were able to identify the super-linear regexes. We found at least one anti-pattern
in most of the super-linear regexes (81-86%). The anti-pattern proportions are also roughly
accurate relative to the measured worst-case behavior (Chapter 4). Super-linear regexes with
the (polynomial) QOA anti-pattern are much more common than the (exponential) QOD
and Star Height anti-patterns.

False positives Columns 4 and 5 show that the ambiguity anti-patterns exhibited many
false positives — linear-time regexes that contain ambiguity anti-patterns according to the
definitions we used. This false positive rate seems too high for these ambiguity anti-patterns
to be useful without further refinement.

False negatives As expected, our operationalizations of the anti-patterns did not identify
all super-linear regexes. We manually inspected a random sample of 70 of the unlabeled
super-linear regexes from npm modules, and confirmed that 65 of them contained one or
more of these anti-patterns. They involved ambiguous constructions too complex for our
current anti-pattern test tools to detect. For example, our tools do not identify as QOD
the regex /(\d|\d\.|\.\d)+/, which is ambiguous when the elements of the disjunction are

6.4. RQ2: How have software engineers repaired ReDoS vulnerabilities?105

Table 6.1: Utility of the super-linear regex anti-patterns, as measured by our opera-
tionalizations. For each anti-pattern, we present the number of super-linear regexes that had
this pattern in each ecosystem, and then the false positive rate. For the false positive rate
we rely on the super-linear regex detectors (§4.3.1) as ground truth. For example, in npm
12% of the super-linear regexes had star height > 1, but 94% of the regexes with star height
> 1 were linear-time. As some regexes have multiple anti-patterns, the final row eliminates
double-counting.

Anti-pattern Number of super-linear regexes False positive rate
npm pypi npm pypi

Star height > 1 443 (12%) 62 (2%) 94% 98%
QOD 40 (1%) 6 (1%) 97% 95%
QOA 2,548 (71%) 555 (79%) 90% 94%

Totals 2,901 (81%) 604 (86%) 91% 95%

repeated. To identify this, our algorithm could be extended to apply “quantifier unrolling”
to capture ambiguity.

6.4 RQ2: How have software engineers repaired ReDoS
vulnerabilities?

Here we provide the first characterization of the fix approaches engineers have taken when
addressing ReDoS vulnerabilities. This study tells us which fix strategies engineers currently
choose when left to their own devices. This effort is a preliminary step towards our larger
study of preferred fix strategies, described in §6.5.

6.4.1 Methodology

We were interested in thorough reports describing super-linear regexes and how engineers
fixed them. We thus searched for ReDoS in security databases using the keywords “Catas-
trophic backtracking”, “REDOS”, and “Regular expression denial of service”. We searched
both the CVE database and the Snyk.io database.3. We used any reports with two proper-
ties: (1) the report used the definition of ReDoS given in §2.5.1; and (2) the vulnerability
was fixed and the report included a link.

For each vulnerability report, we manually categorized the fix strategy the engineers took.
If a fix used more than one strategy (e.g., both Trim and Revise), we counted it under each

3Snyk.io’s database tracks vulnerabilities in popular module registries, including npm and pypi.

106 Chapter 6. Application-level refactoring

Table 6.2: The three super-linear regex repair strategies. Examples of the fix strategies
for a super-linear regex for emails that we reported in the Django web framework (CVE-2018-
7536). The engineers chose to fix this ReDoS vulnerability using the algorithm described in
“Replace”.

Example

Original /^\S+@\S+\.\S+$/
Trim if 1000 < input.length: throw error

else: test with existing regex
Revise /^[^@]+@([^\.@]+\.)+$/
Replace* Custom parser:

(1) Exactly one @ must occur, at neither end of the string, and
(2) There must be a ‘.’ to the right of the @, but not adjacent.

of the used strategies.

6.4.2 Results and analysis

ReDoS Reports We identified 45 unique historic ReDoS reports (condition 1) across the
CVE and Snyk.io databases. The earliest report was from 2007 and the most recent from
2018. 37 of these reports included fixes (condition 2). Three of these reports were unique
to the CVE database, 27 were unique to the Snyk.io database, and 7 appeared in both
databases.

Fix strategies Three fix strategies were typical in these reports.

Trim Leave the regex alone, but limit the size of the input to bound the amount of back-
tracking.

Revise Change the regex.
Replace Replace the regex with an alternative strategy, e.g., writing a custom parser or using

a library.

Table 6.2 gives an example of each fix strategy. Only the Revise strategy was discussed in
any of the reference texts on regexes we reviewed [156, 163, 177, 179].

Table 6.3 summarizes the results from this study, as well as the subsequent studies on new
fixes (§6.5) and on fix correctness (§6.6). In the first row, we can see that engineers in the
historic dataset commonly Trimmed, Revised, or Replaced, each more than 20% of the time.

6.5. RQ3: What ReDoS repair strategies do software engineers prefer? 107

Table 6.3: Frequency of repair strategies for historic and new vulnerabilities.
Examples of each super-linear repair strategy are given in Table 6.2. Some of the new fixes
used more than one strategy.

Trim Revise Replace Total

Historic Fix approach 8 18 11 37
Unsafe fixes 1 2 0 3

New Fix approach 3 35 15 48
Unsafe fixes 0 0 0 0

6.5 RQ3: What ReDoS repair strategies do software
engineers prefer?

In §6.4 we described the three common fix strategies engineers used in the historic ReDoS
reports. However, we do not know whether these engineers knew every strategy, and thus
we cannot be sure that they preferred one strategy over another. In this experiment, we
describe the fix strategies taken by engineers who were informed of all of the strategies.

6.5.1 Methodology

To learn what fix strategies engineers would take if they knew all of the options, we needed
to convince a sizable group of engineers to fix super-linear regexes. Because we felt that the
maintainers of popular modules would be more likely to fix problems therein, we examined
the use of super-linear regexes in all npm and pypi modules downloaded more than 1000
times per month. See Figures 4.2 and 4.3 for the effect of this filter. We filtered these
modules for those whose super-linear regex(es) were clearly a ReDoS vector based on a
manual inspection, and then contacted the maintainers of those modules by email with a
vulnerability disclosure.

In our disclosures, we included the following information:

1. The super-linear regex(es) and the files in which they lay;
2. The degree of vulnerability (§4.4) for each regex;
3. Each malign input, with prefix, pump, and suffix;
4. The length of an attack string leading to a 10-second timeout on a desktop-class machine;

and
5. A description of the three fix strategies we observed in the historic data (Table 6.2), with

links to two example repairs of each type.

108 Chapter 6. Application-level refactoring

6.5.2 Results

After applying our two-stage filter, we disclosed 284 vulnerabilities across both ecosystems to
the module maintainers. 48 (17%) of our disclosures have resulted in fixes so far. Prominent
projects that applied fixes based on our reports include the Hapi and Django web frameworks
and the MongoDB database.

The fix strategies the maintainers chose are shown in Table 6.3. Compared to the historic
fix strategies, engineers exposed to examples of all three fix strategies still preferred Revise
to Trim. The use of Revise rose from 49% to 73%, while the use of Trim fell from 22% to
6%. The use of Replace remained around 30%. Clearly these engineers preferred Revise
when they considered all three choices. Anecdotally, in our discussions with engineers they
indicated that trimming seemed like a “hack” when compared to the other two strategies.

6.6 RQ4: How effective are software engineers’ manual
repairs?

Any one of fix strategies in Table 6.2 can go awry. ToTrim, engineers must solve a Goldilocks
problem: trim too short and valid input will be rejected, trim too long and the vulnerability
will remain. To Revise, engineers must craft a linear-time regex that matches a language
close enough to the original that their APIs continue to work. Lastly, to Replace, engineers
must write a parser for the input that matches an equivalent or related language.

In this study we examine the correctness of engineers’ fixes.

6.6.1 Methodology

Here is the fix safety classification scheme that we used.

• We called a Trim fix unsafe if the maximum allowed input length can still trigger a
noticeable slowdown.

• We compared the input limit to the lengths of malign inputs derived using the super-linear
regex identification procedure from Chapter 4.

• We called a Revise fix unsafe if it was labeled vulnerable by our super-linear regex
identification procedure.

• We called a Replace fix unsafe if the replacement logic was super-linear in complexity
based on manual inspection.

6.7. Discussion 109

6.6.2 Results

Our findings for the effectiveness of the historic and new fixes are summarized in Table 6.3.
Several of the historic fixes were incorrect. The new fixes were uniformly correct (nearly all
engineers asked us to review their fixes before publishing their changes).

Trim 1 of the 8 historic Trim fixes was unsafe. The initial choice of length limit was too
generous and the regex remained vulnerable for two years before this was discovered and the
length limit lowered.

Revise 2 of the 18 historic fixes resulted in a revised, but still super-linear, regex. One of
these was replaced before our study. We discovered the other in Chapter 4 and disclosed it
in §6.5 before performing this portion of our study.

Replace We manually inspected the fixes that used the Replace strategy to gauge their
complexity. All appeared sound, relying on one or more linear scans of the input.

Testing their fixes Regardless of the fix strategy, engineers did not usually include test
cases for their changes. In the historic dataset, 8 of the 37 fixes included tests. In the new
dataset, 18 of the 48 fixes included tests. We did not discuss the lack of tests with engineers,
but we conjecture two possible reasons for the lack of tests. First, a regex is an implementa-
tion detail, so a test tailored to the regex might be viewed as “testing the implementation”
rather than “testing the interface” of a function. Second, introducing tests that validate a
fix would simultaneously also publicize an attack exploit affecting the dependents of older
versions.

6.7 Discussion

Ambiguity anti-patterns may offer explanatory power In RQ1, we found that the
ambiguity anti-patterns are common in practice, and these anti-patterns often occur without
meeting the remaining conditions for super-linear worst-case behavior. They should not be
used alone as a super-linear regex detection tool.

However, we believe that the regex ambiguity anti-patterns may have value when used in
conjunction with the accurate super-linear regex detectors proposed by researchers. Many
of the existing super-linear regex detectors analyze automata, not regexes. When these tools
report super-linear behavior caused by ambiguity in the NFA, this may not help engineers
diagnose the cause in the right modality — the pattern that the engineer must modify.

110 Chapter 6. Application-level refactoring

This is where the anti-patterns might be useful: once a true positive has been identified
by an automaton-based analysis, the anti-patterns may assist engineers in diagnosing and
repairing the original regex. We believe that understanding the usefulness of the ambiguity
anti-patterns during regex repair is a promising direction for future work. Recent theoretical
descriptions of regex ambiguity in the modality of the regex pattern might also prove useful
during regex repair [97, 317].

Automatic refactoring as an alternative to manual repair In RQ2 and RQ3, we
determined the ReDoS repair strategies that engineers have taken and prefer to take. The
general trend was towards revising the regex and replacing the regex, and away from trun-
cating or otherwise sanitizing the candidate string. But we found that manual repair was
difficult, with several examples of incorrect repairs. In light of the findings from Mischa et al.
cited earlier [238], this is not too surprising. If most software engineers are unfamiliar with
ReDoS— and anecdotally, those we emailed typically were — then dealing with a ReDoS
vulnerability would be an unfamiliar task, and revising a super-linear regex would thus be
difficult.

Automatic refactoring strategies, focused on regex revision or replacement, may be a useful
direction to address this problem. Automated refactorings could be applied to change the
regex within the application, or they could intercept regex queries prior to the regex engine
and dynamically refactor super-linear regexes.

There is recent work on ReDoS amelioration that has focused on automatically revising
regexes. For example, van der Merwe et al. [326] proposed to apply the flow algorithm [92]
to revise a K-regex R into a semantically equivalent regex R′ (i.e., L(R) = L(R′)) with the
property that the NFA corresponding to R′ is unambiguous (i.e., Thompson’s construction
yields a DFA).4 The approach of Cody-Kenny et al. [125] is to mutate the original regex
until a new regex is identified that preserves the tested subset of the regex’s language but
lowers its worst-case complexity. This scheme does not guarantee lowered complexity, and
may struggle with under-tested regexes [332].

These regex revision approaches have focused solely on linear-time behavior, ignoring en-
gineering considerations like readability and maintainability. For approaches like van der
Merwe et al., which are language-preserving, I am not confident that readability can be
maintained. The strategy of Cody-Kenny et al. does not require that the full language of
the regular expression be preserved, and so their fitness function could be tuned for read-
ability [116]. These efforts have also considered only regex equivalence up to recognition
(i.e., the same regex language), ignoring the additional concern of equivalence up to parsing
(e.g., preserving capture groups). Perhaps the family of revised regexes from the experiment

4These automatically-generated regexes may be exponentially larger than the original regexes, which
merely moves the exponential behavior from the NFA simulation to the NFA construction. In light of our
finding that most NFAs grow linearly when converted to a DFA in our corpus, this may not be a serious
shortcoming in practice (Figure 5.7).

6.7. Discussion 111

discussed in this chapter could be used to guide the development of future automatic repair
algorithms. In particular, some of the fixes described in this chapter were not language-
preserving, suggesting that van der Merwe et al. may be setting too high a bar.

Towards the automatic replacement of super-linear regexes, Medeiros et al. [236] propose
to convert (all) K-regexes into Parsing Expression Grammars (PEGs), which are an unam-
biguous cousin of CFGs [158]. Using PEGs instead of regexes is conjectured to improve
readability and testability [203], and PEGs can be parsed in linear time [158]. However,
perhaps such a significant shift is unnecessary. In many of the replace examples we observed
that a small set of string functions sufficed to match the same language of strings or a
sufficiently-close one for practical purposes. Perhaps equivalent functions encoding similar
string constraints as a regex can be generated automatically by drawing on techniques from
the string constraints community [208].

Our own experiences fixing super-linear regexes In addition to the 48 fixes from
module maintainers, we submitted 9 fixes when maintainers asked us for help. Our own
experiences may illuminate some of the factors that engineers will consider when selecting a
fix strategy.

The fix strategy we selected (1 Trim, 9 Revise, 2 Replace, with 3 overlaps) depended on
both whether the super-linear regex was exponential or polynomial, and how identifiable
the language of the regex was. When a regex was exponential or was polynomial with a
large degree, the vulnerability would manifest on short malign input. We fixed these by
Revising, aided by visualizations from the regexper tool to understand the original language
and study the source of the super-linear behavior.5 When the super-linear behavior was less
severe (e.g., quadratic), we considered both Revise and Trim. When we could discern the
language described by the regex, we favored Revise. When the regex’s language was unclear
or many regexes were applied to the same input (e.g., parsing a user agent string), then
Trim became an attractive alternative. We felt an aversion to Replace because it felt overly
verbose. As Wang and Stolee predicted [332], when we changed the language of the regex
we found it difficult to confirm that we had not done so for the subset of strings it might
receive. These projects had limited test suites, and did not always contain representative
sets of strings S1 ⊆ L(R) in the language of the regex R, and S2 ∩ L(R) = ∅ outside of it.

5The regexper tool can be found at https://regexper.com/.

https://regexper.com/

Chapter 7

Replacing the regex engine

7.1 Summary

An engineer might address a ReDoS vulnerability in their software by evaluating the super-
linear regex using a regex engine with improved worst-case complexity. Substituting a faster
regex engine for a slower one would address ReDoS Condition 2, improving all regexes’
worst-case complexity by applying an alternative match algorithm. For example, in Chap-
ter 5 (Figure 5.6) we showed that there are regex engines with distinct classes of worst-case
performance. Moving from a slower engine to a faster one is a reasonable strategy for Re-
DoS amelioration, and is precisely the remedy that Cloudflare adopted after the incident
discussed in our case study (§3.3).

Such a substitution can be effected through application-level changes or through program-
ming language-level changes. At the application level, an engineer could adopt a 3rd-party
regex engine by accessing it as a library. Within the programming language, the language
maintainers could replace their regex engine implementation with that of another regex en-
gine. If regex engines are compatible with one another, this approach is straightforward; if
they vary in their syntax or semantics, then correctness concerns (i.e., backwards compati-
bility) may outweigh the potential security benefits.

Many regex engines support identical or similar syntaxes, and it would be natural to assume
that regexes can be moved from one to another without modification. Indeed, prior work
surveying 158 professional software engineers found that many engineers believe that regexes
share a universal specification [237]. If true, this would make changing regex engines a natural
ReDoS amelioration technique — simply switch to an alternative regex engine with improved
worst-case performance. But can regexes be copy/pasted across regex engine and retain
their semantic characteristics? We have anecdotal evidence that this may not be the case.
Chapman and Stolee reported that some developers struggle with “[regex] inconsistencies
across [programming languages]” [115]. Inconsistent regex behavior has even been reported
between different implementations of the same Perl version [107]. We are not the first to
observe regex portability issues, but we are the first to provide evidence of the extent and
impact of the phenomenon. We use a systematic approach to identify syntactic and semantic
differences between many different regex engines, including documented, undocumented, and
defective regex engine behaviors.

112

7.2. Study design and research questions 113

Methodology This chapter evaluates the efficacy and risks of replacing the regex engine in
three dimensions. First, we clarify the potential worst-case benefits of moving from one regex
engine to another, refining the performance measurements presented in Chapter 5. Second,
we experimentally identify semantic differences between regex engines, clarifying the need
for a translation layer before this ReDoS amelioration approach can be safely applied. To
do this, we combine the polyglot regex corpus presented in Chapter 5 with an ensemble of
input generators, and compare the behavior of these regex-input pairs across many regex
engines. Third, we empirically measure the extent to which software engineers currently use
identical regexes in different regex engines. To do this, we measure regex duplication within
the polyglot regex corpus, and compare those regexes to regexes sourced from the two most
common Internet sources of regexes. If identical regexes are commonly used in different regex
engines, this may suggest that the semantic incompatibilities we identified are sufficiently
unusual that they can be deemed “acceptable risk” by engineers.

Findings We found that changing regex engines is an effective ReDoS amelioration ap-
proach for many regexes, but may introduce correctness concerns due to under-specified and
incompatible differences in regex engine behavior. Though most regexes (92%) compile in
different regex engines, 15% exhibit semantic differences from one engine to another. While
some of these differences were documented in the corresponding regex engine documentation,
others were not and were only exposed through our experiments. Beyond legitimate differ-
ences, we also identified incorrect behavior in the regex engines of JavaScript-V8, Python,
Ruby, and Rust. However, despite the risks of regex non-portability, re-using regexes across
regex engine boundaries appears to be a common practice.

Statement of Attribution The data presented here is largely excerpted from a paper that
I presented at ESEC/FSE 2019 [141]. Some of its interpretation is new to this dissertation,
as is the material in §7.5.

7.2 Study design and research questions

Like other code snippets [343], regexes may flow into software from Internet forums or other
software projects. Unlike most code snippets, however, regexes can flow unchanged across
programming language (and regex engine) boundaries. Regex engines (mostly) have com-
patible syntax, potentially lulling engineers into a false sense of semantic compatibility.

In §2.4.2 I described the PCRE semantics to which most programming languages attempt
to adhere. There has been no successful specification of regex syntax and semantics; Perl-
Compatible Regular Expressions (PCRE) [189] and POSIX Regular Expressions [202] have
influenced but not standardized the various regex dialects that programming languages sup-
port, leading to manuals with phrases like “these aspects...may not be fully portable” [43].

114 Chapter 7. Replacing the regex engine

No prior systematic effort had been made to evaluate these engines’ actual compatibility.
Consequently, measuring the extent to which regexes are truly portable from one regex engine
to another is the primary burden of this chapter.

This study measures the extent to which regexes are portable across different regex engines,
as measured by their different behavior in different programming languages. Applying the
polyglot regex corpus described in §5.6.1.2, we explore the regex portability problems: the
problems that developers may face when they take a regex written for one regex engine and
use it in another. The most pernicious of these problems take the form of false friends:
regexes that compile in both regex engines (syntactic compatibility) but match different
strings (semantic incompatibility). When moved to a linear-time regex engine, formerly
super-linear regexes might change from being ReDoS vulnerabilities to being logical errors.

With these ideas in mind, this study investigates three research questions.

RQ1: To what extent does moving from one regex engine to another offer consistent per-
formance benefits?

RQ2: To what extent do syntactically-compatible regexes exhibit semantic differences be-
tween regex engines, and why?

RQ3: Despite these differences, to what extent are a common core of regexes used across
regex engine boundaries?

7.3 RQ1: To what extent does moving from one regex
engine to another offer consistent performance ben-
efits?

In §5.7 we identified three distinct families of regex engines in terms of their worst-case
performance: Fast, Medium, and Slow. We made this determination based on the proportion
of all regexes that (compiled and) exhibited super-linear behavior in the regex engines under
consideration. However, merely measuring the proportion of regexes may not suffice. The
overall proportion alone does not indicate whether the improvement is uniform — in other
words, it is not clear whether some regexes may exhibit worse performance in one of the
“faster” regex engines.

7.3.1 Methodology

We answered this question by leveraging the per-language performance information collected
for each regex as part of the study described in Chapter 5. We performed a pairwise com-
parison of each regex’s performance in each language, determining whether the match had
the same worst-case complexity, completed more quickly, or completed more slowly. If regex

7.3. RQ1: To what extent does moving from one regex engine to another
offer consistent performance benefits? 115

performance improves monotonically from the “Slow” to “Medium” to “Fast” regex engine
families, we can conclude that the ReDoS amelioration of changing regex engines is suit-
able from a security standpoint. Conversely, if regex performance degrades, changing regex
engines may be unsuitable.

7.3.2 Results

In brief, we found that regex performance does improve monotonically when moving from
the “Slow” to “Medium” to “Fast” regex engine families. Figure 7.1 shows the frequency
with which regexes exhibit worse behavior in one of a pair of languages. Lighter cells in the
heatmap correspond to no performance degradation, while shaded cells indicate that some
regexes performed worse from the source language (columns) to the destination language
(rows). For example, in this figure we can see that the ~10% of regexes that are super-linear
in Java and in JavaScript (cf. Figure 5.6) are the same regexes.

To interpret this figure in more detail, recall that JavaScript, Java, Python, and Ruby were
deemed “Slow”, PHP and Perl were “Medium”, and Go and Rust were “Fast”. The analysis
then proceeds as follows:

• Comparing regex performance within the “Slow” family (JavaScript, Java, Python, and
Ruby), regex performance was nearly identical between JavaScript, Java, and Python,
and Ruby appears to offer slight performance benefits compared to its siblings.

• Comparing regex performance within the “Medium” family (PHP and Perl), we have the
interesting result that 1-3% of regexes worsen in each direction. This implies that the
resource caps and/or optimizations applied in these regex engines are non-equivalent and
succeed on different groups of super-linear regexes. See Chapter 9 for further analysis.

• Comparing regex performance within the “Fast” family (Go and Rust), we see no perfor-
mance degradation.

• When moving regexes from the “Slow” family to the “Medium” family, nearly all regexes
exhibited no performance degradation – regex evaluations retained their prior performance
or ran more quickly.

• Similarly, when moving regexes from the “Slow” or “Medium” families to the “Fast”
family, all regexes exhibited no performance degradation – regex evaluations retained
their prior performance or ran more quickly.

116 Chapter 7. Replacing the regex engine

Figure 7.1: Faster regex engine families provide uniform performance improve-
ment. Pairwise view of regex performance differences between regex engines. The asymmetry
in the chart is due to the regex engine performance families. Cells are colored according to the
number of regexes that exhibit worse behavior in the destination (row) than the hypothetical
source (column). Lighter rows are safer destinations; the individual cells contain the percent
of the regexes supported in that language pair whose worst-case performance is worse in the
destination. For example, regexes do not perform any worse in JavaScript than Java, but
8% of regexes perform worse when moved from Rust to JavaScript.

7.4. RQ2: To what extent do syntactically-compatible regexes exhibit
semantic differences between regex engines, and why? 117

7.4 RQ2: To what extent do syntactically-compatible
regexes exhibit semantic differences between regex
engines, and why?

In answer to RQ1, we found that engineers will obtain uniform performance improvement
when moving from a slower family of regex engines to a faster one. This movement may,
however, be accompanied by correctness risks. Although the regexes considered in that
experiment were syntactically compatible between two regex engines (i.e., they could be used
without modification), and although changing engines yielded performance improvements
relevant to ReDoS, it is possible that the semantics of the regex matches changed.

In this experiment we measure the extent to which regex semantics are preserved when
moving from one regex engine to another. These regex engines all purportedly follow PCRE’s
leftmost-greedy semantics, but the extent to which they deviate has not previously been
evaluated.

7.4.1 Methodology

The general methodology of this experiment was as follows: We took every regex, generated
candidate strings for it, recorded its match behavior on each string in each regex engine, and
performed a pairwise comparison of the match behavior for each regex-input pair in each
programming language. The details of our methodology are given next.

Regexes considered in each programming language pair When we compare a regex’s
behavior in a pair of programming languages, we use the subset of the regex corpus that is
syntactically valid in that pair. Most comparisons are on the majority of the corpus — 76%
of the corpus was syntactically valid in every language, and 88% were syntactically valid in
all but Rust.

Evaluating regex behavior We tested the behavior of a regex in each regex engine by
means of a small program written in each of the 8 programming languages from which the
corpus was derived. Each of these programs accepts a regex pattern and candidate string,
queries the regex engine for a match via the appropriate programming language API, and
reports the result. We used the most comprehensive of the match queries: a parse of the
first matching substring, i.e., a partial match including the matched substring and capture
groups. On a match, we recorded (1) the substring that matched, and (2) the contents of all
capture groups. We used the default match flags in each programming language. Table 7.1
lists the programming language versions used in our tests.

118 Chapter 7. Replacing the regex engine

Table 7.1: The language versions used in our regex portability experiments.
Summary of programming language (and thus regex engine) versions and documentation
used in our experiments and analysis. Most versions are the default for Ubuntu 16.04.

Language Version information Documentation
JavaScript Node.js v10.9.0 (V8 v6.8) [147, 148]

Java Oracle JDK 8 [130]
PHP PHP 7.4.0-dev (cli) [181]

Python Python 3.5.2 [160, 216]
Ruby Ruby 2.3.1p112 [99]
Go Go v1.6.2 [176]
Perl Perl v5.22.1 [20, 218, 323]
Rust Rust v1.32.0 (nightly) [146]

Input generation In search of an interesting set of inputs, we created an ensemble of five
state-of-the-art regex input generators: Rex [328], MutRex [73], EGRET [220], ReScue [297]
and Brics [252]. These generators produce either matching strings (Rex, Brics) or both
matching and mismatching strings (MutRex, EGRET, ReScue). We used Rex, MutRex,
and EGRET unchanged. We modified ReScue to use the strings it explores in its search for
SL inputs. We modified Brics to generate random input subsets, not infinitely many inputs.

We wanted these inputs to provide good regex automaton coverage. Wang and Stolee showed
that 100 Rex-generated inputs yield about 50% regex coverage [332], so we requested 10,000
inputs from each input generator with a time limit of 10 seconds. Table 7.2 summarizes the
number of unique inputs generated for each regex. Most regexes were tested with more than
1,000 unique inputs. These generators perform well on K-regexes (about 95% of regexes),
but do not consistently support regexes that use extended features (e.g., backreferences or
lookaround assertions). The effect of this in our experiment is that E-regexes may not be
tested on a meaningful set of inputs, e.g., inputs that are in the language of a regex with a
backreference.

Additional experimental parameters These experiments were performed on a 10-node
cluster of server-class nodes running Ubuntu 16.04.

7.4.2 Results

Table 7.2 summarizes our results. About 15% of regexes participated in at least one dif-
ference witness, and among the language pairs we observed all three classes of witnesses.
In Table 7.2 and Figure 7.2 we report the number of distinct regexes participating in the
difference witnesses rather than the number of distinct witnesses themselves, because we
expect that many of the witnessing inputs for a given regex are members of an equivalence

7.4. RQ2: To what extent do syntactically-compatible regexes exhibit
semantic differences between regex engines, and why? 119

Table 7.2: Summary statistics for the semantic portability experiment.

Metric Value
Percentile inputs per regex: 25th – 50th – 75th 1,057 – 2,410 – 2,510

Regexes with any difference witnesses 15.4% (82,582)

Regexes with any match witnesses 8.1% (43,417)
Regexes with any substring witnesses 4.2% (22,597)
Regexes with any capture witnesses 7.5% (40,457)

class on which a difference manifests.

A more detailed description of the semantic differences between languages is presented in Fig-
ure 7.2 as a heatmap. The cells are colored proportional to the number of regexes that have
any witness of a difference between that pair of languages. The three numbers in the cell
denote the percent of regexes with match, substring, and capture witnesses for that pair of
languages. As can be seen in Figure 7.2:

• There are many language pairs with match witnesses.
• PHP and Python are the primary sources of substring witnesses.
• PHP is the primary source of capture witnesses.

The behavior between trios of languages is not always directly comparable in Figure 7.2. This
difficulty is caused by slight variation in the sets of regexes considered in each programming
language pair, due in turn to our experimental design. Recall that we compared the regexes
that were syntactically valid in each language pair, rather than considering solely the regexes
that were valid in every programming language.

7.4.3 Analysis

Implications for regex engine replacement as a ReDoS amelioration In answering
RQ1, we found that changing regex engines will improve worst-case regex performance. Our
investigation of RQ2 reveals that doing so may cause thousands of regexes to exhibit different
semantics (Figure 7.2). Although these various regex engines follow PCRE syntax, they vary
sufficiently that careful porting or a dedicated translation layer would be necessary in order
to follow this ReDoS amelioration strategy.

Some regex engines are closer in semantics than others. For example, between the “Slow”
Java and the “Fast” Go and Rust regex engines, all regexes that are syntactically compatible
will improve in performance without exhibiting different semantics (Figure 7.2). In contrast,
moving from the “Slow” JavaScript regex engine to the “Fast” regex engines will cause
up to 3% of the regexes to exhibit different semantics behavior. Our data permit similar
conclusions to be drawn from each of the origin regex engines of interest.

120 Chapter 7. Replacing the regex engine

Figure 7.2: Pairwise view of potential semantic portability problems. This chart is
symmetric, and distinguishes regexes by language and type. The individual cells indicate the
percent of the regex corpus with at least one (M)atch, (S)ubstring, and (C)apture witnesses
in that language pair, and darker cells indicate that regexes more commonly have difference
witnesses in that pair of languages. For example, Java, Go, and Rust generally agree on regex
behavior. At the scale of our corpus, each percentage point represents about 5,000 regexes.

7.4. RQ2: To what extent do syntactically-compatible regexes exhibit
semantic differences between regex engines, and why? 121

Root cause analysis We investigated the root causes of the many ways in which chang-
ing regex engines may affect regex semantics. We developed an automatic tool, the Cross
Examiner, to estimate the causes of the difference witnesses identified through our experi-
ment. We iteratively examined unclassified witnesses, referenced the regex documentation
for the disagreeing languages (Table 7.1), understood the reason for the different behaviors
where documented, and encoded heuristics to classify witnesses as due to this behavior. The
causes we identified are summarized in Table 7.3. Approximately 98% (80,736/82,582) of
witnesses could be explained by one or more of these causes.

Table 7.3 differentiates the witnesses by type. The first group of witnesses are cases where
some languages support a feature that others do not. In the second group, languages use the
same syntax for different features. The third group are cases where languages use the same
syntax for the same features but exhibit different behavior. The final group are defects we
identified in a regex engine’s behavior, described below.

Comparison to documented semantics We studied each language’s regex documenta-
tion (Table 7.1) to see if these witnesses could be easily explained. Comparing the grey cells
and boldfacing in Table 7.3, we note that more than half of the “unusual” behaviors were
unspecified in that language’s documentation. Testing, not reading the manual, is the only
way for software engineers to learn these behaviors.

122
C

hapter
7.

R
eplacing

the
regex

engine
Table 7.3: The semantic differences identified during our semantic portability experiment. Each row
indicates a witness regex, the expected behavior(s), and each language’s interpretation. The first three groups describe
different classes of valid but semantically distinct behavior. The final group describes the bugs we found; E- means
Engine, D- means Docs. Boldface indicates what we believe to be potentially-surprising behavior. “-” indicates languages
where a feature causes syntax errors. The behavior in the grey cells was not specified in the documentation.

Witness Description JavaScript Java PHP Python Ruby Go Perl Rust

False friends 1: Regex notation describes a feature in one language and no feature in another.
/\Qa\E/ Quote directive ; “QaE” “QaE” Quote Quote “QaE” “QaE” Quote Quote -
/\G/ Match assertion ; “G” “G” Assertion Assertion “G” Assertion - Assertion -
/\Ab\Z/ Anchors ; “AbZ” “AbZ” Anchors Anchors Anchors Anchors - Anchors -
/a\z/ End of line ; “az” “az” EOL EOL “az” EOL EOL EOL EOL
/\K/ Match reset ; “K” “K” - Reset “K” Reset - Reset -
/\e/ ESC ; “e” “e” ESC ESC “e” ESC - ESC -
/\cC/ ctrl-C ; “cC” ctrl-C ctrl-C ctrl-C “cC” ctrl-C - ctrl-C -
/\x{41}/ “A” (hex) ; “x...x” “x...x” “A” “A” - - “A” “A” “A”
/(a)\g1/ Backref notation ; “ag1” “ag1” - Backref “ag1” “ag1” - Backref -
/(a)\g<1>/ Backref notation ; “ag〈1〉” “ag〈1〉” - Backref “ag〈1〉” Backref - - -
/\p{N}/ Unicode digit ; “pN” “p{N}” 1 1 “p{N}” 1 1 1 1
/\pN/ Unicode digit ; “pN” “pN” Digit Digit “pN” “pN” Digit Digit Digit
/[[:digit:]]/ Digit ; Custom Char. Class (CCC) CCC CCC Digit CCC Digit Digit Digit Digit

False friends 2: The same regex notation describes different features.
/^a/ ^: Beginning of input or line Input Input Input Input Line Input Input Input
/a++/ Possessive quantifier ; regular - Possessive Possessive - Possessive - Possessive Regular
/(a)\1/ Backref ; octal Backref Backref Backref Backref Backref - Backref Octal
/\h/ Horz. whitespace; Hex; “h” “h” Whitespace Whitespace “h” Hex - Whitespace -
Nuanced: The same regex notation describes the same feature, but engines exhibit subtly different behavior.
/(a)(?b)/ Named and unnamed capture groups? Both Both Both - Named only - Both -
/[]]/ CCC of “]” ; empty CCC + “]” Empty “]” “]” “]” “]” “]” “]” “]”
/((a*)+)/ Diff. capture of \2 on “aa” \2: “aa” \2: empty \2: empty \2: empty \2: empty \2: “aa” \2: empty \2: “aa”
/((a)|(b))+/ Diff. capture of \2 on “ab” Empty “a” “a” “a” “a” “a” “a” “a”

Bugs we found in regex engines.
E-Python: /(ab|a)*?b/ Diff. capture of \1 on input: “ab ” “a” “a” “a” Empty “a” “a” “a” “a”
E-Rust: /(aa$)?/ Matched substring on “aaz” Empty Empty Empty Empty Empty Empty Empty “aa”
E-Rust: /(a)\d*\.?\d+\b/ Matched substring on “a0.0c ” “a0” “a0” “a0” “a0” “a0” “a0” “a0” “a0.0”
E-JavaScript: Complicated Input order matters? Yes No No No No No No No
D-OracleJava: /$\s+/ $ matches before final \r? No Yes No No No No No No
D-Ruby: /a{2}?/ Lazy “aa” ; optional “aa” Lazy Lazy Lazy Lazy Optional Lazy Lazy Lazy

7.5. RQ3: To what extent are a common core of regexes used across regex
engine boundaries? 123

Regex engine testing Though in this experiment we assumed that the regex engines
were trustworthy, our methodology can be viewed as a mix of fuzz [117] and differential [232]
testing of the regex engines themselves. Researchers have searched for defects in regex
engines using similar techniques [66, 94] and automatically-generated regexes. Since the
space of possible test regexes grows combinatorially, our “testing” contrasts from theirs
insofar as ours is prioritized by the regexes that engineers use in practice, and driven by
more thorough synthetic input generation.

During our examination of difference witnesses, we identified five cases where one regex
engine disagreed with the others and its behavior was inconsistent with its documentation.
We opened defect reports based on the behaviors sketched in the third section of Table 7.3.
So far these bugs have been confirmed in V8-JavaScript, Python, Ruby, and Rust.

Semantic errors in applications Although engineers may identify some semantic regex
problems during testing, others may cause unexpected regex behavior in practice. To es-
timate the frequency of semantic problems in practice, we developed linter-style tools to
identify regexes that use features that are unavailable in their language. For example, in
JavaScript the anchor notation /\Ab\Z/ is interpreted literally as AbZ, but engineers who
use this notation in JavaScript projects probably intend anchors. Among the JavaScript
(npm) modules from which we derived our corpus, we identified 31 modules that used this
notation. In total we identified hundreds of modules containing potential semantic regex
bugs. We have begun opening bug reports against these modules.

It is possible that these regexes were derived from copy/paste practices. However, engineers
might introduce such bugs even when designing regexes from scratch, since they may design
them based on a (supposed) regex lingua franca that does not extend to the language in
which they are developing.

7.5 RQ3: To what extent are a common core of regexes
used across regex engine boundaries?

In answer to RQ2, we found many ways in which regex engines differ semantically, which may
discourage engineers from adopting the ReDoS defense of changing regex engines. However,
it may be that the semantic differences we identified are not relevant in practical usage. A
regex’s string language may vary in the universe of all possible strings (which we sampled
in §7.4), but if the universe of input strings in the program context is incomplete then some
of these semantic differences may not be important. For example, whether the anchor /^/
indicates the beginning of the input string or of a line within it is only relevant if the regex
is applied on input strings that can contain more than one line.

Measuring regex re-use practices across regex engine boundaries will shed light on this ques-

124 Chapter 7. Replacing the regex engine

tion. To give nuance to our quantitative findings of semantic incompatibilities, in this exper-
iment we will measure the extent to which software engineers use a common core of regexes
across regex engine boundaries. To the best of our knowledge, this is the first measurement of
the re-use of common regexes in the literature. Prior work has considered this question only
qualitatively [237, 238], reporting on the regex re-use practices of professional software engi-
neers through surveys and interviews. Software engineers did say they re-used regexes, most
commonly from Internet resources like Stack Overflow and from other software. They did
not frequently describe memorable encounters with regex incompatibilities. This suggests,
at least qualitatively, that in the common case regex engine replacement may be viable.

7.5.1 Methodology

The general methodology of this experiment was as follows: we identified a set of “common”
regexes, and then determined how often those regexes were used in multiple programming
languages.

Unique regexes We define a unique regex by its string representation (e.g., the regex
/ab*c/ is represented by the string “ab*c”). We use string equality to determine the module
registries (thus, which programming languages) in which we found that regex. We rejected
alternative measures of regex equivalence like string language [333] or behavioral [115] sim-
ilarity, because regexes that match on these measures may already have been ported by
engineers to address semantic differences across regex engines.

Common regexes We defined a Common Regex as one that met two conditions:

General task: It appeared in more than one software module, implying that it was not overly
customized (e.g., not a regex tailored to a particular project’s error messages).

Generally available: It appeared in one of the Internet sources mentioned by software engi-
neers as a typical re-use source.

Mining Internet sources We extracted regexes from the two Internet sources most com-
monly cited by the engineers that Michael et al. surveyed: RegExLib and Stack Overflow.
In both of these relatively-unstructured Internet regex sources, our extraction effort was
best-effort.

Extracting regexes from RegExLib. We exfiltrated the RegExLib database by performing an
empty search, which returns a paginated set of all of their regexes. We traversed and scraped
the resulting web pages.

Extracting regexes from Stack Overflow. For Stack Overflow, we relied on the “regex” tag
to identify regexes. Through manual analysis we found that questions and posts with the

7.5. RQ3: To what extent are a common core of regexes used across regex
engine boundaries? 125

“regex” tag commonly denote regexes using code snippets. Using all Stack Overflow posts
as of September 2018,1 we found all questions tagged with “regex” as well as the answers
to those questions and automatically extracted code snippets from those posts. To filter,
we then removed snippets that contained no regex-like characters based on the PCRE regex
syntax given in Table 2.3.

7.5.2 Results

1 2 3 4 5 6 7 8
Number of programming languages used in

0

500

1000

1500

2000

2500

Nu
m
be
r o

f c
om

m
on
 re

ge
xe
s

Multi-language Use of Common Regexes

Figure 7.3: Multi-language use of common regexes. This figure shows the frequent
multi-language use of Common Regexes, defined according to our methodology. Among the
8,234 Common Regexes, 71% are used in multiple languages.

Common regexes Within our regex corpus, most regexes are customized to their usage
context and do not appear in more than one software module. Among the 537,806 unique
regexes, only 123,108 (23%) met the General Task criterion by appearing in more than one
module. Within these, we identified 8,234 regexes that were also Generally Available, i.e.,
also found on an Internet source.

Crossing regex engine boundaries We found that the 8,234 Common Regexes were
frequently used across programming language boundaries, and therefore across regex engine
boundaries. As Figure 7.3 shows, 5,837 (71%) of the common regexes are used in multiple
regex engines. Among the regexes that met only the General Task criterion, the proportion

1We used an archived image of Stack Overflow, available at https://archive.org/download/
stackexchange/stackoverflow.com-Posts.7z.

https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z

126 Chapter 7. Replacing the regex engine

falls; 24,411 of these regexes (19%) are used in more than one regex engine. This supports the
qualitative findings of Michael et al.: that Internet sources are a common distribution channel
from which software engineers re-use regexes across programming language boundaries.

7.6 Discussion

The results of RQ1 and RQ2 demonstrate that the ReDoS remedy of wholesale regex engine
replacement is promising but comes at the risk of backwards incompatibility. Triangulating
these findings with RQ3, however, it appears that there is a large class of common regex use
cases for which the existing incompatibilities are not (known to be) problematic.

Performance improvement In answering RQ1, I found that moving from a “Slow” to
“Medium” to “Fast” regex engine will uniformly improve worst-case performance, and in Rust
and Go I found that nearly all supported regexes would perform in linear time (cf. Figure 5.6).
Thus, changing regex engines offers engineers an easy fix to the performance aspect of their
ReDoS problems. But engineers must consider factors beyond performance improvement.
Specifically, they should be concerned about semantic changes and feature support.

Semantic changes In answering RQ2 I considered semantic changes, and found a sub-
stantial number of regexes whose behavior would change if used in a Fast-er regex engine.
A translation layer could address the syntactic compatibility issues, but it is unclear how
to build a translation layer for the cases I identified in which equivalent features follow dif-
ferent semantics in different regex engines. The implementation of such a translation layer
is further complicated by the lack of formal semantics describing production regex engine
behavior. As discussed in §2.4.3, there is ongoing work on formalizing the behavior of regex
engines. My experimental comparisons may guide theorists towards under-specified aspects
of regex engine behavior. The existence of these incompatibilities may also be symptomatic
of under-specification and under-testing within major programming languages, which if true
suggests another line of work.

Feature support In addition to semantic differences on supported regexes, the regex
engines in the “Fast” family simply do not support extended regex features like backreferences
and lookaround assertions [146, 176]. In §5.8 I reported that these features are used in only
about 5% of the regex corpus. Most applications do not depend on those features and could
adopt a Fast-er regex engine after careful regex porting. For the applications that do need
them, they might obtain some ReDoS relief from shifting to the “Medium” family of regex
engines, but this would be an incomplete solution because those regex engines still exhibit
super-linear worst-case performance on many regexes.

7.7. Threats to validity 127

Programming language documentation Each programming language’s regex docu-
mentation currently focuses only on its own syntax and semantics. We recommend that
regex documentation additionally describe its deviations from external specification(s), e.g.,
PCRE or POSIX. Explicitly discussing incompatibilities will inform developers of “gotchas”,
and it will have the indirect effect of reminding them that regexes are (currently) not a lingua
franca. Longer term, explicitly considering each language’s divergence from specification(s)
will help designers reach agreement on a next-generation universal regex specification.

We also recommend that programming language maintainers document the worst-case match
performance of their regex engines. At the moment, only Rust and Go describe their worst-
case (linear-time) performance. Documenting the potential for ReDoS is particularly impor-
tant for the members of the “Slow” family, who have put software engineers at the greatest
risk.

7.7 Threats to validity

Internal validity Super-linear behavior: Our conclusions about uniform improvement
from Slow-er to Fast-er regex engine families are based on the accuracy of the super-linear
regex detectors. It is possible that some of these improvements can be attributed instead to
defenses and optimizations that might be circumvented by cannier detectors. If so, improved
super-linear regex detectors might change our findings. This is most relevant to the Medium-
performance family, as the regex engines in the Fast family use Thompson’s lockstep NFA
simulation which can guarantee linear-time performance.

Regex flags: Our analyses deliberately omit the use and effect of regex flags to avoid com-
plicating our fundamental questions. However, regex flags may affect syntax, semantic, and
performance portability. The (in?)equivalence of regex flags across languages might compli-
cate regex porting for syntax and semantics. In addition, flags can actually affect worst-case
regex performance — e.g., a case-insensitive flag permits the regex engine to traverse paths
that are not considered with a case-sensitive match, potentially increasing the number of
super-linear regexes. Our ensembles of input generators and super-linear regex detectors
also ignore the implications of flags.

Internet regexes: Our methodology for identifying regexes in Stack Overflow and RegExLib
was best-effort, and we may have omitted regexes with unusual formatting.

External validity Our findings on semantic compatibility are specific to the regex corpus
collected in our work, which was derived from popular open-source software projects. It is
possible that our results would change if tailored to the regexes in a particular context, e.g.,
the Snort regex corpus. We believe, however, that the scale of our corpus is sufficient to
permit generalization of our findings in typical software engineering contexts.

128 Chapter 7. Replacing the regex engine

Construct validity Programming language = regex engine: In our experiments, we as-
sumed that programming languages accurately reflect the behavior of their regex engines.
It is possible that the regex engines themselves behave more consistently, and that the vari-
ation we observed is due instead to interposition in the programming language’s runtime.
For example, internal wrappers around the regex engine might perform regex rewriting or
replace trivial regex operations with string functionality, affecting semantics. To the best
of our knowledge, no such interposition exists. We have examined the libraries surrounding
the JavaScript-V8, Python, Perl, PHP, and Rust regex engines, and other researchers have
examined those for the Java regex engine [336].

Chapter 8

Optimizing a regex engine through
memoization

8.1 Summary

“Those who cannot remember the past are condemned to repeat it. ”
–George Santayana

The ReDoS amelioration considered in Chapter 7 addressed ReDoS Condition 2 by substi-
tuting a super-linear regex engine for a linear-time one. In this chapter, we consider an
alternative approach to addressing ReDoS Condition 2: optimizing a backtracking-based
regex engine. In particular, we consider the application of memoization to eliminate the
redundancy that causes super-linear regex evaluations in backtracking regex engines. Un-
like regex engine substitution (or equivalent overhauls of engine internals), memoization can
be easily incorporated into existing backtracking-based regex engines. We are not the first
to propose memoization in this context, but we are the first to analyze space-efficient se-
lective memoization schemes, and to evaluate the technique empirically. After introducing
related work in §8.2, we proceed to an analysis (sections 8.4 and 8.5) and evaluation (§8.6)
of memoization for K-regexes, and then extend our results to E-regexes (§8.7).

Our primary interest is not to improve on the state of the art algorithms for the recogni-
tion and parsing problems for truly regular expressions (K-regexes). The Thompson NFA
simulation and Brzozowski derivatives offer the best known time and space complexities
(Table 8.3). None of the algorithms we present improves on them. Instead, our goal is to im-
prove on the state of practice algorithms. We present theoretical analyses that demonstrate
exponential improvements in time complexity at what we believe are acceptable increases
in space complexity, and evaluate our approach on a large-scale regex corpus in a practical
implementation. All this is true for K-regexes; for E-regexes, in §8.7 we improve on previous
theretical results for the complexity of two extended regular expression features (lookaround
assertions and backreferences).

Methodology The investigation in this chapter considers four research questions. First,
we employ a theoretical analysis to determine the expected effect of memoization on K-
regexes. Second, in light of concerns about the space costs of memoization (§8.2), we apply

129

130 Chapter 8. Optimizing a regex engine through memoization

theoretical knowledge and empirical lessons to propose potential space optimizations for
K-regex memoization. Third, we experimentally evaluate the performance of the various K-
regex memoization techniques we propose. Fourth, we examine the extension of memoization
to E-regexes.

Findings In answer to RQ1, we report that the super-linear behavior of Spencer-style
backtracking regex engines on K-regexes is caused by redundant exploration. Using mem-
oization, a backtracking regex engine can guarantee linear-time matches. In answer to the
unattractive space penalty incurred by memoization, in RQ2 we describe several space opti-
mizations with the potential to reduce or eliminate any increased space complexity caused
by memoization. These optimizations are based on theoretical analysis and empirical ob-
servations. In our experiments for RQ3, we showed that most super-linear regexes can be
evaluated in linear time. More importantly, with an appropriate encoding scheme the space
cost for most regexes is constant with respect to the length of candidate string. In answer
to RQ4, we show that (1) regexes with lookarounds entail super-exponential complexity
in existing regex engines, but can be performed in linear time with memoization; and (2)
regexes with backreferences can be evaluated in a lower exponential than has previously been
reported, and for typical regexes cost only polynomial time and space.

Statement of attribution The material presented here is being prepared for publication.
C. Coghlan assisted with the study of the Perl regex engine. S.A. Hassan analyzed the typical
contents of the capture groups referenced by backreferences.

8.2 Related work

Regex engine optimizations for the average case Regex evaluation has been a long-
standing optimization target. Researchers have proposed a diversity of optimizations to
improve the average performance of a regex match: minimizing the automaton [112, 155,
184, 193, 195, 204, 303, 331, 342]; pursuing more efficient automaton encodings [155, 259,
347]; extending the automaton model [79, 256, 260]; leveraging properties of constant sub-
patterns [64, 96, 199, 212, 345]; introducing supporting data structures [114, 276]; optimizing
the use of I/O libraries [198]; relaxing match requirements [118, 344]; applying specialized
hardware [100, 109, 217, 291, 348, 350]; and parallelizing the match process [263, 346]. Un-
fortunately, none of these optimizations is suitable for improving the worst-case performance
of a regex match based on a Spencer-style simulation. We propose to apply memoization
techniques to address this problem.

Memoization Memoization is an optimization technique that spends space to save on
time. The key idea, proposed by Michie, is to record a function’s known input-output pairs

8.2. Related work 131

in order to avoid evaluating a function more than once per input [239]. If evaluating the
function is expensive, the time savings can be substantial if a function is commonly called
with the same inputs. From an engineering perspective, memoization has been argued to
permit the use of more “natural, straightforward” algorithms than other approaches [319,
325] Memoization has been widely applied in functional programming, logic programming,
and dynamic programming.

In functional programming, memoization can be applied verbatim. Functions that are side-
effect free can be implemented by combining a memo (hash) table with the original imple-
mentation [325]. In this context, the set of a function’s dependences (e.g., the input domain)
is potentially enormous, and the memo table may grow unbounded. Researchers have ex-
plored various strategies for reducing space costs, including partial memoization via symbolic
analysis of a function’s dependences [71, 349], automated approaches such as garbage col-
lection [128, 197], and selective memoization schemes [61] that track a subset of the possible
memoizable states. As the memo table need not be complete, caching with a replacement
policy is also a viable option, although this has the downside of decreasing the predictability
of an algorithm’s behavior [128]. Memoization has also been used as a solution to search
problems arising in logic programming and dynamic programming. For example, the search
process for a satisfying assignment of variables can be expedited by memoizing the failed “no-
good” solutions considered during a backtracking search [82, 282, 319]. Likewise, dynamic
programming algorithms combine a careful evaluation order with memoization to reduce the
overall time complexity of a problem [83, 129].

Memoization in string parsing The literature most relevant to this chapter is the work
on optimizing parsing problems using memoization. Most researchers have focused on us-
ing memoization to parse context-free grammars (CFGs) and parsing expression grammars
(PEGs). Birman and Ullman showed that context-free languages could be parsed in lin-
ear time through backtracking and memoization, or, equivalently, a dynamic programming
approach [90]. This fact was re-discovered by Norvig [264] and popularized by Ford under
the name “packrat parsing” [157]. As an alternative to a backtracking approach, Might
et al. have extended Brzozowski derivatives (§2.3.2) to CFGs and applied memoization to
such a parser [244]. All of these approaches entail O(|G| ∗ |w|) space complexity, where G
represents the rules in a grammar and w is the candidate string [81]. Ford argues that, as
CFGs are typically used to parse software projects, this cost is acceptable; he expects that
|w| ≤ 100 KB [157].

Memoization in regex evaluations Memoization has been considered but rejected for
regular expression matching by the research community. Various researchers have remarked
on its potential application, but not implemented it out of concern over the expected space
complexity [85, 87, 132, 295]. Although these authors did not explain why they felt space
was so critical, we conjecture the crux is that some regex contexts involve strings much

132 Chapter 8. Optimizing a regex engine through memoization

longer than the 100 KB assumed by packrat parsers (e.g., regexes for biological applications
or natural language processing).

Within the engineering community, to the best of my knowledge only Google’s RE2 regex
engine and the Perl regex engine employ some form of memoization. RE2 generally uses
Thompson’s lockstep NFA simulation, but to resolve certain match-with-capture queries,
RE2 memoizes a backtracking NFA simulation. In particular, it memoizes this simulation if
the full search space can be encoded in a bitmap that is less than 32 kilobytes [133]. This
will protect against high-complexity behavior for small regexes and short input strings, but
would fail on the long inputs associated with the polynomial regexes described in our case
studies (Chapter 3). We discuss this approach in more detail in §8.4.

The memoization scheme of the Perl regex engine is more convoluted. As it has not previously
been described in the scientific literature, I introduce it here. The Perl regex engine has used
a selective memoization scheme [61] since 1999.1 The scheme has not been substantially
changed since its introduction. We describe the implementation as of commit 34667d08d3b
in February 2020.

General description of the scheme: The Perl regex engine’s memoization scheme records the
backtracking algorithm’s visits to a subset of the “complex” engine states. Specifically, it
records visits to the first k states associated with “complex” unbounded repetitions of the
form /A*/ where the language of the sub-pattern A contains strings of varying lengths.2
As an example, the regex engine will memoize the sub-pattern for R1 = /(a+)*/, where
L(A) = L(a+) = {a, aa, aaa, . . .}. As another example, the regex engine will memoize the
sub-pattern for R2 = /(a?)*/, where L(A) = L(a?) = {ε, a}.

What is not memoized: Additional complex states after the first k are not memoized. In
addition, Perl regex engine distinguishes several other “simple” engine states associated with
bounded repetition /A{m,n}/ or unbounded repetition /A*/ when the language of the sub-
pattern A contains only strings of a fixed width; these are not memoized.

The contents of the memo table are also affected by the use of extended Perl features, as
defined in §2.4.2.1. The contents of the memo table are reset (“voided”, in the engine’s
parlance) if an engine state is encountered that uses a backreference or a conditional. The
use of memoization is disabled entirely if an engine state is encountered that uses callouts
(embedded code), which can change the regex pattern or the candidate string being evalu-
ated.

Unprotected super-linear behavior using this scheme: With this selective memoization scheme
in place, a regex engine can still exhibit super-linear worst-case behavior on several classes of
super-linear regexes. Here they are, ordered according to my understanding of their practical

1The Perl regex engine’s memoization scheme was introduced by the engineer J. Hietaniemi in commit
2c2d71f56, which shipped in Perl v5.6.

2These complex engine states are referred to as CURLYX-WHILEM states in the Perl regex engine. The
regex engine memoizes the first k = 16 complex states, resulting in space complexity O(16 ∗ |w|).

8.2. Related work 133

importance:

1. Some K-regexes will be exponential, if there is exponential ambiguity involving only
“simple” states. For example, the regex /(a|a)+/ has exponential ambiguity with a
“simple” state; the sub-pattern A = a|a has the fixed-width language L(A) = {a}.

2. Some K-regexes will be polynomial, viz. those that involve bounded repetition of complex
or simple sub-patterns, and/or the unbounded repetition of simple sub-patterns. For
example, the quadratic regex /.*.*/ and the high-polynomial regex /(.*){100}/ are
both unprotected.

3. Some E-regexes will be super-linear (exponential or polynomial), namely those for which
super-linear backtracking crosses a conditional or a backreference. For example, the regex
/('|")(a+)+\1/ is unprotected, because the exponential backtracking will repeatedly test
the backreference and reset the cache.

4. As Cox noted [132], regexes with large finite ambiguity will not be protected, such as is
illustrated in Figure 2.10.

5. Ambiguous regexes in which a super-linear evaluation crosses an inline Perl snippet
through eval will not be protected.

6. Regexes with more than k complex states may be super-linear by omission in the memo-
table. For example, one of the exponentially ambiguous sub-patterns of the regex
/((a*)*){k+1}/ would not be protected by memoization.3

The first three families of super-linear regexes appear in real-world regexes. It is not clear
whether the final three families are of similar practical interest. We leave this investigation
to future work.

Although these families are not protected by memoization in the Perl regex engine, other
aspects of the engine may still prevent super-linear behavior for regexes of these forms.
For example, Perl has a separate optimization that eliminates exponential behavior in the
first family, whose members are exponentially ambiguous K-regexes with a fixed-width sub-
pattern constructed from a disjunction.4 The engine developers observed that if all paths
through a disjunction are the same length, and any path matches, it is not necessary to test
the other paths — they will all reach the same search state (i.e., the same vertex, and by the
fixed-width property, the same index into w). This “local memoization” reduces the time
complexity of the evaluation from exponential to linear. As another example, Perl employs
optimizations to identify feasible starting offsets in the input based on fixed sequences Σ∗
within the regular expression. It is not always possible to craft input that triggers super-
linear behavior while avoiding this optimization.

In light of these gaps, although we cannot find records of the origin of the memoization
scheme, we conjecture that Perl’s selective memoization scheme may have been designed
to protect regexes containing the nested quantifiers anti-pattern (Chapter 6). For example,

3To trigger the exponential behavior in Perl, manually unroll the bounded quantifier.
4The Perl regex engine identifies these fixed-width sub-patterns during the pattern-to-automaton conver-

sion.

134 Chapter 8. Optimizing a regex engine through memoization

the regex /(a*)*/ run in linear time under the Perl cache. Such regexes clearly have an
unbounded “complex” state to protect.

Some additional notes on the Perl regex engine’s implementation are given in Chapter A.

8.3 Study design and research questions

In the preceding section I summarized the related work on memoization for regexes and
sundry parsing problems. Although several researchers have mentioned the potential benefits
of memoization in regex evaluation, their treatment of it has been brief and solely qualitative
out of concerns about large storage costs. In practice, two production-grade regex engines
employ limited forms of memoization, although neither protects users against the forms of
typical super-linear regexes. Their space costs have not been evaluated experimentally.

In light of the real risk of ReDoS posed to practitioners, and the modest expected engineering
cost of incorporating sound memoization into an existing regex engine, we believe that
memoization should be re-considered as a practical ReDoS solution. We have two advantages
over prior work in this space: (1) Theory: Existing approaches were implemented prior to
the identification of the conditions for super-linear regular expression behavior, so these
approaches could not leverage the contributions of that research. (2) Data: We have a large
corpus of real-world regexes, and can design and evaluate our solution appropriately.

In this chapter we investigate four research questions of concern to the maintainers of
Spencer-style backtracking regex engines:

RQ1: What is the expected effect of memoization on K-regexes?
RQ2: How might the space costs of K-regex memoization be reduced?
RQ3: Experimentally, what are the space and time costs of K-regex memoization?
RQ4: How might memoization be extended to E-regexes?

8.4 RQ1: What is the expected effect of memoization
on K-regexes?

The class of K-regexes is a natural first target, because in Chapter 5 we reported that 95%
of the regexes in our regex corpus fall into this category. Guided by the formal definitions
of the root causes of super-linear worst-case behavior, we can protect K-regexes in various
ways.

Although prior work has stated that memoization can benefit regular expressions, we are not
aware of a careful treatment of the problem. In answering this research question, we provide
missing formalizations and introduce concepts useful in the subsequent sections.

8.4. RQ1: What is the expected effect of memoization on K-regexes? 135

8.4.1 Super-linear regex evaluations are caused by redundancy

First, let us observe that the size of the search space for K-regex matching is the product of
the size of the automaton and the length of the input string w: |Q|∗|w|. This property follows
from the observation that whether a K-regex matches a candidate string can be expressed
recursively in terms of the current positions in the automaton and the input string, and
not on how these positions were reached. K-regex matches are path-independent and side-
effect free. Starting from a given matching algorithm search state 〈q, i〉, the match can be
determined solely based on whether any of the subsequent automaton nodes δ(q, w[i]) will
match from the string position i + 1. As there are |Q| starting positions in an automaton,
and |w| positions in the input string, there are thus at most |Q| ∗ |w| distinct matching
algorithm search states, bounding the search space.

If a complete exploration of the search space is required, then it would be natural for the
worst-case match time complexity to equal the size of the full search space: O(|Q| ∗ |w|).5 Of
course, under some inputs the behavior will be much faster, e.g., due to an input that leads
quickly to a sink state. But if a regex match algorithm requires more than O(|Q|∗ |w|) in the
worst case, it can be improved. The production implementations of the Spencer backtracking
algorithm far exceed the worst-case match time complexity of O(|Q| ∗ |w|). Proofs of the
exponential worst-case behavior of the Spencer NFA simulation (i.e., O(|Q||w|)) are based
on counting the number of paths through the NFA graph on a mismatch. Such an argument
is commonly framed [85, 87], but omits the key observation that many of these paths are
redundant.6 The following theorem explains the Spencer algorithm from the perspective of
redundancy.

Theorem 8.4.1. Suppose the Spencer-style backtracking algorithm (Listing 3) is used to
determine whether a candidate string w matches a pathological completely-connected NFA
with |Q| ≥ 2. Then for all q ∈ Q, the BacktrackingPoint 〈q, wj〉 is pushed onto the stack
|Q|j−1 times for each j, 1 ≤ j < |str|.

Proof. The argument proceeds by weak induction.

Base case: j = 1. Spencer’s simulation begins by computing δ(q0, w0) to obtain
possibleStates = Q. It pushes onto the stack the BacktrackingPoints 〈qi, 0 + 1 = 1〉 once
apiece, or |Q|j−1 = |Q|1−1 = |Q|0 = 1 time each.

Inductive step. Assume the theorem holds for index k < |w|: the backtracking stack contains
|Q|k−1 instances of the BacktrackingPoint 〈q, k〉 for each q ∈ Q. Now consider the number of
times we push onto the stack the BacktrackingPoint 〈r, k+1〉 for an arbitrary r ∈ Q. Because
the algorithm terminates, we eventually pop and process each of the BacktrackingPoints

5More precisely, the worst-case cost of the match should be written as O(|Q| ∗ |w| ∗X), where X is an
upper bound on the cost of evaluating each state under a given match algorithm.

6Indeed, it is not surprising that there must be redundancy in the Spencer algorithm, or else it too would
run in linear time.

136 Chapter 8. Optimizing a regex engine through memoization

〈q, k〉. When we process each, on the first iteration of the inner quantifier we push onto
the stack the BacktrackingPoint 〈r, k + 1〉 when we apply the transition function. Let us
count: for each q ∈ Q, each of the corresponding |Q|k−1 instances of the BacktrackingPoint
〈q, k〉 pushes onto the stack one instance of the BacktrackingPoint 〈r, k + 1〉. There are
|Q| such q ∈ Q, so we push onto the stack the BacktrackingPoint 〈r, k + 1〉 a total of
|Q| ∗ |Q|k−1 = |Q|k = |Q|(k+1)−1 times.

Since it takes exponential time to enqueue and dequeue an exponential number of Back-
trackingPoints, we obtain an exponential bound on the time complexity of the Spencer
algorithm. But consider what the theorem says: we push onto the stack each Backtracking-
Point 〈q, |w|〉 a total of |Q||w| times for later processing. But because regex evaluations are
path-independent and side-effect free, any subsequent processing of this BacktrackingPoint
would be redundant.

8.4.2 Memoized NFAs

Using memoization, a backtracking regex engine can record the areas of the search space that
it explores. If it reaches those regions again, it can short-circuit a redundant exploration.
The state space has size |Q| ∗ |w|, and can be expressed using a matrix with Q columns and
w rows.

Although this full memoization approach is a standard technique, we will discuss several
selective memoization schemes in §8.5 whose properties are less obvious. To permit an
accurate characterization of their soundness, we will extend the definition of an NFA to
incorporate a memoization scheme. We refer to this entity as a Memoized NFA (M-NFA).
Defining an M-NFA permits us to reason about the behavior of arbitrary NFA simulation
algorithms when applied to an M-NFA; Listing 10 is one embodiment.

The M-NFA extensions are summarized in Table 8.1.

M : The memo function M of an M-NFA is stateful, and is updated as the backtracking
simulation proceeds. The memo function initially returns 0 to all queries. When a back-
tracking search state 〈q, i〉 is marked, the memo function returns 1 for all future queries to
that search state. The memo function state space has size |Q| ∗ |w|. It can be tracked using
a matrix with Q columns and w rows, though other implementations are possible.

δM : An M-NFA’s memoized transition function δM accepts the typical arguments to δ, plus
a candidate string index i in the range N|w|. It is defined as:

δM(q, σ, i) = {r ∈ Q | r ∈ δ(q, σ) ∧M(r, i+ 1) = 0}

In other words, δM uses the memo functionM to dynamically eliminate redundant transitions
during the simulation.

8.4. RQ1: What is the expected effect of memoization on K-regexes? 137

Table 8.1: Components of a memoized finite automaton. Components of a Memoized
Non-deterministic Finite Automaton (M-NFA) derived from a finite automaton A = 〈Q, q0 ∈
Q,F ⊆ Q,Σ, δ, 〉. The components of A are listed above the mid-rule (cf.Table 2.1). The
components of the M-NFA for A include those, as well as the additional components below
the mid-rule: M and δM .

Component Meaning

Q The (finite) set of states of the automaton: Q = {q1, q2, . . . , qm}, with |Q| = m

q0 ∈ Q The initial state of the automaton

Σ The input alphabet for strings: w ∈ Σ∗

δ : Q× Σ ∪ {ε} → P(Q) The original transition function of the automaton, i.e., its graph “edges”

F ⊆ Q The accepting (Final) states of the automaton

M : Q× N|w| → {0, 1} The memo function of the automaton

δM : Q× Σ ∪ {ε} × N|w| → P(Q) The memoized transition function of the automaton

Simulation: An M-NFA can be simulated on a candidate string w beginning from q0, by
repeated application of the memoized transition function δM . If the simulation ends in a
state q ∈ F , the candidate string is accepted by the M-NFA.

Memoization scheme: During the simulation, the choice of which search states to memoize is
determined by a memoization scheme (policy). For example, in Listing 10 the scheme is to
memoize every search state. We propose schemes that memoize all search states associated
with a subset Φ of the automaton vertices, i.e., all search states 〈q ∈ Φ, i ∈ N|w|〉.

Ambiguity: With these changes, we can define an ambiguous M-NFA analogous to an am-
biguous NFA (§2.5.2.1). An M-NFA is ambiguous if there exists a string w such that when
it is simulated from q0, there is more than one path to the accept state qF .

8.4.3 Applying Memoization

To convert an NFA into an M-NFA, we must provide a memoization policy by which to
update the memo function M . In this section we consider the full memoization scheme:
memoize every search state 〈q, i〉 that we visit.

Listing 10 illustrates how to incorporate this memoization scheme into the Spencer-style
backtracking NFA simulation from Listing 3. Here, memoizing a BacktrackingPoint indicates
that it is either scheduled to be explored (i.e., on the backtracking stack), or has already
been explored (and did not lead to a success). Once a BacktrackingPoint 〈q, i〉 is memoized,
a subsequent visit to that point would be redundant. Due to the memoization scheme used
here, the memo function would return the empty set instead of the original destinations from
〈q, i〉, eliminating redundancy in the search.

138 Chapter 8. Optimizing a regex engine through memoization

Listing 10 Memoized version of Spencer’s backtracking-based algorithm on K-
regexes (cf. Listing 3). The added lines are indicated with a +.

class BacktrackingPoint:
def __init__(self, state, stringIx):
self.state, self.i = state, stringIx

def isInLanguage(regexPattern, candidateString):
Build the automaton and initialize the backtracking stack
NFA = buildNFA(regexPattern)
stack = Stack() # Contains BacktrackingPoints
initialState = BacktrackingPoint(NFA.q0, 0)
stack.push(initialState)

+ # Memo table: a (Q x m) 2D array. True means "already seen"
+ memoTable = [[False for i in range(len(candidateString)] for j in range(len(NFA.Q))]

Backtracking quantifier to evaluate choices we haven't yet considered
while not stack.empty():

Simulate the next backtracking point to completion,
appending to the stack at each non-deterministic choice.
bPt = stack.pop()
currState = bPt.state
i = candidateString[bPt.i]

for j, nextChar in enumerate(candidateString[i:]):
Where might nextChar lead?
possibleStates = NFA.deltaTransitionFunction(currState, nextChar)

+ # Memoize: Filter the BacktrackingPoints we've seen already, mark the new ones
+ candidateBacktrackingPoints = [BacktrackingPoint(q, j+1) for q in possibleStates]
+ newBacktrackingPoints = [bp for bp in candidateBacktrackingPoints
+ if not memoTable[bp.currState][bp.i]]
+ if not newBacktrackingPoints: break # Failed to find new BPs
+ for bp in newBacktrackingPoints: # Mark these BacktrackingPoints as visited
+ memoTable[bp.currState][bp.i] = True

DFS as before
possibleStates = [bp.state for bp in newBacktrackingPoints]
currState, others = possibleStates[0], possibleStates[1:]
newBacktrackingPoints = [BacktrackingPoint(q, j+1) for q in others]
stack.push(newBacktrackingPoints)

End of candidateString. Check if we ended in one of the FA's accept states.
finalState = currState
if NFA.acceptStates.contains(finalState):
return MATCH

return MISMATCH # None of the paths reached an accept state.

8.4. RQ1: What is the expected effect of memoization on K-regexes? 139

q1

q2

q3

a

a

ε

ε

Figure 8.1: Automaton used to illustrate the effect of memoization. This figure
shows the NFA produced by Thompson’s construction for the regular expression /(a|a)+/,
slightly reduced for clarity of presentation.

Table 8.2: Example memoization table. The |Q| × |w| memoization table at the conclu-
sion of the search described in Figure 8.2. A Xindicates that the search state has been visited
(True).

Indices of w = “aa!′′ q1 q2 q3

0 (‘a’) X – –

1 (‘a’) X X X

2 (‘!’) X X X

To illustrate the behavior of this algorithm, let us consider its operation on the NFA resulting
from the regex /(a|a)+/. The corresponding NFA is given in Figure 8.1, and the search
tree of the memoized backtracking search is illustrated in Figure 8.2. Table 8.2 presents the
final memoization table. The nodes of the search tree are BacktrackingPoints indicating the
current search state 〈q, i〉. The search proceeds through the tree left-to-right, top-to-bottom
to follow the PCRE leftmost-greedy search prioritization semantics. Observe that the search
states 〈q1, w1〉 and 〈q2, w1〉 both appear twice in the tree, because these states are reachable
from both q2 and q3; the second instance of each is shaded. With memoization, we only
consider each distinct 〈q, wi〉 at most once. Without memoization, the Spencer algorithm
would redundantly evaluate the search from those states twice, doubling the total number
of search states explored for each additional ‘a’ in the candidate string.

The algorithm we have described improves the worst-case performance of the recognition
problem (regex match) for Spencer-style backtracking regex engines. It also improves the
worst-case performance of the other regex match problems, e.g., parsing (capture groups).
The use of memoization eliminates redundant path exploration, but does not otherwise affect
the behavior of the regex engine. The regex engine is free to populate capture groups during
the simulation, enabling it to answer parse queries in linear time.

140 Chapter 8. Optimizing a regex engine through memoization

〈q1, w0〉 〈q2, w1〉
a

〈q1, w1〉

a+ ε

〈q3, w1〉

a

〈q1, w1〉

a+ ε

a

〈q2, w2〉
a

〈q1, w2〉

a+ ε

〈q3, w2〉

a+ ε

〈q1, w2〉

a

a

!

!

!

Figure 8.2: Example search tree using memoization. Backtracking search tree on
the NFA from Figure 8.1 on the string “aa!”, with memoization in place. An X indicates
rejection (moving to the sink state). A shaded node is skipped because the outcome has been
memoized. The NFA exploration is prioritized, so nodes higher on the page are explored
before nodes lower on the page. The delta transition function returns the ε-closure when
processing a character.

8.4. RQ1: What is the expected effect of memoization on K-regexes? 141

Under the memoization approach, a relationship between the Spencer backtracking algo-
rithm and the Thompson lockstep algorithm becomes clear. Thompson’s lockstep algorithm
avoids exponential search time complexity by removing duplicates from its state frontier.
A memoized version of Spencer’s backtracking algorithm likewise avoids exponential search
time complexity by marking search state nodes to avoid searching them more than once. The
result is that Thompson’s algorithm performs a non-redundant breadth-first search through
the state space, and Spencer’s algorithm performs a non-redundant depth-first search through
the same state space. By naming and eliminating the redundant work in Spencer’s back-
tracking algorithm, we can realize the duality of the two algorithms. Thompson’s scheme
remains more space efficient, partly because the breadth of the search tree (if visualized to
be rooted at q0 and growing downwards) is bounded by |Q|, while its height is bounded by
|w|; typically |w| � |Q|

8.4.4 Arguments of correctness and cost

In this section I discuss the correctness and cost of a backtracking NFA simulation algorithm
applied to an M-NFA using the full memoization scheme.

Correctness For this approach to be correct, the memoized version of Spencer’s back-
tracking algorithm (Listing 10) and the non-memoized version (Listing 3) must have an
identical input-output function. Observe that the effect of memoization is to ensure that
each search state 〈q, wi〉 is added to the backtracking stack at most once. If that state is
reachable along more than one path through the NFA as a result of ambiguity, subsequent
visits to that state are short-circuited using the memoization table. As discussed in §8.4.1,
the result of a K-regex regex match starting from a given search state does not depend on
the path by which that search state was reached. Consequently, any additional visits to a
search state are redundant, and eliminating them does not change the input-output behavior
of the search algorithm.

Time complexity This algorithm will process at most O(|Q| ∗ |w|) search states. The
δ function must be applied to each of these, at a cost of O(|Q|) each time. Thus, this
algorithm will run in O(|Q|2 ∗ |w|) time. With reference to Table 2.2, the worst-case time
complexity of this memoized Spencer’s algorithm is: (1) Far lower than the current Spencer
NFA simulations; and (2) Equal to that of Thompson’s algorithm.

Space complexity The memoization scheme in Listing 10 instantiates a two-dimensional
array of size |Q| × |w|. Thus this algorithm will have Θ(|Q| ∗ |w|) space complexity.

With reference to Table 2.2, the worst-case space complexity of this memoized Spencer’s
algorithm is: (1) Equal to that of the current Spencer NFA simulations; and (2) A factor of

142 Chapter 8. Optimizing a regex engine through memoization

|w| larger than that of Thompson’s algorithm. Thus, in a worst-case complexity analysis,
memoization is a “free lunch” for a Spencer-style regex engine: it uses the same amount of
space, yet yields far lower time complexity. However, in the average case this algorithm may
exhibit larger space costs than is desirable. We consider improvements in the next section.

8.5 RQ2: How might the space costs of K-regex mem-
oization be reduced?

Despite its potential for a worst-case “free lunch”, it would be preferable to have an effective
memoization scheme with lower space costs. Although the space cost of memoization is no
worse (in the worst case) than that of the backtracking stack already used in many PCRE
regex engines, from a practical perspective its cost can be substantial.

For example, consider the space cost of a |Q| × |w| memo table in the Stack Overflow
case study (§3.4). Using the measurement instruments from Chapter 5, Stack Overflow’s
quadratic regex has an NFA with 7 states, which was evaluated on a problematic input string
containing approximately 20,000 characters. Maintaining a memo table for this evaluation
would require an order of magnitude more storage than the string itself. As the size of regex
NFAs commonly exceeds 30 states (e.g., that is below the 90th percentile for JavaScript,
Python, Ruby, Go, and Rust regexes, cf. Figure 5.5c), a |Q| × |w| memo table could exceed
practical memory limitations.

To reduce the space costs of the full memoization discussed in §8.4, this section proposes
two classes of improvements. In the first class are two selective memoization schemes [61]
(§8.5.1). These schemes reduce space costs by memoizing different subsets of the search states
associated with interesting classes of NFA vertices. In the second class of improvements are
two alternative encodings for the memo table (§8.5.2). The first scheme eliminates negative
table entries using hashing, and the second compresses the table using run-length encoding.

We compare our proposals to the state of the art in §8.5.3. The benefits of the different
selection schemes and encodings is considered in our evaluation (§8.6).

8.5.1 Selective memoization schemes

In this section we present two selective memoization schemes intended to reduce the storage
costs of memoization. Like the full memoization scheme just presented, these memoization
schemes can be applied to the M-NFA derived from the NFA of interest.

Our presentations characterize the time complexity of these schemes by bounding the number
of times that a search state 〈q, i〉 might be visited for any candidate string w. The cost
of an NFA simulation can be expressed as (# search states visited) × (cost per state). As

8.5. RQ2: How might the space costs of K-regex memoization be reduced?143

discussed previously in this dissertation, the cost per visited search state in a Spencer-style
NFA simulation is O(|Q|). Therefore, if we bound the number of visits per search state, we
bound the time complexity for the NFA simulation on an arbitrary candidate string.

These selective memoization schemes vary in their ability to eliminate super-linear behavior
in |w|, the length of the candidate string. The first scheme eliminates all redundant visits
during NFA simulation, whether caused by finite or infinite ambiguity (§8.5.1.3); each of the
|Q| × |w| search states is visited at most once. Building on prior analyses, we show that the
second scheme eliminates redundant visits caused by infinite ambiguity (§8.5.1.4). However,
it will not eliminate super-linear behavior due to finite ambiguity, which can be as large as
O(2|Q|).

Each of these schemes is expected to have lower space costs than the one that precedes it.
This decrease is because the NFA vertices selected by the full memoization scheme from §8.4
are a superset of those selected in the first selective scheme (§8.5.1.3), which in turn are a
superset of those of the second selective scheme (§8.5.1.4).

The selective memoization schemes proposed in this section each target a set of vertices
that is more than is needed, i.e., an over-approximation of the vertices actually necessary
to memoize to achieve the desired reduction in redundancy. The over-approximation is used
because it is expensive to accurately select the necessary vertices. The larger vertex-sets can
be identified at much lower computational cost.

Comparison to the theoretical state of the art The expected performance of these
schemes is summarized in Table 8.3. These algorithms improve the time complexity of
Spencer’s algorithm from exponential to polynomial in |Q|, with varying space complexities.7
However, comparing Table 8.3 to Table 2.2, it is clear that these schemes do not improve
the state of the art for the K-regex recognition problem. Using memoization, Spencer’s
algorithm can match the best known time complexity for this problem, but at the cost of
multiplying the best known space complexity by a factor dependent on the structure of the
automaton. The value of these schemes is that our techniques can improve the performance
of the Spencer algorithm — which is the state of practice — without requiring practitioners
to introduce major changes in their regex engine.

8.5.1.1 Preliminary definitions

To prove the guarantees of these schemes, we will make use of the following definitions.

Definition 8.5.1 (Simulation position). We define a simulation position π = 〈q ∈ Q, i ∈
N|w|〉 as one of the possible simulation positions (search states) encountered during the
backtracking search algorithm. Two simulation positions are different if they differ in the

7The practical space costs can be lowered using encoding schemes (§8.5.2).

144 Chapter 8. Optimizing a regex engine through memoization

Table 8.3: Space and time complexity of selective memoization schemes. Predicted
performance of the selective memoization schemes, ordered from highest to lowest space cost.
All space complexities describe only the cost of storing the memoization records; regex engines
must also track the backtracking stack at a cost of O(|Q| ∗ |w|). The time complexity of the
final approach includes the term f(Q), which depends on the ambiguous structure of the
regex’s NFA.

Selected vertices Fixes inf. ambig. Fixes fin. ambig. Time cxty. Space cxty.

None: Spencer’s algorithm O(|Q||w|) —

Φall = Q: All vertices X X O(|Q|2 ∗ |w|) O(|Q| ∗ |w|)

Φin−deg>1: in-degree > 1 X X O(|Q|2 ∗ |w|) O(|Φin−deg>1| ∗ |w|)

Φquantifier: loop destinations X O(|Q|2 ∗ |w| ∗ f) O(|Φquantifier| ∗ |w|)

automaton vertex q or the candidate string index i. If a simulation position is subscripted
πi, we may denote its automaton vertex as qi.

Definition 8.5.2 (Simulation path). We define a simulation path of simulation positions,
denoted Π = π0π1 . . . πn. This represents a valid sequence of simulation positions (search
states) visited by the backtracking algorithm. In a simulation path, π0 is the position 〈q0, 0〉,
and each πi is in δ(πi−1). Two simulation paths are different if they are of different lengths, or
if at some index i they contain different simulation positions, i.e., are at different automaton
vertices.

Definition 8.5.3 (Bounded ambiguity). Let A be an ε-free NFA. We define its bounded
ambiguity as:

boundedAmbig(A) = max
0≤i≤|Q|

(max
s,t∈Q

(

distinct simulation paths s t of length i

))

Note that boundedAmbig(A) differs from the ambiguity of A. An automaton can be in-
finitely ambiguous, i.e., increasingly-long candidate strings can be defined whose ambiguity
is larger than any finite bound. In contrast, our definition of boundedAmbig(A) captures the
maximum possible ambiguity for strings of length no more than |Q|.

8.5.1.2 Assumptions (M-NFA pre-processing steps)

In our theorems and proofs, we assume that the M-NFAs involved have two additional
properties: having one accepting state, and being ε-free. These properties are standard
proof tactics for automata [194, 301].

8.5. RQ2: How might the space costs of K-regex memoization be reduced?145

First, we assume that the M-NFAs are modified to have a single accepting state qF . This
ensures that if a candidate string is ambiguous, then the ambiguous paths all terminate at
the same vertex qF . Any M-NFA can be converted with no change in its language: introduce
qF , direct ε-edges to it from the vertices in F , and update F to F = {qF}.

Second, we assume that the M-NFAs are ε-free. This has the convenience of ensuring that
the string index i increases for consecutive simulation positions in a simulation path, i.e.,
every step consumes a character from w. Any M-NFA can be converted with no change in
its language: δ must be defined as δε, computing the ε-closure such that every transition
consumes a character from w. However, for the standard Thompson NFA construction, our
proofs hold with minor modifications.

8.5.1.3 Select vertices with in-degree > 1

Intuition This scheme selects for memoization the vertices Φin−deg>1 ⊆ Q that have in-
degree greater than one. Memoizing this subset of states suffices to eliminate redundant
visits, making the M-NFA unambiguous. Why? In order for there to be redundancy in the
M-NFA simulation, we must reach the same search state s = 〈q, i〉 twice. To reach the same
search state twice, there must have been a non-deterministic choice (a fork in the simulation
path), and both legs of this fork must have reached the same search state. To reach the
same search state, the two paths must at some point have converged. In order for two paths
to merge, there must have been some node with in-degree > 1. If we memoize visits to this
node, we prevent more than one visit to the search state s.

An illustration is given in Figure 8.3.

Soundness The following theorem formalizes this intuition.

Theorem 8.5.4. Suppose an M-NFA is simulated with a memoization policy targeting
Φin−deg>1. Then every simulation position π = 〈q, i〉 will be visited at most once, and the
M-NFA is unambiguous.

Proof. The proof proceeds by contradiction. Suppose the Φin−deg>1 memoization scheme is
employed but some search position πk is visited twice. For this to be the case, there must
be a “fork in the road”, as illustrated in Figure 8.4. More formally, this means the M-NFA
simulation traverses different simulation paths Πa and Πb,

Πa = πa0 . . . πai . . . πaj . . . πak . . . , 0 ≤ k ≤ |w|
Πb = πb0 . . . πbi . . . πbj . . . πbk . . . , 0 ≤ k ≤ |w|,

such that:

146 Chapter 8. Optimizing a regex engine through memoization

q1

q2

q3

q4 q5

a

a

ε

ε

a

Figure 8.3: Automaton used to illustrate memoizing Φin−deg>1, the vertices with in-
degree > 1. This figure shows the NFA produced by Thompson’s construction for the regular
expression /(a|a)a/, slightly reduced for clarity of presentation.

In this memoization scheme, we will only memoize visits to the shaded vertex, Φin−deg>1 =
{q4}. This memoization is sufficient to prevent redundant visits to q4 and q5 on the input
“aaa!”; we take the upper route first, but then the lower route is short-circuited once we
backtrack. We need not memoize visits to q1, q2, q3, nor q5, to achieve this short-circuiting.

q0 qai−1

qai qaj−1

qbi qbj−1

qaj qk

Πa

Πb

Figure 8.4: Illustration for the proof of theorem 8.5.4. Vertex qaj = qbj must have
in-degree > 1 because it is the first point of convergence after the split at vertex qai−1

= qbi−1
.

1. The paths diverge. At some i < k, πai 6= πbi , e.g., at a point of non-determinism.
2. The paths converge. There is some smallest j, i < j ≤ k, such that πaj = πbj , and so

qaj = qbj .

The paths must diverge, else they would not be different and πk would be visited only once.
They must converge, else πak 6= πbk . Now, because the paths converge, the vertex in πaj = πbj

must have in-degree > 1. In more detail, since j was the earliest point of convergence after
i− 1 on the two paths, it must be that qaj ∈ δ(qaj−1

, wj−1) and likewise qbj ∈ δ(qbj−1
, wj−1).

Since πaj−1
6= πbj−1

, we have qaj−1
6= qbj−1

, and so the in-degree of qaj > 1.

But if qaj ∈ Φin−deg>1, the M-NFA simulation will not traverse both Πa and Πb. We are
memoizing all visits to automaton vertices with in-degree > 1. Without loss of generality,
suppose we first visit qaj via the simulation path Πa, thus marking πaj in the memo function
M . When we backtracked to πai−1

and evaluated the alternative path Πb, at πbj−1
we would

8.5. RQ2: How might the space costs of K-regex memoization be reduced?147

have found the path eliminated by the memo function: qaj 6∈ δM(qbj−1
, wj−1). So we cannot

reach the search position πaj = πbj more than once along these paths, because Πb would
terminate at πbj−1

.

Time complexity The vertices in Φin−deg>1 can be identified as part of the NFA con-
struction, at constant additional cost. This memoization scheme then guarantees that every
search state 〈q, i〉 will be visited at most once. Thus, by the same argument as in §8.4, the
NFA simulation will complete in O(|Q|2 ∗ |w|) steps.

Space complexity This memoization scheme requires memoizing visits to the vertices
with in-degree > 1. It thus requires space Φin−deg>1 × |w|.

Unnecessary memoization Only some of the vertices in Φin−deg>1 are actually necessary
to memoize to avert redundant visits. To illustrate this, suppose an automaton such that
F = {qin−deg>1 ∈ Φin−deg>1}. If this NFA is unambiguous, then memoizing visits to qin−deg>1

is unnecessary; by definition, there can only be one unique path to it for any candidate
string, and so no search states will be visited redundantly. Consider, for example, the
NFA associated with the regex /a(bc)a/|. This NFA has a vertex with in-degree > 1,
but it is clearly unambiguous. However, identifying the ambiguous vertices in an NFA is
computationally expensive (§8.5.1.4), while identifying Φin−deg>1 is cheap.

In this and the next memoization scheme, the unnecessary memoization occurs because the
vertices are selected based on the automaton’s “skeleton”. The vertex selection considers the
existence of edges (potential ambiguous paths), but ignores the labels on the edges.

Why Φin−deg>1? The choice of Φin−deg>1 may strike the reader as arbitrary. Why not
Φin−deg=1, or Φout−deg=1, or Φout−deg>1?

We observe that vertices with in-degree 1 or out-degree 1 are “dominated” [334] by the
vertices with larger degrees. There is no opportunity for non-deterministic choices at the
degree-1 vertices.

Now consider the memoization of the vertices Φout−deg>1. These are the states from which
non-deterministic choices are possible. Let us take for example the M-NFA that memoizes
Φout−deg>1 = {q1} from Figure 2.11a, when simulated on the input w = “aaa!”. The mem-
oization strategy will not eliminate redundant visits to search states. Each of the search
states 〈q1, i〉 will be visited once, but the search state 〈q2, |w|〉 will still be visited |w|2 times.
In terms of the proof of theorem 8.5.4, ambiguity became possible when the paths πa and
πb diverged at qai−1

= qbi−1
(qai−1

∈ Φout−deg>1), but it was only realized when the paths

148 Chapter 8. Optimizing a regex engine through memoization

converged again at qaj = qbj . Both paths must be explored until qaj is reached; it is only
when two paths converge that the exploration becomes redundant.

8.5.1.4 Select quantifier destinations

In the previous scheme we showed that redundant visits can be eliminated without memoizing
all NFA vertices. In this scheme we will further reduce the set of memoized vertices, at the
cost of permitting some redundancy during M-NFA simulation.

Intuition This scheme selects for memoization the vertices Φquantifier ⊆ Q that are quanti-
fier destinations, i.e., the automaton vertices to which the “back-edges” introduced by a * or
+ are directed. These vertices are illustrated in Figure 2.5. Why is this memoization scheme
effective? If the NFA is ambiguous, then there may be multiple cycle-free simulation paths
of the same length that end in the same search state. Without a cycle, there cannot be more
such paths; with a cycle, the ambiguity can compound. A cycle can only be introduced in
a simulation path by visiting one of the vertices in Φquantifier. By memoizing these vertices,
the compounding of the ambiguity is prevented.

However, some redundancy is still possible, as illustrated in Figure 8.5.

Soundness The following theorem formalizes this intuition.

Theorem 8.5.5. Let the memo function track simulation positions involving the M-NFA
vertices that are “quantifier destinations”, Φquantifier, i.e., the automaton vertices to which
any back-edges in a topological sort from q0 are directed (cycle ancestors). Then the M-NFA
is finitely ambiguous. A simulation position involving a vertex t will be visited at most (1)
Once if t ∈ Φquantifier; (2) boundedAmbig(A) times if t is not reachable from a cycle ancestor;
and (3) |Φquantifier| × |Q| × boundedAmbig(A) times otherwise.

Put simply, this theorem states that when back-edges can be taken at most once from any
simulation position, then ambiguity in the simulation cannot compound. The simulation
will retain any ambiguity in its “cycle-free” analog (i.e., a variant that has the back-edges
removed). The ambiguity may increase as the result of back-edges taken at different offsets,
but it remains bounded.

Proof. Choose a target simulation position π = 〈t ∈ Q, i〉. We will show the visit bound for
each case.

Case t ∈ Φquantifier: If t ∈ Φquantifier, then the memo function ensures that π is visited at
most once.

8.5. RQ2: How might the space costs of K-regex memoization be reduced?149

q1

q2 q3

q4

q5

a

a

a

ε

ε

ε

Figure 8.5: Automaton used to illustrate memoizing Φquantifier, the “loop” vertices
that are the destinations of unbounded quantifiers. This figure shows the NFA produced by
Thompson’s construction for the regular expression /(aa|a)∗/, slightly reduced for clarity of
presentation. In this memoization scheme, we will only memoize visits to the shaded vertex,
Φquantifier = {q1}.

On the candidate string w = aaa, there are two M-NFA simulation paths that visit the
simulation state 〈q5, 3〉. From 〈q1, 0〉, one takes the longer path through the disjunction and
the other takes the shorter, reaching 〈q1, 2〉 and 〈q1, 1〉, respectively. From either of these
distinct simulation states, 〈q5, 3〉 can be reached by using the shorter or longer path through
the second disjunction.

This redundancy is not possible using the previous memoization policy targeting Φin−deg>1,
which would also memoize visits to q5.

In terms of theorem 8.5.5, |Q| = 5, |Φquantifier| = 1, and boundedAmbig(A) = 8, for a limit
of 40 visits to any simulation state. The upper bound is not tight in this example because
there are not boundedAmbig(A) distinct paths from the vertex in Φquantifier to each other
vertex for each string length 0 ≤ |w|. Instead, many of these paths in boundedAmbig(A) are
obtained via cycles through q1 and are eliminated by the memoization scheme.

150 Chapter 8. Optimizing a regex engine through memoization

Case q ∈ Φquantifier 6 t: If there is no path from a cycle ancestor to t, then every simulation
path reaching π must be cycle-free and thus contain ≤ |Q| positions. The bound then
follows from the definition of boundedAmbig(A). This result also covers the case when
Φquantifier = ∅.

Case q ∈ Φquantifier t: We partition the space on i.

Clearly, if i ≤ |Q| then π can be visited at most boundedAmbig(A) times. So suppose
i > |Q|. Consider two observations. First, any simulation path containing more than |Q|
positions must include a cycle. Second, for the same reason, after a simulation path makes
its final visit to a simulation position involving some q ∈ Φquantifier, that simulation path
must terminate within |Q| steps. This is because the back-edges to Φquantifier are the only
means of introducing a cycle, and without further cycles a simulation path must come to an
end.

Now then, as we have supposed that i > |Q|, so the distinct simulation paths to π must all in-
clude some “cycle” simulation position π′ = 〈q ∈ Φquantifier, j〉 at most |Q| steps beforehand.
Recall that the memo function assumed in this theorem will prevent more than one simulation
path through each such π′. There are |Φquantifier|×|Q| possible cycle positions π′, so all of the
distinct simulation paths to π must share at most |Φquantifier| × |Q| distinct simulation path
prefixes. From these π′, each simulation prefix may diverge up to boundedAmbig(A) times
to reach π. Multiplying, we obtain an upper bound of |Φquantifier|× |Q|× boundedAmbig(A)
distinct simulation paths that can reach π.

The use of an ε-free M-NFA simplifies the argument, but the claim holds with minor modifi-
cations for the standard Thompson NFA. In particular, δ must be defined as δε, computing
the ε-closure such that every transition consumes a character from w.

Time complexity The vertices in Φquantifier can be identified as part of the NFA con-
struction, at constant additional cost. This memoization scheme then guarantees that under
M-NFA simulation, every search state 〈t, i〉 will be visited at most |Φquantifier|∗|Q|∗ambig(A)
times. There are O(|Q| ∗ |w|) such search states, and it costs O(|Q|) to visit each of them.
We therefore have a time complexity bound for this M-NFA simulation of:

O((|Φquantifier| ∗ |Q| ∗ ambig(A)) ∗ (|Q|2 ∗ |w|)) = O(|Q|3 ∗ |w| ∗ |Φquantifier| ∗ ambig(A)).

As is clear from the bound, this memoization scheme eliminates super-linear behavior caused
by infinite ambiguity. The time complexity of the simulation grows only linearly with
|w|. This memoization scheme will not eliminate finite ambiguity, nor super-linear behav-
ior caused by finitely-ambiguous sub-structures, because such sub-structures do not involve
loops (else they would be infinitely ambiguous).

8.5. RQ2: How might the space costs of K-regex memoization be reduced?151

Space complexity This memoization scheme requires memoizing visits to the vertices
with in-degree > 1. It thus requires space |Φquantifier| × |w|. We note that all quantifier
vertices have in-degree > 1, so Φquantifier ⊆ Φin−deg>1.

Unnecessary memoization To achieve the same time complexity reduction, we conjec-
ture that only the NFA’s Wüstholz pivot nodes need be memoized. Based on the Thompson
construction, these vertices Φpivot ⊆ Φquantifier. To see this, recall that a Spencer-style back-
tracking regex engine first uses the Thompson construction (§2.2.2.3) to build an NFA, and
then simulates it on the input (Listing 3). To be infinitely ambiguous, this NFA must permit
simulation paths that visit a vertex more than once, i.e., a cycle. In the Thompson construc-
tion, cycles can only arise from the use of an unbounded quantifier (cf. Figure 2.5), which
introduces a back-edge into the automaton. Therefore, an automaton’s Wüstholz pivot nodes
are always a subset of the destinations of its loops.

This memoization scheme targets a super-set of Φpivot because identifying pivot nodes is
computationally expensive. Weideman et al. show that the 90% of regexes that do not
contain pivot nodes can be identified with O(|A|δ3) = O(|Q|6) time complexity [335]. They
also show that identifying the pivot nodes for the remaining 10% of super-linear regexes
requires O(2|Q|) time complexity. This time complexity may be acceptable for small regexes,
but might be problematic in a general-purpose regex engine because regexes with larger
automata (e.g., |Q| ≥ 30 states) are not unusual.

8.5.2 Efficient encodings

The selective memoization schemes discussed in §8.5.1 identify a subset of automaton ver-
tices for which memoization will be performed. For each selected automaton vertex, the
approaches so far maintain a visit vector denoting at which of the |w| candidate string in-
dices the vertex has been visited. Thus far we have considered using bitmaps to record the
search states visited during the backtracking NFA simulation, at a cost of |w| for each visit
vector.

Here we consider how to reduce the cost of storing the visit vectors using more efficient
encodings. These approaches do not affect the soundness of the memoization scheme to
which they are applied.

8.5.2.1 Eliminate negative entries

Intuition and Approach The |w| cells of each of the k visit vectors are initialized to
0 (unvisited) and updated to 1 when visited. Instead of tracking all of these cells, we can
instead track only the visited cells; a negative entry in the visit vector implies that it has
not been visited.

152 Chapter 8. Optimizing a regex engine through memoization

If we use a data structure with efficient random access and update times for sparse data,
we can store only the visited cells in the now-sparse visit vector. A hash table keyed on the
tuple 〈q, i〉 is a natural implementation choice. As discussed in §8.2, a memo table based on
hashing is the memoization approach used in functional programming contexts.

Time complexity This approach has the same worst-case time complexity as the full
Θ(|Q| ∗ |w|) memoization table. However, it may exhibit larger constants. A pre-allocated
bitmap, i.e., a two-dimensional array, can be accessed in constant time. A dynamic structure
that can mark search states on demand may not share these characteristics. For example, a
hash table on the search state tuples 〈q, i〉 will have amortized O(1) insertions and lookups,
but is expected to have higher constant costs than a pre-allocated array.

Space complexity This encoding scheme has input-dependent space costs. If every search
state must be explored, it will have the same worst-case state complexity as full memoization:
O(|Q| ∗ |w|). However, in the case of a successful match or a non-pathological mismatch,
a much smaller subset of search states may need to be explored. For example, if the NFA
is unambiguous, it will determine whether it accepts a candidate string in O(|w|) steps. In
such a case, this encoding scheme will require at most O(|w|) space.

8.5.2.2 Compressed memoization for bitmap memo tables

Intuition and Approach The memo tables used so far are a potential target for compres-
sion. A high compression ratio may be achievable, because the table has a small alphabet
and the visit vectors in the table are expected to have low entropy.

Small alphabet: When memoization is applied in the context of arbitrary functions in func-
tional programming, the range of these functions is unpredictable [197]. In the context of
an NFA simulation for K-regexes, the range of the function we memoize is small: {0, 1}
(Boolean). Because the alphabet of a visit vector is small, many table entries must be
repeated (i.e., will be either 0 or 1), making the memoization table a natural target for
compression if it has low entropy.

Expected low entropy: We expect the backtracking search strategy necessitated by PCRE’s
leftmost-greedy semantics to yield visit vectors with low entropy. Because it follows a top-
to-bottom, left-to-right search for automaton nodes with quantifiers, the simulation explores
nearby string indices before the further ones. This has the consequence that any runs within
these automaton nodes will accrete as characters are processed, yielding consistently low
entropy within each column. This observation has separately been described in terms of the
locality of NFA traversals [78].

As a result of these two properties, it is reasonable to expect that the memo tables in this
context will be compressible. Many states may be visited at only a few distinct indices of the

8.5. RQ2: How might the space costs of K-regex memoization be reduced?153

input string, resulting in intervening compressible runs of 0’s due to unvisited states. Other
states — those that are quantifier destinations — may be visited at many indices. Some of
these visits will be especially compressible. For unbounded monadic quantifiers like /a+/ or
/.*/, once an NFA simulation reaches this quantifier, it will attempt the regex matches upon
consuming all available adjacent characters, accreting a compressible run of 1’s within the
bitmap. Such quantifiers are common — in the polyglot regex corpus described in Chapter 5,
among the 253,216 regexes that use an unbounded quantifier, fully 103,664 (41%) include
the catch-all unbounded quantifier /.*/ or /.+/.

As a compression strategy, we propose to use run-length encoding (RLE) [287]. We imple-
mented a standard RLE scheme using fixed-width runs of length 1. Our implementation uses
a separate binary search tree for each automaton vertex being memoized. The tree elements
are runs keyed by their offsets [250]. This structure offers O(log k) accesses for a vertex with
k runs.

Time complexity In the worst case, this approach may increase the time complexity of
the memoization scheme to which it is applied. If the search pattern is pathological, there
will be O(|w|) distinct runs for each automaton vertex that is memoized, incurring a cost
of O(log |w|) each time a search state is memoized or queried. If k automaton vertices are
memoized, the time complexity due to compression will be O(|k| ∗ |w| ∗ log |w|). In the best
case, this approach may achieve perfect compression, requiring merely O(1) to memoize or
query a search state. In this case the worst-case time complexity of the original scheme is
preserved.

Space complexity For each automaton vertex being memoized, applying an RLE en-
coding to its visit vector requires between Ω(1) and O(|w|) space. If the encoding scheme
is ineffective, there will be no change in the space complexity. If it is effective, the space
complexity of the underlying memoization scheme may be significantly reduced.

This encoding approach may have lower space costs than eliminating negative entries does.
The initial |w| negative entries in the visit vectors can be compressed to a single run. If the
assumption of locality holds in typical cases, then instead of filling a memoization table with
positive entries, RLE can just extend existing runs.

8.5.3 Comparison to existing memoization schemes

The full memoization scheme described in §8.4 is an exhaustive version of the scheme followed
by RE2. RE2 only applies such a table when |Q| × |w| ≤ 32 KB [134], ensuring a constant
space bound but failing to protect queries on long regexes or long candidate strings. For
example, this scheme would not have prevented the outage discussed in our Stack Overflow

154 Chapter 8. Optimizing a regex engine through memoization

case study (§3.4), where the input string was over 20 KB long and the regex’s automaton
had around 10 vertices.

The approach of memoizing quantifier destinations (§8.5.1.4) is a stronger version of the
approach taken by the Perl regex engine. The Perl regex engine memoizes a subset of the
quantifier destinations, namely those associated with “complex” sub-patterns. The Φquantifier

scheme we described extends the Perl regex engine’s approach to all quantifier destinations.
We have provided the first argument of the soundness of the Perl regex engine’s approach
in terms of finitely and infinitely ambiguous regexes, and we have provided the first upper
bound on the time complexity of a rigorous version of its memoization scheme. The Perl
regex engine’s greater-than-O(|Q|∗|w|) worst-case behavior under memoization may come as
a surprise to its maintainers and others who have claimed that it achieves a lower bound [85,
87, 132].

We are not aware of selective memoization schemes that target the automaton vertices
Φin−deg>1 with in-degree > 1. We are not aware of evaluations of alternative encoding
schemes in this context. We are not aware of previous applications of RLE to a Boolean
memoization table.

8.6 RQ3: Experimentally, what are the space and time
costs of K-regex memoization?

The memoization schemes described in §8.5 offer attractive worst-case performance benefits.
They incur varying degrees of space complexity, which may be offset by efficient encodings
of the memo table.

In this section we consider two aspects of the space and time costs of K-regex memoization:

Selective memoization The size of the memoization targets for the selective memoization
schemes, relative to full memoization; and

Encodings The space benefits of the encoding schemes relative to each selective memoiza-
tion scheme, contrasted with the additional time costs thereof.

First I introduce the prototype regex engine in which we will measure these costs (§8.6.1).
Then, in §8.6.2 we statically measure the size of the memoization targets, and in §8.6.3 we
dynamically measure the impact of the encoding schemes on the memoization tables in each
approach.

8.6.1 Prototype regex engine and supported regexes

We prototyped the selective memoization and encoding schemes on top of a Spencer-style
backtracking regex engine published by Cox for experimental purposes [132]. We will refer

8.6. RQ3: Experimentally, what are the space and time costs of K-regex
memoization? 155

to this engine as the baseline regex engine. The baseline regex engine supports K-regexes as
well as some E-regex extensions: capture groups (CG), non-greedy quantifiers (LZY), and
the ANY character class. The baseline regex engine was further limited to a pre-allocated
backtracking stack of at most 1,000 search states. To increase the number of supported
regexes, we added support for several additional features; anchors (STR, END), various
commonly-used built-in character class shorthands (WSP, DEC, WRD, NWSP, NWRD,
NDEC), and special handling for whitespace notation (\n, \t). To support longer input
strings in our evaluation, we made the backtracking stack dynamically sized, with no bound.

In these experiments we are concerned with properties of typical regexes that are indepen-
dent of their match or parse behavior (semantics). Therefore we used syntactically supported
regexes from the polyglot corpus collected in Chapter 5, regardless of their origin program-
ming language(s). Without modification, the baseline regex engine supports an estimated
191,006 of the regexes (35%) from this regex corpus. We will refer to these as the supported
regexes.

We analyze the space and time costs of memoization on the supported subset of the corpus.

8.6.2 Evaluation of selective memoization

8.6.2.1 Methodology

The space costs of the selective memoization schemes depends on the size of the sets of ver-
tices selected for memoization: Φin−deg>1 and Φquantifier. To determine the viability of the
schemes, we measured the typical sizes of these sets for the supported regexes. These mea-
surements were collected by constructing the NFAs, then counting |Q| and the appropriate
vertices in each subset.

8.6.2.2 Results

We evaluated the supported regexes on our prototype engine. It was able to measure 152,110
(29%) of the regex corpus, and 14,944 (24%) of the super-linear regexes.

Figure 8.6 shows our findings for the measured regexes from these two groups. Figure 8.6a
shows the distribution of the sizes of the vertex-sets targeted by the various selective mem-
oization schemes. Figure 8.6b shows the ratios of the sizes.

8.6.2.3 Analysis

From Figure 8.6b, we note that the selective memoization schemes offer significant space
savings over the full memoization scheme. The 75th percentile of both all regexes and only

156 Chapter 8. Optimizing a regex engine through memoization

|Q| | in degree > 1| | quantifier|
Measure

0
20
40
60
80

Va
lu

e

Sizes of selected vertex-sets

(a) Vertex-set sizes.

| in degree > 1|
|Q|

| quantifier|
|Q|

Measure

0.00

0.05

0.10

0.15

0.20

0.25

Va
lu

e

Space reduction via selective memoization

(b) Vertex-set size ratios.

Figure 8.6: Raw sizes and relevant ratios of various vertex-set sizes. Whiskers
indicate the (1, 99)th percentiles. Outliers are not shown. The figures for the supported
subset (shown) and the supported super-linear subset (not shown) are similar.

the super-linear regexes is between 30 and 40 (31 and 38, respectively), and on long inputs
the (|Q| × |w|) cost of full memoization would be significant. The 75th percentile value of
|Φin−degree>1| is much lower, only 3 across all regexes and 4 for the measured super-linear
subset. The value for |Φquantifier| is similar or equal in both cases.

From Figure 8.6b, we observe that both schemes offer similar space reductions.

In brief, for the measured regexes we found that |Q| � |Φin−deg>1| ≈ |Φquantifier|. We there-
fore recommend that the maintainers of backtracking regex engines incorporate a |Φin−deg>1|-
based memoization scheme, as it has similar space costs but stronger time complexity guar-
antees. However, the outlier values of Φin−degree>1 are an order of magnitude larger than
those of Φquantifier, so regex engine developers might use Φquantifier as a back-up option.

8.6.3 Evaluation of encodings for various memoization schemes

The prototype regex engine supports all memoization schemes (1 full, 2 selective) and all
encoding schemes (bitmap, hash table, RLE compression). This yields nine distinct memo-
ization approaches, plus two baselines: the non-memoized engine, and the performance of the
Perl regex engine’s selective memoization scheme. The following methodology and results
describes our comparison of these memoization approaches.

8.6. RQ3: Experimentally, what are the space and time costs of K-regex
memoization? 157

8.6.3.1 Methodology

Regexes and inputs From the full set of 51,224 distinct super-linear regexes from the
corpus described in Chapter 5, 14,944 were in the supported subset of our corpus. However,
due to a clerical error, we evaluated only 13,260 in this experiment. For each of these regexes,
we used the input that produced the largest growth in worst-case behavior in our prototype
regex engine among those recommended by the super-linear regex detectors.

Metrics We measured the amount of space taken by each combination of selection and
encoding scheme. In detail, the space measures we report are:

• For the bitmap encoding scheme, we report the space cost for a given regex as |Φ| × |w|,
where Φ is the set of vertices selected for memoization.

• For the negative encoding scheme, we report the space cost for a given regex as the number
of distinct search states 〈q ∈ Φ, i〉 that are visited during the simulation. This value is
maximized at the conclusion of the simulation.

• For the RLE encoding scheme, we collect the maximum number of runs at any point
in the simulation for each vertex in Φ. Note that these values may be maximized mid-
simulation, e.g., if distinct runs arise but are eventually merged. We report the sum of
these counts.

We did not measure the running time. All of the memoization approaches we apply reduce
the worst-case performance from super-linear to linear; the reduction in complexity is of
greater import than the precise (linear) matching time involved. The time costs may be
estimated by multiplying the space costs (number of entries in the data structure) by the
cost of an update. The bitmap encoding scheme offers O(1) updates, negative encoding
offers amortized O(1) updates, and RLE offers O(log k) updates where k is the number of
runs for a vertex.

Configuration For consistency with the experiments in Chapter 5, we measured space
costs using 100,000 pumps of the input for each regex. We used the same number of pumps
for Perl, and used a threshold timeout of 5 seconds for Perl’s timeout. We permitted our
prototype regex engine to run for up to 180 seconds, since our interest is not to evaluate
its (non-optimized) running time but rather the space costs of memoization on a realistic
corpus of super-linear regexes.8

In our experiments we used the simplest RLE encoding, with runs of length 1. We discuss
opportunities for improvement on this approach in §8.8.

8With 100,000 pumps, 75 of the regex evaluations timed out in our prototype. We attribute this to the
impact of instrumentation and logging on such long inputs. With 10, 000 pumps instead of 100,000 pumps,
all evaluations finish within the 180 second time limit (most were far faster).

158 Chapter 8. Optimizing a regex engine through memoization

No linear-time regexes We omitted measurements on linear-time regexes, as well as
linear-time inputs on super-linear regexes. We did this for two reasons. First, by definition
a regex match that completes in linear time will visit a linear number of search states in
the length of the input string. Thus, the full bitmap will cost the usual |Q| × |w| space,
and the negative or RLE encoding schemes will cost O(|w|) space. Second, no memoization
scheme is necessary until the simulation exceeds a minimum threshold. For example, the
Perl regex engine’s memoization scheme is only enabled after the vertices in |Φquantifier| have
been visited a combined Φquantifier×|w| times. Perl’s deferral of memoization does not affect
its time complexity guarantees, but reduces the time and space costs in the common case of
a linear-time evaluation.

8.6.3.2 Results

Absolute space costs The absolute space costs of the combinations of selection and
encoding schemes are illustrated in Figure 8.7. The bitmap (“No encoding”) approach costs
a constant |Φ| × |w| regardless of the content of w. First, compare this to the space cost
of the negative encoding. Despite the logarithmic scale, the two costs are comparable; a
significant fraction search states are explored by the simulation during a super-linear regex
evaluation. This is unsurprising; with 105 pumps, we expect approximately 105 visits to
the search states associated with “pivot” vertices, as well as to any intervening vertices
dominated by the pivots. Second, compare the cost of these approaches to the RLE scheme.
As suggested by our analysis in §8.5.2.2, RLE offers substantial compression benefits.

Relative space costs Next, we compared the relative costs of these schemes. Figure 8.8
compares the costs of each scheme to the largest possible cost: a |Q| × |w| bitmap (the
leftmost blue bar of Figure 8.7). For the median super-linear regex, depending on the
selection scheme the cost of a negative encoding scheme ranges from around 40% to around
10% of a full bitmap. The RLE scheme’s performance is better, with a 95

th percentile of 12
for Φin−deg>1 and 10 for Φquantifier — in other words, RLE offers a constant cost for either
of the selection schemes across most of our benchmark suite.

Comparison to Perl Using Perl’s regex engine, 17% of these regexes still exhibited super-
linear worst-case behavior. Some combination of Perl’s selective memoization scheme and its
other optimizations still protected the remainder. In contrast, in our prototype regex engine
all of the super-linear regex exhibited linear-time behavior under all of the memoization
schemes.

8.6. RQ3: Experimentally, what are the space and time costs of K-regex
memoization? 159

Q in deg > 1 quantifier
Selection scheme

101

103

105

107

109

Ra
w

co
st

Raw space costs

Encoding scheme
No encoding (full table)
Negative (hash)
RLE

Figure 8.7: Absolute space costs of memoization schemes. Absolute space costs
with 100,000 (105) pumps. The x-axis distinguishes between the selection schemes, and the
encoding schemes for each selection scheme are distinguished by colors. Whiskers indicate
the (1, 95)th percentiles. Outliers are shown. The units on the y-axis are the absolute costs
in terms of allocated storage objects, which vary by selection scheme (§8.6.3.1). Note the log
scale on the y-axis.

Q in deg > 1 quantifier
Selection scheme

0.0
0.2
0.4
0.6
0.8
1.0

Pr
op

or
tio

n
of

 fu
ll

sp
ac

e
co

st

Space costs relative to a |Q| × |w| table
Encoding scheme

Negative (hash)
RLE

Figure 8.8: Relative space costs of memoization schemes. Relative space costs with
100,000 (105) pumps. The relative costs are calculated as a proportion relative to the baseline
of a |Q| × |w| bitmap. Whiskers indicate the (1, 99)th percentiles. Outliers are shown.

160 Chapter 8. Optimizing a regex engine through memoization

8.6.3.3 Analysis

Our results show that selective memoization is a promising approach to address ReDoS. The
time and space complexity cost of the various selection schemes was described in Table 8.3.
The measurements of Figure 8.6 showed that selective memoization would benefit many
regexes from the supported subset of our regex corpus. Figure 8.7 upheld this promise on
the supported subset of super-linear regexes from our regex corpus.

Our results also show that RLE may be an effective encoding scheme for the memoization
table in the context of automaton simulations. Negative encoding offers some space improve-
ment over a bitmap, but still incurs linear space costs. Figure 8.8 shows that RLE achieves
a high compression ratio, offering constant-time space costs for 95% of regexes using either
selective memoization scheme.

8.7 RQ4: How might memoization be extended to E-
regexes?

The memoization schemes discussed so far have only applied to K-regexes. In this section we
will discuss their application to E-regexes. We show the theoretical time and space bounds
of E-regexes in their current implementations, and the time and space bounds that can be
obtained by extending our memoization techniques to the extended features of interest. We
do not evaluate the bounds experimentally.

As noted in §2.4.3, E-regexes can be divided into three classes: K-regexes, K-compatible,
and E-regexes. In sections 8.4 and 8.5 we described memoization schemes for the classes of
K-regexes and K-compatible regexes. We have not yet considered worst-case behaviors and
memoization techniques for E-regexes, the three groups below the double-line of Table 2.3:
zero-width assertions, backreferences, and prioritization/backtracking controls. We discuss
prior work on these topics in §8.7.1. Then we discuss memoization for zero-width assertions
in §8.7.3, and for backreferences in §8.7.4. Memoization is orthogonal to prioritization/back-
tracking controls, so we treat those E-regex features briefly here.

The prioritization and backtracking controls (LZY, ATM, POS) affect match semantics, and
therefore the rules that an NFA simulation must follow. Prioritization (LZY) will change
the order in which simulation states are explored, and backtracking controls (ATM, POS)
will remove some paths from the simulation. None of these features will increase the cost of
a simulation in terms of the number of times each search state is visited. The memoization
techniques discussed earlier can be applied to regexes that support these extended features.

8.7. RQ4: How might memoization be extended to E-regexes? 161

8.7.1 Related work on E-regexes

Most prior work on regexes has focused on K-regexes.

Zero-width assertions To the best of our knowledge, §8.7.3 presents the first analysis of
the worst-case complexity of regexes with lookaround assertions, and the first application
of memoization to reduce this complexity to linear in |w|. Backreferences Regexes with
backreferences (REWBR) have been studied by several researchers. Aho first showed that
REWBR problems are NP-hard [63]. Câmpeanu and Santean analyzed a non-memoized
REWBR automaton simulation, and showed that it has polynomial space and exponen-
tial time complexity [107]. Namjoshi and Narlikar described an extended NFA model to
evaluate REWBR, and parameterized the cost of the simulation in terms of the number of
backreferences [256].

We introduce a more general f -NFA model that can be used to analyze both zero-width asser-
tions and backreferences (§8.7.2), and in §8.7.4 we refine their worst-case parameterization,
evaluate common parameter values in our regex corpus, and consider the cost of supporting
REWBR in a memoized NFA backtracking simulation. Using our regex corpus, we report
that for typical backreference usage the worst-case memoized space and time complexity is
polynomial in |Q| and |w|.

8.7.2 Generalizing from NFAs to f-NFAs

The typical implementations of zero-width assertions and backreferences can be modeled
with minor extensions to the NFA model. In particular, we will extend δ by introducing an
additional type of edge, which we will call the f -edge. We will refer to the extended NFA as
an f -NFA.

In the original NFA model, the δ function encoded edges qa
σ∈Σ∪{ε}→ qb. Each edge represented

a transition from qa to qb. Each transition consumed one character from the candidate string
w, or 0 characters in the case of ε-edges.

f -edges differ from typical edges in two ways. First, each f -edge encodes an arbitrary func-
tion, not just single-character comparison. Second, an f -edge consumes a variable number
of characters. We can denote this f(w, i) → {True|False} × N|w| where w is the candidate
string and i the current index. An f -function returns True if the edge can be taken, else
False. If the edge can be taken, it also returns an integer corresponding to the number of
characters to consume. Note that tracking i also requires adding a counter to the f -NFA,
similar to the counters used to identify matching substrings in tagged automata.

Clearly all NFAs are also f -NFAs, with each of the edges corresponding to a simple match-
ing function and consuming 1 or 0 characters. Although the definition of an f -NFA permits
complex functions, simple functions suffice to implement zero-width assertions and backref-

162 Chapter 8. Optimizing a regex engine through memoization

erences. The cost of these functions affects the worst-case time complexity of the f -NFA
simulation.

8.7.3 Memoization for zero-width assertions

The typical implementations of zero-width assertions can be modeled with f -edges. Similar
to the construction rule for concatenation (Figure 2.7), each of these assertions introduces an
additional automaton vertex qf with an f -edge whose function (1) confirms the corresponding
condition is matched, and (2) consumes no characters.

8.7.3.1 Modeling and costs for fixed-width assertions

The functions for start-of-string (STR) or end-of-string (END) return True depending on
whether the w index is 0 or |w|, respectively. The function for word boundaries (WNW)
compares w[i] and w[i+1] and returns True if there is indeed a word boundary. The function
for non-word boundaries (NWNW) is similar. These functions can be evaluated in constant
time, so they add no cost to the original NFA simulation.

8.7.3.2 Modeling regular expressions with lookaround assertions (REWLA)

Typical regex engine implementations To understand the time complexity of evaluat-
ing a Regular Expression With Lookaround Assertions (REWLA), we consider their typical
implementation in production regex engines. We examined the engines of Perl, PHP, Python,
and JavaScript-V8. These regex engines implement REWLA through recursion, supporting
some or all regex features within the sub-pattern.9 The recursion is implicit: these regex en-
gines expand the sub-pattern P into the automaton, match it like a typical sub-pattern with
the appropriate orientation for look-behind, but omit advancing the offset into w because
the assertions are zero-width.

Production regex engines impose different limits on the sub-pattern P permitted in lookahead
and lookbehind assertions. Of the programming languages considered in Chapter 5:

• Rust and Go do not support lookaround assertions.
• For lookahead assertions: all six of the other programming languages support sub-patterns

that are K-regexes and some E-regex features (e.g., nested lookaround assertions and
backreferences).

• For lookbehind assertions: (a) all six of the other programming languages support sub-
patterns that test for a constant string; (b) JavaScript, Java, Ruby, and PHP support

9As an optimization, constant sub-patterns can be implemented instead using direct string comparison,
as is done in Perl.

8.7. RQ4: How might memoization be extended to E-regexes? 163

q1 q2 q3

a

〈a*, 0〉 ε

Figure 8.9: Automaton used to illustrate the complexity of zero-width assertions.
This figure shows the f -NFA produced by Thompson’s construction for the regular expression
/(a*)(?=a*)/, slightly reduced for clarity of presentation. The f -edge q1 → q2 describes the
zero-width lookahead assertion. This assertion tests whether the subsequent characters match
the pattern /a*/, but consumes no characters.

variable-length constant strings, e.g., /(?<=a|aa)/; and (c) JavaScript and Java support
arbitrary K-regexes, e.g., /(?<=a*)/.

Modeling As with fixed-width assertions, we can model lookaround assertions using an
f -NFA. Positive lookaround assertions request the regex engine to determine whether a sub-
pattern P is matched, beginning from w[i] and looking earlier in reverse string order (PLB)
or rightward in standard order (PLA). Negative lookaround assertions (NPLB, NPLA) pose
the same question but invert the outcome. Thus, these functions can be determined by
evaluating the sub-pattern on the appropriate substring of w.

In light of the varied support for the expressivity of the sub-pattern P , and to simplify
our analysis, we will model the sub-pattern P in a lookahead or lookbehind assertion as a
K-regex or K-compatible. We will refer to such regular expressions as REWLA (“Regular
Expressions With Lookaround Assertions”).

Example Figure 8.9 shows an example f -NFA for the REWLA /a*(?=a*)/.

8.7.3.3 Time complexity of evaluating REWLA with existing algorithms

Under our model, the f -NFA for a REWLA will have a set of normal NFA states Φnormal
and a set of f -vertices Φf . With each of the f -vertices qfi ∈ Φf , there is an associated
sub-automaton with states Qfi . We will denote the union of these states as QRf

= Φnormal ∪
Φf ∪

⋃
i

Qfi .

Time complexity using backtracking Since typical regex engines use a Spencer-style
backtracking NFA simulation for K-regexes, and since each lookaround sub-pattern P may
be a K-regex in our model, the time complexity of evaluating the f -NFA associated with
an REWLA in such regex engines is super-exponential. This complexity arises from two
properties:

164 Chapter 8. Optimizing a regex engine through memoization

1. A K-regex may have exponentially many paths for a backtracking NFA simulation to
explore; and

2. Zero-width assertions permit some f -NFA simulation steps to have exponential time com-
plexity. By contrast, when simulating a K-regex each simulation step costs |Q| (viz. a
character comparison and then evaluation of the transition function δ). Critically, zero-
width assertions consume no characters, and thus do not eliminate any paths when they
are evaluated.

For example, the REWLA /^(a|a)*(?<=^b(a|a)*)$/ has time complexity Ω(2|w|2) on the
input w = akb. To see this, observe that the final offset will be reached 2|w| times, and
that the look-behind assertion will cost Θ(2|w|) to test each time. Thus we have a cost of
Ω(2|w| × 2|w|) = Ω(22|w|) = Ω(2|w|2): super-exponential in |w|.10

Time complexity using a linear-time NFA simulation algorithm Although we are
not aware of any implementations in practice, the time complexity of REWLA is lower
if a linear-time NFA simulation algorithm is used to evaluate the f -NFA and to perform
sub-automaton simulations.11 Using Thompson’s simulation or either our full or Φin−deg>1

memoization schemes, each of the vertices in Φnormal ∪Φf is visited at most once for each of
the |w| associated search states, at a cost of |Q| per search state. Now, the cost of evaluating
each of the f -edges (i.e., simulating an NFA) is O(|Qfi |2 ∗ |w|). This cost is applied each
time one of the f -edges is considered by the δ of the f -NFA, which in turn depends on the
number of times that search states associated with the f -automaton vertices Φf are visited.
Since this count is at most |w| per vertex qf ∈ Φf , we have a time complexity bound of:

O(|Φnormal| ∗ |QRf
| ∗ |w|) + O(|Φf | ∗ |QRf

| ∗ |w| ∗ (Σi|Qfi |2 ∗ |w|)).

Since Φnormal ⊆ QRf
and Qfi ⊆ QRf

, this can be bounded by O(|QRf
|4 ∗ |w|2) — super-linear

in |w|.

Comparison to a flattened regex For comparative purposes, we will also define a flat-
tened regex Rflat derived from a regexR that contains lookaround assertions. Rflat is a K-regex
whose NFA representation is of a similar size to the f -NFA representation for R. Rflat is the
result of replacing the lookaround assertions within the original pattern R with concatena-
tions, resembling how REWLA are implemented in practice. As an example flattening, if
R = /A(?<=P1)(?=P2)/, then Rflat = /A ·P1 ·P2/. With this definition, |QRflat| = Θ(|QRf

|).
The cost of simulating the f -NFA for Rf is thus substantially more than the cost of simu-
lating the NFA for Rflat, bearing an extra term of |QRf

|2 ∗ |w|. Intuitively, the additional

10We have experimentally confirmed this growth rate in JavaScript-V8.
11The regex engines that use Thompson’s linear-time algorithm (Rust, Go) do not support lookaround

assertions.

8.7. RQ4: How might memoization be extended to E-regexes? 165

cost is incurred because the zero-width assertions do not consume characters; they do not
eliminate any simulation paths.

8.7.3.4 Optimizing REWLA using memoization

Using memoization, we can decrease the time complexity of match and parse queries for
regexes with zero-width assertions by a factor of |w| compared to the cost using existing
linear-time NFA simulation algorithms. Specifically, we can reduce the cost to O(|Q4

Rf
|∗|w|),

which is Θ(|QRflat|4 ∗ |w|). This means that although answering queries for regexes with
lookaround assertions has a higher time complexity than for similarly-sized K-regexes and
K-compatible regexes, the time complexity is still linear in the length of the candidate string
w.

This reduction in time complexity follows from a simple observation: for each qf ∈ ΦF ,
the O(|w|) simulations of the corresponding sub-automaton will all operate on the same
sub-automaton and on some substring of w. Rather than treating them independently, we
can benefit from applying what we learned on one simulation to the next one. Suppose we
memoize the sub-automaton (i.e., convert it to an M-NFA), and denote the sub-automaton
search states in terms of w (and not the sub-string of w beginning at w[i]). Suppose further
that we preserve the M-NFA’s memoization table across the entire simulation of the higher-
level f -NFA, i.e., we remember the simulations that began at the |w| different indices i. This
is akin to preserving the memoization table across different match and parse queries for the
f -NFA itself.12 If the full or Φin−deg>1 memoization scheme is used for the sub-automaton,
then the cost of testing each lookaround assertion is O(|Qfi |2 ∗ |w|) amortized over all of
the O(|w|) simulations. If the Φquantifier memoization scheme is used, the cost increases
following Table 8.3.

Time complexity Under this approach, the time complexity of the full f -NFA simulation
becomes

O(|Φnormal| ∗ |QRf
| ∗ |w|) +O(|Φf | ∗ |QRf

| ∗ (Σi|Qfi |2 ∗ |w|)).

Applying the same reasoning as before, we obtain a time complexity of O(|QR|4 ∗ |w|).

Space complexity The space complexity of such a simulation is

O(|Q| ∗ |w|) +O(|w| ∗ Σi|Qfi |) = O(|QR| ∗ |w|) = O(|QRflat| ∗ |w|).

12One might do this if the regex were expected to be queried multiple times for the same candidate string
w, e.g., if a user must choose from a fixed set of candidate strings as in a drop-down menu.

166 Chapter 8. Optimizing a regex engine through memoization

This is the same as would be required to simulate a similarly-sized K-regex regex. The space
requirements for each sub-automaton could be improved using the techniques described
in §8.5.

Remarks The time complexity we have achieved using memoization is unsurprising from
an automata-theoretic perspective, because our REWLA model does not add expressive
power to a K-regex. The set of regular languages is closed under intersection [281], and
lookaround assertions are a means of encoding the intersection of two regular languages — the
language of R1 = /A(? <= B)/ is the same as the language of R2 = A∩B. The Rabin-Miller
Cartesian product construction for the intersection of two regular languages with vertices
QA and QB yields an automaton with |QA| × |QB| states [281], and an efficient simulation
of this automaton would take O((|Q|2)2 ∗ |w|) = O(|Q|4 ∗ |w|) steps, just as can be obtained
through our memoization approach. However, we believe that our algorithm for a linear-time
evaluation expressed in terms of the f -NFA used by existing regex engine implementations,
without requiring the calculation of an explicit automaton intersection, may be of use to
practitioners. This is especially true for real-world lookaround implementations, some of
which support a more expressive lookaround sub-pattern P .

8.7.4 Memoization for backreferences

8.7.4.1 Modeling regular expressions with backreferences (REWBR)

Typical regex engine implementations To understand the time complexity of eval-
uating a Regular Expression With BackReferences (REWBR [84, 108]), we consider their
typical implementation in production regex engines. Regex engines implement REWBR in
a straightforward manner: they track the contents of each capture group using a pair of in-
dices 〈j, k〉 into w, and when they encounter a backreference at w offset i they compare the
subsequent characters from w[i :] to the current contents of the appropriate capture group.

Modeling These implementations can be modeled with f -edges. Each instance of a back-
reference introduces an additional automaton vertex qf with an f -edge. The condition tested
by this f -edge function is whether the following characters in w match the current contents
of the indicated capture group. This function costs O(|w|) to evaluate, and consumes the
corresponding number of characters if it is successful.

Example Figure 8.10 shows an example f -NFA for the REWBR /(a)\1/.

8.7. RQ4: How might memoization be extended to E-regexes? 167

q1 q2 q3
(a) 〈\1, |\1|〉

Figure 8.10: Automaton used to illustrate the f-NFA for backreferences. This
figure shows the f -NFA produced by Thompson’s construction for the regular expression
/(a)\1/, slightly reduced for clarity of presentation. The f -edge q1 → q2 describes the
backreference. This edge tests whether the subsequent characters match the current contents
of the first capture group, (a), and consumes that many characters on success.

8.7.4.2 Time complexity of evaluating REWBR with existing algorithms

Prior work has shown that evaluating a REWBR is NP-hard [63, 84, 108]. In terms of our
f -NFA model, evaluating an REWBR necessitates the exploration of up to an exponential
number of paths in an automaton.

Time complexity using backtracking A Spencer-style backtracking algorithm already
explores up to an exponential number of paths, so in this regard the time complexity for
REWBR is no worse than it was before. However, each simulation step may now cost |w|+|Q|
instead of 1+ |Q| to accommodate the O(|w|) cost of testing the backreference. We therefore
obtain a rough bound of O(|w| ∗ |Q| ∗ |Q||w|).

Time complexity using Thompson’s linear-time NFA simulation algorithm If a
REWBR must be evaluated, it invalidates the observation that permits Thompson’s algo-
rithm to offer linear time complexity. Thompson’s algorithm leverages the path-independence
of recognition using a K-regex, and collapses all paths that reach a search state 〈q, i〉 into a
single entity to track. The semantics of REWBR, however, state that two paths that reach
the same search state but populate a capture group differently are no longer equal.13 Were
Thompson’s algorithm extended with this new definition of path equality, the time complex-
ity becomes the same as that of Spencer’s backtracking approach, but the space complexity
becomes exponential.

8.7.4.3 Optimizing REWBR using memoization

Summary We show that REWBR can be evaluated using memoization, offering some time
complexity improvement for backtracking-based approaches. The time complexity remains
exponential in the recognition query 〈Regex, w〉, but the exponent is reduced. In particular,
we can reduce the time complexity from exponential in |w| to exponential in |Q| — from
O(|Q||w|) to O(|w||Q|). Since we typically expect |w| to dominate |Q|, this is a substantial
reduction.

13See Figure 8.11, also used to discuss memoization for REWBR.

168 Chapter 8. Optimizing a regex engine through memoization

Approach Because the contents of a capture group depend on the path taken through
the automaton, REWBR disrupt our path-independent memoization scheme just as they
impact Thompson’s algorithm (§8.7.4.2). The outcome of the f -edge function is no longer
determined solely by the search states that have been reached. This problem is illustrated
in Figure 8.11.

The difficulty illustrated by Figure 8.11 suggests two solutions: either erase the memoization
table whenever a backreferenced f -edge is tested; or extend the memoization scheme to track
not only the search states but also the contents of the capture groups at those search states.
The Perl regex engine takes the former approach;14 we will consider the latter. Extending
the memoization scheme requires further modifying the M-NFA described in Table 8.1 in
two ways.

Capture groups We must track a vector of capture group contents, CG, where CGi de-
notes the contents of the ith capture group. Each capture group can be represented with
a pair (a, b) of indices into w. We discussed this extension in §2.4.4.

Memoized transition function The memoized transition function, δM , must now con-
sider the contents of the capture groups. So δM is now δM : Q×Σ∪{ε}×N|w|×CG → 2Q.

The memoized transition function now depends on the current search state 〈q, i〉 as well as
the path state 〈CG1, CG2, . . . , CG|Q|〉 corresponding to the capture group contents. There
are |Q| ∗ |w| distinct search states. Each capture group can take on |w|2 different values (the
number of contiguous substrings of w), yielding (|w|2)|Q| possible distinct path states.

Now we would like to determine the time and space complexity of the M-NFA simulation
used to answer regex match and parse queries. It is well known that if we use |Q| as the
upper bound of the number of backreferences and backreferenced capture groups, the time
complexity of a match or parse operation is exponential [63, 84]. But |Q| is too loose of a
bound for typical regexes. Only the contents of the backreferenced capture groups (i.e., the
path state) can affect the simulation result. If two simulations take different non-captured
paths that reach the same search state, the simulation result will be the same for each path.
We will therefore parameterize this complexity in terms of the number of backreferences,
which we denote |BR|, and the number of backreferenced capture groups, which we denote
|BRuniq|. For example, the regex R1 = /(a)\1/ has |BR| = |BRuniq| = 1, while the regex
R2 = /(a)(b)\1\1\2/ has |BR| = 3 and |BRuniq| = 2,

Regexes typically contain few distinct backreferenced capture groups and few backreference
uses. For example, in our polyglot regex corpus, there are ≈ 3, 500 backreference-using
regexes. Of these, 98% of these regexes contain at most three backreferences (|BR| ≤ 3),
and 98% of these regexes contain backreferences to at most two distinct capture groups
(|BRuniq| ≤ 2).

14As discussed in §8.2, this leads to unprotected exponential behavior (case 3).

8.7. RQ4: How might memoization be extended to E-regexes? 169

q1

q2 q3

q4

q5

a

a

a

ε

ε

q6

q7 q8

q9

a

a

a

ε

ε

q10
〈\1, |\1|〉

Figure 8.11: Automaton used to illustrate the difficulty of memoization with
backreferences. This figure shows the NFA produced by Thompson’s construction for the
regular expression /(aa|a)(a|aa)\1/, slightly reduced for clarity of presentation. The paths
between q1 and q5 determine the contents of capture group 1. The paths between q5 and q9
determine the contents of capture group 2. The f -edge q9 → q10 describes the backreference,
which matches the contents of capture group 1 and which consumes the same number of
characters.

Suppose we apply the full memoization scheme to the candidate string w = aaaa (and in
particular that we are memoizing visits to the shaded node, q9). This candidate string can
be accepted in one way: “go down, then down”, i.e., with \1 = a and \2 = aa. This path
will reach the simulation state 〈q9, 3〉. But it will only reach this state after that state is
reached by the path “up, then up” — the path with \1 = aa and \2 = a, which mismatched
because the q9 → q10 edge could not match \1. The up-up path has higher precedence than
the down-down path according to PCRE’s left-to-right disjunction rules (§2.4). Our existing
memoization scheme will incorrectly cause the down-down path to be short-circuited, leading
to an incorrect rejection of the candidate string.

In other words, because these two paths differ, they populate \1 differently. The outcome from
the up-up path does not dictate the outcome for the down-down path. But the memoization
schemes discussed in sections 8.4 and 8.5 incorrectly assume it does. The difficulty is again
ambiguity in the automaton.

By applying the extensions discussed in §8.7.4 in place, the difficulty can be resolved. The up-
up path and the down-down path still both reach the search state 〈q9, 3〉, but the memoization
function δM now distinguishes between these search states based on their values for \1 and
\2. One does not short-circuit the other.

170 Chapter 8. Optimizing a regex engine through memoization

Space complexity We will suppose a full memoization scheme for simplicity. There are
|Q| ∗ |w| search states from the previous model. There are |BRuniq| capture groups that can
affect the evaluation of an f -edge, each of which can take on O(|w|2) distinct values which
we must also track. For each search state, therefore, there are O((|w|2)|BRuniq|) distinct path
states. The memoization table may thus contain at most

O(|Q| ∗ |w| ∗ |w|2∗|BRuniq|) = O(|Q| ∗ |w|1+2∗|BRuniq|)

distinct entries. For typical regexes, |BRuniq| ≤ 2, and the space cost becomes a large
polynomial of |w|. But since this term appears as an exponent, any use of backreferences
significantly increases the size of the memoization table.

This space complexity can be decreased using selective memoization or efficient encodings.

Time complexity With this memoization scheme, each combination of simulation state
and path state (capture group contents) will be visited at most once. Unlike the regular
NFA vertices, which cost O(1) + O(|Q|) to test and traverse, the f -edges associated with
the |BR| backreference vertices cost at most O(|w|)+O(|Q|) to test and traverse. This cost
can be expressed as the sum of the (cheaper) cost of visits to normal vertices, Φnormal, and
to the (more expensive but typically fewer) backreference f -vertices, ΦBR. This sum is:

O((|w|2∗|BRuniq|) ∗ |w| ∗ (|Φnormal| ∗ (1 + |Q|) + |ΦBR| ∗ (|w|+ |Q|))).

If we suppose that all vertices are f -vertices, and that |w| + |Q| ≈ |w|, then we can obtain
the simplified form O(|Q|2 ∗ |w|2+2∗|BRuniq|). Since it is typical for |BRuniq| ≤ 2, for practical
purposes this bound can be treated as a large polynomial in |w|.

Remarks Both the space and time complexities are exponential in the number of distinct
backreferenced groups. This complexity emerges from the number of distinct capture groups
that it is necessary to track during the automaton simulation. The memoization still elim-
inates redundant visits to all search states, but must be more cautious in order to safely
eliminate these visits (by also tracking path states).

An additional parameterization can further characterize the costs of typical backreference-
using regexes. If a backreferenced capture group has unbounded width (i.e., they use a * or
+), then it adds a factor of |w|2 to the time and space complexities. Many backreferenced
capture groups, however, are fixed-width. 78% of these regexes reference only fixed-width
capture groups, most commonly to find a matching single or double quote to a string. For
example, patterns like /('|")\w+\1 are common. Regexes that use only fixed-width capture
groups can remove the factor of 2 in the exponent, reducing the size of the polynomial in
typical cases.

8.8. Discussion 171

Our measurements of typical parameters suggests that most regex usage contexts do not need
a large number of backreferences. Regex engine maintainers should consider documenting the
worst-case performance parameterized by the use of backreferences. They may also consider
limiting the number of distinct backreferences (|BRuniq|) permitted in a regex, reasoning that
the additional expressive power is not worth the additional cost. If this number is limited,
then the worst-case space and time complexity for all backreferences becomes polynomial in
|Q| and |w|.

8.8 Discussion

Improving the performance of the RLE encoding scheme In §8.6, we reported that
an RLE encoding scheme with runs of length 1 was effective in most cases. For 95% of
the supported subset of super-linear regexes, there were at most 12 runs over all vertices at
any point in each simulation. However, as can be seen in Figure 8.7, our corpus contains
some super-linear regular expressions whose simulation requires Θ(|w|) runs. An expression-
specific choice of run lengths might similarly reduce these costs.

A simplified example of such a super-linear regular expression is /^(aa|aa)*$/, shown in Fig-
ure 8.12. This expression has infinite ambiguity resulting from the quantified ambiguous
disjunction. When this automaton is simulated on input that triggers its super-linear be-
havior, the vertex q1 will be visited at every second candidate string index, i.e., the search
states 〈q1, 0〉, 〈q1, 2〉, 〈q1, 4〉, . . ., 〈q1, |w|〉. The visit vector for this vertex will thus be
101010 . . . 1010. On such a visit vector, a length-1 RLE encoding will obtain no compres-
sion, while a length-2 RLE encoding can achieve perfect compression.

An effective length for the RLE encoding scheme could be determined dynamically or stat-
ically. Dynamically, the length might be guessed from the initial sequence of updates. A
variable-length encoding could also be employed, although this might impose larger runtime
costs. Statically, we believe the general principle for the choice of length is to use the least
common multiple of the lengths of the simple path(s) to the vertex, e.g., LCM(2, 2) = 2 for
the example in Figure 8.12. Although we have not yet proved this property, the intuition is
that any repeated visits to the vertex can only occur at multiples of the simple paths. The
lengths of the simple paths can be calculated during the expression-to-NFA conversion.

Developing worst-case inputs for E-regexes Our analyses of the worst-case behavior
of zero-width assertions and backreferences may guide the development of worst-case in-
puts for regexes that use these features. For zero-width assertions, worst-case inputs will
repeatedly exercise expensive lookaround assertions, e.g., by targeting complex lookaround
assertions that can be reached at many distinct indices of w. For backreferences, worst-case
inputs should search for ambiguous sub-structures that can populate capture group(s) with
different values. Both of these approaches can be built on top of existing automaton-based

172 Chapter 8. Optimizing a regex engine through memoization

q1

q2

ε

q3
a

q4

ε

q5
a

q6

a

a

ε

Figure 8.12: Automaton used to illustrate the effect of tuning the RLE run length.
The vertex q1 will be memoized by any of the selection schemes we have proposed. However,
on problematic input — e.g., w = ak · b — this state will never be visited at consecutive
offsets. A length-1 RLE scheme offers no compression, while a length-2 RLE scheme offers
perfect compression.

analyses (§2.5.2) that have been extended to f -NFAs.

The peril of local optimality There is an engineering lesson to be learned from the
shortcomings of the Perl regex engine’s memoization scheme. Since its introduction, the Perl
regex engine’s memoization scheme has only protected “complex” quantified sub-patterns,
ignoring “simple” ones. These “simple” ones instead follow an optimized path that benefits
behavior in the average case. For example, simpler sub-patterns can be tested using primitive
comparison operations like memcmp rather than the more abstract machinery needed to handle
a complex sub-pattern. These optimizations permit the Perl regex engine to perform quickly
on matching or blatantly-mismatching inputs, but due to its insufficient memoization it
struggles on ambiguity-exploiting input for such sub-patterns. As in many other contexts,
the engineering lesson here is this: locally optimal behavior may lead to global performance
degradation.

8.9 Threats to validity

Internal validity We believe our prototype regex engine is implemented correctly. As a
sanity check, our prototype confirms that each search state is visited at most the number
of times predicted by our theorems. Although our results are consistent with our theorems,

8.9. Threats to validity 173

implementation errors could bias our findings.

External validity The measurements discussed in §8.6.2 and §8.6.3 are on a subset of the
full regex corpus. It is unclear whether our findings generalize to regexes that use additional
features that are not supported by our prototype. Comparing regexes within the sets that
use different features was not among the generalization experiments performed in Chapter 5.

Construct validity We compare different size measurements in Figure 8.7, but believe
we measured appropriate values for each type of encoding.

Chapter 9

Techniques to cap per-client resource
utilization

9.1 Summary

The final ReDoS amelioration approach considered in this dissertation is that of capping the
amount of resources that a client may use. This approach resolves ReDoS Condition 4; if
a malicious client cannot over-consume the web server’s resources, then the client cannot
conduct a ReDoS attack.

There are two classes of ReDoS defenses of this form. They can be described as algorithm-
oriented defenses and time-oriented defenses. Both of these defenses measure the cost of a
regex match, and if that cost exceeds a threshold then the evaluation is short-circuited with
an exception. These defenses vary in how this cost measure is defined. An algorithm-oriented
defense measures resource utilization in terms of the long-running algorithm, in this case the
regex engine implementation. A time-oriented defense measures resource utilization in terms
of wall clock time.

Methodology In this chapter we consider three aspects of the ReDoS amelioration of
resource caps. First, we assess the effectiveness of the existing algorithm-oriented and time-
oriented ReDoS defenses used in mainstream regex engines. We test the proportion of a
corpus of super-linear regexes whose runaway behavior is detected and short-circuited by
these defenses. Second, we measure the extent to these defenses have been adopted by
software engineers since they were added to the corresponding regex engines. The most
user-friendly of these defenses is C#’s time-oriented defense, released in 2012 and off by
default, and we mine software to determine the extent to which software engineers have
adopted it. Third, based on the results of our first two studies, we consider what a time-
oriented resource cap defense might look like if it were designed into a web framework from
scratch.

Findings We report that the two extant algorithm-oriented defenses are ineffective, pro-
tecting only 11% of super-linear regex evaluations in Perl and at most 73% in PHP. The
extant time-oriented defense, in C#, achieved perfect protection in our experiment. Un-

174

9.2. Related work — resource caps in mainstream regex engines 175

fortunately, we also found that this defense is rarely adopted by software engineers. One
conclusion that can be drawn from these findings is that time-oriented defenses are effective
but that software engineers will not adopt them retroactively. We therefore conducted a
case study of incorporating a time-oriented resource cap defense into a web framework from
scratch, and found that we could protect Node.js web applications against ReDoS and a
family of related security vulnerabilities with overheads between 0% and 24% depending on
the workload. We describe the design and implementation considerations involved.

Statement of Attribution The material presented in §9.6 is excerpted from papers pub-
lished at EuroSec 2017 [138] and USENIX Security 2018 [140].

9.2 Related work — resource caps in mainstream regex
engines

Many Spencer-style backtracking regex engines place responsibility for super-linear evalua-
tions on application developers. Application developers are responsible either for ensuring
that their regexes exhibit worst-case acceptable performance in their context, e.g., by com-
posing unambiguous regexes or by sanitizing the input on which their regexes are evaluated.
This approach is discussed in Chapter 6.

Some of these regex engines, however, apply resource caps to control the amount of compu-
tational resources that a given regex match can consume. Their schemes fall into algorithm-
oriented (§9.2.1) and time-oriented (§9.2.2).

9.2.1 Algorithm-oriented solutions

The two regex engines that employ an algorithm-oriented solution are those of PHP and
Perl. This solution is part of the reason that they fall into the “Medium” regex engine
performance class. On many regex evaluations that entail super-linear match complexity
in the “Slow” Spencer-style engines, the regex engines of PHP and Perl detect that the
evaluation is consuming too many resources and short-circuit it with an exception.

Resource usage measures and configurability The PHP and Perl regex engines use
different measures of the resources consumed by their respective algorithms, and vary in
their configurability.

PHP: The PHP regex engine measures resource usage in terms of the number of PHP “back-
tracking frames”, which are equivalent to the BacktrackingPoints from Listing 3. The PHP
regex engine tracks the number of backtracking frames created from a given search state,

176 Chapter 9. Techniques to cap per-client resource utilization

and throws an exception if this number exceeds the recursion_limit. The PHP regex
engine also tracks the cumulative number of backtracking frames created over all search
states, and throws an exception if this number exceeds the backtracking_limit. These
parameters can be tuned from their defaults of 100,000 (recursion_limit) and 1,000,000
(backtracking_limit).1

Perl: Like the PHP regex engine, the Perl regex engine measures resource usage in terms
of the degree of backtracking. The Perl regex engine’s measure is analogous to PHP’s
per-search-state recursion_limit, but is only applied on search states corresponding to
quantified sub-patterns that contain more than one character. Unlike PHP’s engine, Perl’s
engine does not maintain a global cost counter. The Perl engine’s threshold for exceptional
resource usage is called REG_INFTY, defaults to 32,767 (i.e., 215−1), and cannot be configured
by an application.

9.2.2 Time-oriented solutions

Alone among the regex engines built into mainstream programming languages, the .NET
regex engine used by C# offers a time-oriented solution instead. Each of the default .NET
regex match APIs has a sibling API through which an engineer can set a time limit for the
regex match [240].

Resource usage measure In a time-oriented solution, the resource usage measure is
wall clock time. The .NET APIs accept an approximate time limit in milliseconds, and
they throw a Regex.MatchTimeout exception if the time limit is exceeded. These APIs are
somewhat imprecise, because the timer is tested at the top of the backtracking loop and the
time limit may expire at any point during the loop. But because each loop does a small
amount of work as a function of the automaton and the candidate string, they will deliver a
Regex.MatchTimeout if the match time exceeds TimeLimit+ εf(Q,δ,w) for a small ε.

Configurability To employ this solution, a software engineer must identify an appropriate
time limit, and apply it across all regex matches on their application’s critical path.

9.2.3 Solution analysis

Backwards (in-)compatibility Addressing ReDoS by capping resource utilization will
change the API of the regex engine. Instead of always answering a recognition or parse query,
the regex engine may instead reject the query, e.g., by means of an exception. Changing
an API in this manner, whether through an algorithm-oriented approach or a time-oriented

1See http://php.net/manual/en/pcre.configuration.php.

http://php.net/manual/en/pcre.configuration.php

9.3. Study design and research questions 177

approach, has two shortcomings: (1) the API may not actually answer the match query
posed by the software engineer, and (2) the defense cannot be applied to existing applications
without application-level refactoring.

First, introducing an exception into the regex engine’s API may be acceptable in some
contexts, but in others it is not. When a regex is being used to filter invalid input, it is
reasonable to interpret an input that takes a super-linear amount of time as invalid, at least
from the perspective of ensuring that the majority of clients receive acceptable responses.
This was the case in the MediaWiki and Stack Overflow case studies (Chapter 3), as well as
the ReDoS attacks conducted by Staicu and Pradel [307] — typical input was processed with
acceptable latency, and any super-linear evaluations were the result of malicious or highly
abnormal input. But there are ReDoS contexts where treating such inputs as invalid would
be unacceptable. For example in the Cloudflare and Atom case studies, a broad range of
legitimate input required super-linear evaluation times, and rejecting all such regex match
queries would render the affected service unusable for many legitimate clients. An exception
from the regex engine is useful under exceptional circumstances, but cannot be a typical
case.

The second shortcoming is that retrofitting a resource-cap solution into a regex engine cannot
be done in a backwards-compatible manner. In some cases, introducing resource caps may
convert a minor performance problem into a major stability problem (i.e., a crash). The
relative merits of one or the other can be debated, and in some circumstances an explicit
crash may be preferable [196]. But the software engineering community has generally agreed
that backwards compatibility is valuable. As a result, this approach can only be retrofitted
into an existing regex engine in an optional or off-by-default manner. Applications can only
benefit if their maintainers adopt the safe version of the APIs.

Configuration To apply either class of resource caps, a software engineer must determine
an appropriate threshold for resource usage. In an algorithm-oriented approach, this thresh-
old may be difficult for an application developer to identify, because the usage metric is not
defined in terms that an application developer is familiar with. A regex engine developer
could propose a default value, but this would be complicated by variation in the wall-clock
cost of the algorithm based on the underlying hardware. In a time-oriented approach, it
may be easier for an application developer to determine an appropriate threshold based on
business requirements, e.g., their SLOs.

9.3 Study design and research questions

With the preceding discussion in mind, two questions can be asked of existing resource-cap
approaches: are they effective, and will engineers adopt a retrofitted solution?
Theme 1: Analyzing existing resource-cap approaches

178 Chapter 9. Techniques to cap per-client resource utilization

RQ1: How effective are existing resource-cap solutions?
RQ2: How commonly do software engineers adopt a retrofitted resource-cap solution once

it becomes available?

The answers we find to these questions are discouraging — existing algorithm-oriented re-
source caps do not completely protect applications from ReDoS, and even if resource caps
are retrofitted, software engineers do not adopt them. It appears that retrofitting resource
caps is an ineffective solution to ReDoS. These findings raise a third question: how might a
framework be designed from scratch to incorporate resource caps that eliminate ReDoS?

Theme 2: Implementing a resource-cap solution
RQ3: How might a web framework be designed from scratch to incorporate resource caps

that eliminate ReDoS?

9.4 RQ1: How effective are existing resource-cap solu-
tions?

In this section we determine how effective existing resource-cap solutions are. These solutions
are algorithm-oriented (Perl, PHP) and time-oriented (.NET/C#). The general approach
of our experiment is to evaluate super-linear regexes under long attack strings, and then
determine whether or not the defense defeats the attack.

9.4.1 Methodology

Super-linear regexes For this experiment we ran a series of regex match queries on the
regex engines of PHP, Perl, and C#. We used the full set of 51,224 super-linear regexes
extracted from all programming languages in Chapter 5. We filtered these regexes to the
50,435 regexes on which the C# regex engine exhibited super-linear behavior, as the C#
regex engine uses a less optimized backtracking implementation than Perl and PHP do.

Super-linear query structure Following the methodology used in prior chapters, we
issued queries to each regex engine query uses a super-linear regex. We used an attack input
pumped 200,000 times with a timeout of 10 seconds to accommodate the longer launch time
of our C# regex test tool — our experimental setup is Linux-based, so we launched the tool
under wine [206] which is slow to start. For regex engines in the “Slow” family, inputs of this
size take approximately 30 seconds to evaluate on the hardware used in our experimental
setup. We queried the C# regex engine with a timeout of 10 milliseconds, and used the
default parameterization of the resource cap defenses of Perl and PHP.

9.4. RQ1: How effective are existing resource-cap solutions? 179

Table 9.1: The effectiveness of algorithm-oriented resource caps. This table shows
our measurements of the efffectiveness of the resource caps available in Perl, PHP, and C#.
We tested using the corpus of 51,224 super-linear regexes extracted in Chapter 5. *: The
vulnerable behavior in C# is anomalous; see text.

Unsupp. # Linear time # Threw (defended) # Timed out (vuln.)
Perl 3 36,600 332 13,182
PHP 18 13,521 17,595 18,983

.NET (C#) 1 1 49,898 217 *

Measure of successful defense Each match query has four possible outcomes: (1) The
regex was not supported by the regex engine’s dialect; (2) The input matched or mismatched
(e.g., avoiding super-linear behavior through regex engine optimizations); (3) Exceptional
(defense mechanism worked); or (4) Timed out (defense mechanism failed).

Outcomes (1) and (2) are uninteresting for this experiment. Outcome (3) indicates that
the regex engine’s defense mechanism was successful. Outcome (4) indicates that the regex
engine’s defense mechanism failed.

9.4.2 Results and Analysis

Of the 51,224 regexes in the corpus, 50,435 exhibited super-linear behavior in C# in our
experimental conditions. We were able to collect full measurements on 50,117 regexes, with
a few measurements missing due to miscellaneous errors.

The results of this experiment are summarized in Table 9.1. Analyzing these results yields
three findings:

1. Perl has stronger optimizations than PHP: Among the super-linear regexes they support,
Perl is able to produce a linear-time response to the query far more frequently than PHP.

2. PHP has stronger resource caps than Perl: For the regexes that they cannot handle in
linear time, PHP’s resource caps are much more successful than Perl’s. PHP delivers an
exception for 48% of these regexes, while Perl delivers an exception only 2% of the time.
PHP’s success is unsurprising in light of our analysis in §9.2.1, as its regex engine uses a
measure of cost that is cumulative across the entire regex match.

3. Time-oriented resource caps are consistently stronger: Although PHP’s algorithm-oriented
caps were superior to Perl’s, it is clear that the .NET framework’s time-oriented resource
cap was consistently more effective than both. The .NET regex engine honored the 10-
millisecond timeout we applied to all of the super-linear regexes we tested in C#-Mono.
Although 217 of the super-linear regexes timed out in our experiments, this appears to
have been an artifact of our measurement instruments. Inspection of the logs showed
that these timeouts occurred on a single node and that the timeouts were associated with

180 Chapter 9. Techniques to cap per-client resource utilization

launching wine, not the regex match.

Tuning We performed this experiment using the default parameters for the algorithm-
oriented defenses. It is possible that by tuning these parameters we could achieve a level of
defensive effectiveness comparable to that of the .NET regex engine.

9.5 RQ2: How commonly do software engineers adopt
a retrofitted resource-cap solution once it becomes
available?

The resource-cap solutions used in the PHP, Perl, and .NET regex engines were all added
after their respective initial releases. In this study, we evaluate the extent to which software
engineers have adopted these defenses after they were retrofitted. In our opinion, the doc-
umentation and configuration of the .NET’s time-oriented approach lends itself far more to
adoption than the algorithm-oriented parameters of PHP, and Perl does not permit users
to tune its parameter. Therefore, in this experiment we considered the adoption of .NET’s
timeouts, which were added in 2012 [44].

9.5.1 Methodology

Specifying a timeout in .NET Within the .NET regex engine used by C#, the time
limit associated with a regex match can be specified in three ways. First, it can be set globally
for all matches via the AppDomain REGEX_DEFAULT_MATCH_TIMEOUT property. Second, it can be
specified for all uses of a Regex via an optional TimeSpan parameter in the constructor. Lastly,
it can be set in individual static regex method calls by supplying a TimeSpan parameter along
with the regex pattern and candidate string.

Software to analyze For consistency with our established software selection methodology,
we studied the use of regexes within software modules written in the .NET framework. We
studied all clone-able projects in the C# package ecosystem, NuGet. At the time of our
analysis NuGet had 135,125 modules, although many were derived from the same project
repository in the monorepo style. We were able to clone 35,194 distinct project repositories
for study.

Extracting regexes and usage For each project, we used static analysis to identify
the use of the global Regex timeout as well as the various uses of regexes: new Regex and
Regex method calls. We could not identify a convenient Linux-based AST generator for

9.5. RQ2: How commonly do software engineers adopt a retrofitted
resource-cap solution once it becomes available? 181

C# so we wrote a custom parser focused on regexes. To identify regexes with super-linear
behavior, we used our standard ReDoS detector ensemble and dynamically confirmed super-
linear behavior using a C#-Mono program. We did not employ the regex variants that we
introduced in our later research.

Specific questions Our analysis focused on two questions: (1) Do developers make fre-
quent use of timeouts, and (2) Do developers tend to use timeouts on super-linear regexes?
As the application of timeouts can be on a per-use basis, when a regex is used multiple times
we consider each use.

9.5.2 Results and Analysis

Summary of regex extraction Here is a general snapshot of our findings for comparison
with our earlier regex extractions (cf. Table 5.5). Among the 35,194 projects, 2,812 (8%)
used regexes. In these modules we identified a total of 12,213 unique regexes. Of these, 826
regexes exhibited super-linear behavior in the .NET regex engine, 97 exponentially so.

Timeouts are rarely used We found that these projects rarely used timeouts. As shown
in Table 9.2, 95% of calls to the Regex constructor do not request a timeout, meaning that
subsequent uses of Regex methods for these patterns will not be protected by a timeout.
Similarly, 98% of static calls to Regex methods — i.e., the calls that specify both regex
pattern and candidate string — do not use a timeout. From another perspective, in the
third row we can see that only 5% of the modules ever made use of a timeout feature.

The last row of Table 9.2 includes both local (per-regex or per-use) timeouts and global
timeouts. Only 7 projects used the global REGEX_DEFAULT_MATCH_TIMEOUT property. These
projects were not heavy users of regexes, so the global timeout protected a total of 22 regex
occurrences (new Regex or static method calls).

Timeouts are not used on super-linear regexes We found that the use of timeouts
appears to be unrelated to the worst-case behavior of the regex evaluations being capped.
In Table 9.3 we compare the worst-case behavior of regexes compared to the use of timeouts,.
This table includes only static calls to Regex methods, which encode the regex directly and
are thus only protected by a global timeout or one provided in the same call. We can see
that developers do not seem to use timeouts when it might be advisable to do so. Only
1.5% of the uses of timeouts protected vulnerable regexes (top row), and 0.5% of calls using
vulnerable regexes were made with a timeout (right column).

Based on these findings, we conclude that software engineers do not typically retrofit regex
resource limitations into their software.

182 Chapter 9. Techniques to cap per-client resource utilization

Table 9.2: Adoption of regex match timeouts in C# projects. The first two columns
list the number of occurrences with and without timeouts. In the final column are the number
of regex occurrences that our custom parser could not handle. The first two rows cover all
uses of the Regex APIs, including occurrences using dynamically-defined patterns (which are
omitted in Table 9.3). The third row indicates the number of C# projects that ever used a
timeout, either globally or in any regex declaration or static method call.

Used timeout No timeout Unparseable
Per-call: Constructor 959 22,306 210

Per-call: Static methods 599 27,151 0

Per-project: Any usage 130 2,682 N/A

Table 9.3: Adoption of C# timeouts in super-linear regex method calls. Use of
timeouts in static regex method calls containing a parseable, statically-defined regex pattern.
Regexes were deemed super-linear or linear-time using dynamic validation in a standalone
C#-Mono program. Among the regexes with resource-limited evaluations, most would evalu-
ate in linear-time anyway.

Linear-time # Super-linear
Timeout 203 3

No timeout 16,640 513

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 183

9.6 RQ3: How might a web framework be designed
from scratch to incorporate resource caps?

In RQ1, we found that time-oriented resource caps were more effective and easier to tune
than algorithm-oriented ones. In RQ2, however, we found that time-oriented resource caps
are rarely adopted after they are retrofitted into a regex engine. These results suggest that
the time-oriented approach is superior, but that retrofitting such an approach is unlikely to
see widespread adoption.

In this section, we examine the from-scratch design and implementation of a time-oriented
defense for ReDoS. We are exploring the solution space for a time-oriented defense, and thus
can generalize from ReDoS to a larger family of denial of service vulnerabilities. We embody
our work in the server-side event-driven architecture (EDA) used by the popular Node.js
framework.

Web frameworks that use the EDA, as Node.js does, avoid threading overheads by having a
small number of threads handle requests from many clients. This multiplexing is achieved
using cooperative multi-tasking, partitioning client requests into events that are handled in
atomic steps. Applications then switch between pending clients at the boundaries between
event handlers. If the application developer does not ensure that each of these steps completes
quickly, then they run the risk of permitting a single client to dominate one of a limited set
of resources, i.e., “poisoning” one of these event-handling threads. When an attacker can
exhaust a limited set of resources, a denial of service vulnerability exists. ReDoS is a notable
example of such a vulnerability in this architecture: super-linear regexes are common, regex
evaluations typically run in super-linear time with no resource caps, and a super-linear regex
evaluation can cause an event handler to run far longer than normal [266].

This section proceeds as follows. We first introduce Node.js and its vulnerable software
architecture (§9.6.1). Next we place ReDoS within a broader family of security vulnerabilities
affecting EDA-based applications (§9.6.2). Then we describe a defense strategy, First-Class
Timeouts, which applies a time-oriented defense to cap each client’s resource utilization
(§9.6.3). Finally we discuss first-class timeouts in terms of our implementation (§9.6.4) and
evaluation (§9.6.5).

Statement of Attribution The material presented in this section is excerpted from a
paper published at USENIX Security 2018 [140]. An early version of this work appeared at
the EuroSec workshop in 2017 [138].

184 Chapter 9. Techniques to cap per-client resource utilization

9.6.1 Solution context: The server-side EDA

Web service architectures Many web services are built using two popular software ar-
chitectures: the One Thread Per Client Architecture (OTPCA) and the Event-Driven Archi-
tecture (EDA). The OTPCA and the EDA architectures differ in the resources they dedicate
to each client. As Pariag et al. summarized [275], the OTPCA dedicates resources to each
client, for strong isolation but higher memory and context-switching overheads. The EDA
tries the opposite approach and reverses these tradeoffs. In the EDA, many client connec-
tions are multiplexed onto a small number of threads, leading to weak isolation but lower
threading overheads.

Usage of the EDA in industry The EDA has only recently become a mainstream archi-
tecture for web services. Although EDA approaches have been discussed and implemented in
the academic and professional communities for decades (e.g. [74, 150, 175, 289, 318, 337]),
historically the EDA was only applied in user interface settings. The EDA has become widely
used in web services thanks to the adoption of Node.js, an EDA-based server-side JavaScript
framework [16, 17, 48, 51, 54, 185, 265, 272].2

The EDA paradigm and vocabulary To the best of our knowledge, all server-side EDA
frameworks use the Asymmetric Multi-Process Event-Driven (AMPED) architecture [273].3
This architecture (hereafter “the EDA”) is illustrated in Figure 9.1. In the EDA the OS,
or a framework, places events in a queue, and the callbacks of pending events are executed
sequentially by the Event Loop. The Event Loop may offload expensive tasks such as file
I/O to the queue of a small Worker Pool, whose workers execute tasks and generate “task
done” events for the Event Loop when they finish [154]. We refer to the Event Loop and the
Workers as Event Handlers.

Because the Event Handlers are shared by all clients, the EDA requires a particular develop-
ment paradigm. Each callback and task is guaranteed atomicity: once scheduled, it runs to
completion on its Event Handler. Because of the atomicity guarantee, if an Event Handler
blocks, the time it spends being blocked is wasted rather than being preempted. Without
preemptive multitasking, developers must implement cooperative multitasking to avoid star-
vation [298]. They do this by partitioning the handling of each client request into multiple
stages, typically at I/O boundaries. For example, with reference to Figure 9.1, a callback
might perform some string operations in CBA1, then offload a file I/O to the Worker Pool
in TaskA1 so that another client’s request can be handled on the Event Loop. The result of

2The popularity of Node.js may be driven less by performance considerations and more by business needs.
One of the premises of Node.js is “full stack JavaScript.” In this model, client- and server-side engineers can
use the same programming language and share the same libraries, potentially reducing overall engineering
costs.

3For example, this is the architecture used by Node.js, libuv (C/C++), EventMachine (Ruby), Vert.x
(Java), Zotonic (Erlang), and Twisted (Python).

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 185

Figure 9.1: Illustration of the Event-Driven Architecture. This figure illustrates the
EDA as it is commonly implemented in server-side frameworks. In particular, the figure
illustrates the AMPED EDA. Incoming events from clients A and B are stored in the event
queue, and the associated callbacks (CBs) will be executed sequentially by the Event Loop.
Client B has conducted a successful denial-of-service attack by poisoning one of the server’s
Event Handlers.

this partitioning is a per-request lifeline [68], a DAG describing the partitioned steps needed
to complete an operation. A lifeline can be seen by following the arrows in Figure 9.1.

9.6.2 Attack: Event Handler Poisoning

In this section we define Event Handler Poisoning (EHP) attacks and estimate their incidence
in practice.

9.6.2.1 Attack definition

Summary The EDA offers scalability, but its use carries risks: multiplexing destroys
isolation. The EDA moves the burden of time sharing out of the OS and into the application
itself. Without the preemptive multitasking assumed by OTPCA-based services, EDA-based
services must enforce their own cooperative multitasking [298]. If cooperative multitasking
is not enforced, one request can unfairly dominate the time spent by an Event Handler,
preventing the server from handling other clients and leading to denial of service. In the
style of an algorithmic complexity attack [136], we assume that the service’s average-case
request latency and throughput is acceptable.

Threat model We assume a relatively strong attacker. The victim is an EDA-based server
with an Event Handler Poisoning (EHP) vulnerability. The attacker knows how to exploit

186 Chapter 9. Techniques to cap per-client resource utilization

this vulnerability: they know the victim provides user input to a vulnerable API, and they
know evil input that will cause the vulnerable API to block the Event Handler executing
it. This may require knowledge of the web service’s implementation, but Staicu and Pradel
have demonstrated that educated guesses may suffice [307].

Vulnerable APIs Recall the EDA illustrated in Figure 9.1. As discussed in §9.6.1, a
client request is handled by a lifeline, a sequence of operations partitioned into one or more
callbacks and tasks. A lifeline is a DAG whose vertices are callbacks or tasks and whose
edges are events or task submissions.

We define the total complexity of a lifeline as the cumulative complexity of all of its vertices as
a function of their cumulative input. The synchronous complexity of a lifeline is the greatest
individual complexity among its vertices. Two EDA-based services may have lifelines with
the same total complexity if they offer the same functionality, but these lifelines may have
different synchronous complexity due to different choices of partitions. While computational
complexity is an appropriate measure for compute-bound vertices, time may be a more
appropriate measure for vertices that perform I/O. Consequently, we define a lifeline’s total
time and synchronous time analogously.

If there is a difference between a lifeline’s average and worst-case synchronous complexity
(time), then we call this a vulnerable lifeline.4 We attribute the root cause of the difference
between average and worst-case performance to a vulnerable API invoked in the problematic
vertex.

The notion of a “vulnerable API” is a convenient abstraction. The trouble may of course
not be an API at all but the use of an unsafe language feature (e.g. ReDoS). If an API is
asynchronous, it may itself be partitioned and have its own sub-Lifeline. In this case we are
concerned about the costs of its vertices.

Event Handler Poisoning attacks An EHP attack exploits an EDA-based service with
an incorrect implementation of cooperative multitasking. The attacker identifies a vulner-
able lifeline (server API) and poisons the Event Handler that executes the corresponding
large-complexity callback or task with evil input. This evil input causes the Event Handler
executing it to block, starving pending requests.

An EHP attack can be carried out against either the Event Loop or the Workers in the
Worker Pool. A poisoned Event Loop brings the server to a halt, while the throughput of
the Worker Pool will degrade for each simultaneously poisoned Worker. Thus, an attacker’s
aim is to poison either the Event Loop or enough of the Worker Pool to harm the throughput
of the server. Based on typical Worker Pool sizes, we assume the Worker Pool is small enough
that poisoning it will not attract the attention of network-level defenses.

4Differences in complexity are well defined. For differences in I/O time we are referring to performance
outliers.

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 187

Listing 11 File server with two Event Handler Poisoning vulnerabilities: ReDoS
(Line 2) and ReadDoS (Line 3).

def serveFile(name):
if name.match(/(\/.+)+$/): # ReDoS
data = await readFile(name) # ReadDoS
client.write(data)

Since the EDA relies on cooperative multitasking, a lifeline’s synchronous complexity (time)
provide theoretical and practical bounds on how vulnerable it is. Note that a lifeline with
large total complexity (time) is not vulnerable so long as each vertex (callback/task) has
small synchronous complexity (time). It is for this reason that not all AC attacks can be
used for EHP attacks. If an AC attack triggers large total complexity (time) but not large
synchronous complexity (time) then it is not an EHP attack. For example, an AC attack
could result in a lifeline with O(n2) callbacks each costing O(1). Although many concurrent
AC attacks of this form would degrade the service’s throughput, this would comprise a DDoS
attack, which is outside our threat model.

Not all DoS attacks are EHP attacks. An EHP attack must cause an Event Handler to
block. This blocking could be due to computation or I/O, provided it takes the Event
Handler a long time to handle. Other ways to trigger DoS, such as crashing the server
through unhandled exceptions or memory exhaustion, are not time oriented and are thus
out of scope. Distributed denial of service (DDoS) attacks are also out of scope; they consume
a server’s resources with myriad light clients providing normal input, rather than one heavy
client providing malicious input.

We conjecture that EHP attacks have not previously been explored because the EDA has
only recently seen popular adoption by the server-side community. On the client side EHP
attacks are not a concern, as misbehaving users will hurt only themselves. On the server
side, the lack of isolation permits one malicious client to affect others.

Two EHP attacks To illustrate EHP attacks, we developed a minimal vulnerable file
server with EHP vulnerabilities common in real npm modules as described in §9.6.2.2. List-
ing 11 shows pseudocode, with the EHP vulnerabilities indicated.

The regular expression on Line 2 is vulnerable to ReDoS. A string composed of /’s followed by
a newline takes exponential time to evaluate in Node.js’s regular expression engine, poisoning
the Event Loop in a CPU-bound EHP attack.

The second EHP vulnerability is on Line 3. Our server has a directory traversal vulnerability,
permitting clients to read arbitrary files. In the EDA, directory traversal vulnerabilities can
be parlayed into I/O-bound EHP attacks, “ReadDoS”, provided the attacker can identify a

188 Chapter 9. Techniques to cap per-client resource utilization

Figure 9.2: Performance impact of an Event Handler Poisoning attack. This
figure shows the effect of evil input on the throughput of a server based on Listing 11,
with realistic vulnerabilities. Legitimate requests came from 80 clients using the Apache
benchmarking tool ab from another machine. The attacks are against either baseline Node.js
(grey) or our prototype, Node.cure (black). For ReDoS (triangles), evil input was injected
after three seconds, poisoning the baseline Event Loop. For ReadDoS (circles), evil input was
injected four times at one second intervals beginning after three seconds, eventually poisoning
the baseline Worker Pool’s four threads. The lines for Node.cure show its effectiveness against
these EHP attacks. When attacked, Node.cure’s throughput dips until a TimeoutError aborts
the malicious request(s), after which its throughput temporarily rises as it bursts through the
built-up queue of pending events or tasks.

slow file from which to read.5 Since Line 3 uses the asynchronous framework API readFile,
each ReadDoS attack on this server will poison a Worker in an I/O-bound EHP attack.

Figure 9.2 shows the impact of EHP attacks on baseline Node.js, as well as the effectiveness
of our Node.cure prototype. The methodology is described in the caption. On baseline
Node.js these attacks result in complete DoS, with zero throughput. Without Node.cure
the only remedy would be to restart the server, dropping all existing client connections.
Unfortunately, restarting the server would not solve the problem, since the attacker could
simply submit another malicious request. With Node.cure the server can return to its steady-
state performance.

The architecture-level behavior of the ReDoS attack is illustrated in Figure 9.1. After client

5In addition to files exposed on network file systems, /dev/random is a good example of a slow file.

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 189

A’s benign request is sanitized (CBA1), the readFile task goes to the Worker Pool (TaskA1),
and when the read completes the callback returns the file content to A (CBA2). Then client
B’s malicious request arrives and triggers ReDoS (CBB1), dropping the server throughput to
zero. The ReadDoS attack has a similar effect on the Worker Pool, with the same unhappy
result.

Comparison to OTPCA EHP attacks are only possible when clients share execution
resources. In the OTPCA, a blocked client affects only its own thread, and frameworks such
as Apache support thousands of “Event Handlers” (client threads) [159]. In the EDA, all
clients share one Event Loop and a limited Worker Pool. For example, in Node.js the Worker
Pool can contain at most 128 Workers. Exhausting the set of Event Handlers in the OTPCA
requires a DDoS attack, while exhausting them in the EDA is trivial if an EHP vulnerability
can be found.

9.6.2.2 Study of reported EHP vulnerabilities in npm

Modern software commonly relies on open-source libraries [286], and Node.js applications
are no exception. Third-party libraries from the Node.js/JavaScript package registry, npm,
are frequently used in production [59]. As a result, EHP vulnerabilities in npm may translate
directly into EHP vulnerabilities in Node.js servers. For example, Staicu and Pradel have
demonstrated that many ReDoS vulnerabilities in popular npm modules can be used for
EHP attacks in hundreds of websites from the Alexa Top Million [307].

In this section we present an EHP-oriented analysis of the security vulnerabilities reported
in npm modules. As shown in Figure 9.3, we found that 35% (403/1132) of the security
vulnerabilities reported in an npm vulnerability database could be used as an EHP vector.

Methodology We examined the vulnerabilities in npm modules reported in the database
of Snyk.io, a security company that monitors open-source library ecosystems for vulnerabil-
ities. We also considered the vulnerabilities in the CVE database and the Node Security
Platform database, but found that these databases were subsets of the Snyk.io database.

We obtained a dump of Snyk.io’s npm database in June 2018. Each entry was somewhat
unstructured, with inconsistent CWE IDs and descriptions of different classes of vulnerabil-
ities. Based on its title and description, we assigned each vulnerability to one of 17 main
categories based on those used by Snyk.io. We used regular expressions to ensure our clas-
sification was consistent. We iteratively improved our regular expressions until we could
automatically classify 93% of the vulnerabilities, and marked the remaining 7% as “Other”.

Some of the reported security vulnerabilities could be used to launch EHP attacks: Direc-
tory Traversal vulnerabilities that permit arbitrary file reads, Denial of Service vulnerabilities

190 Chapter 9. Techniques to cap per-client resource utilization

Figure 9.3: EHP vulnerabilities in npm modules. Classification of the 1132 npm
module vulnerabilities, by category and by usefulness in EHP attacks.

(those that are CPU-bound, e.g. ReDoS), and Arbitrary File Write vulnerabilities. We iden-
tified such vulnerabilities using regular expressions on the descriptions of the vulnerabilities
in the database, manually verifying the results. In the few cases where the database de-
scription was too terse, we manually categorized vulnerabilities based on the issue and patch
description in the module’s bug tracker and version control system.

Results Figure 9.3 shows the distribution of vulnerability types, absorbing categories with
fewer than 20 vulnerabilities into the aforementioned “Other” category. A high-level CWE
number is given next to each class.

The dark bars in Figure 9.3 show the 403 vulnerabilities (35%) that can be employed in an
EHP attack under our threat model. The 266 EHP-relevant Directory Traversal vulnerabili-
ties are exploitable because they allow arbitrary file reads, which can poison the Event Loop
or the Worker Pool through ReadDoS. The 121 EHP-relevant Denial of Service vulnerabili-
ties poison the Event Loop; 115 are ReDoS,6 and the remaining 11 can trigger infinite loops
or worst-case performance in inefficient algorithms. In Other are 11 Arbitrary File Write
vulnerabilities that, similar to ReadDoS, can be used for EHP attacks by writing to slow
files.

6The proportion of ReDoS vulnerabilities in the Snyk.io database may be skewed by a recent academic
interest in ReDoS, from both Staicu and Pradel’s work [307] and our own efforts described in Chapter 4.

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 191

9.6.3 Defense: First-Class Timeouts

In this section we analyze two paths to EHP-safety in the EDA. EHP vulnerabilities stem
from vulnerable APIs that fail to provide fair cooperative multitasking. If a service cannot
provide a (small) bound on the synchronous time of its APIs, then it is vulnerable to EHP
attacks. Conversely, if an application can bound the synchronous time of its APIs, then it is
EHP-safe. An EHP attack can be addressed in two places: (1) at the source, the vulnerable
API, or (2) at the symptom, the poisoned Event Handler. Either the vulnerable API can be
refactored, or a poisoned Event Handler can be identified and healed.

Ultimately we recommend First-Class Timeouts as a universal defense with strong security
guarantees. Since time is a precious resource in the EDA, built-in TimeoutErrors are a
natural mechanism to protect it. Just as OutOfBoundsErrors allow applications to detect
and react to buffer overflow attacks, so TimeoutErrors allow EDA-based applications to
detect and react to EHP attacks.

9.6.3.1 Prevent through partitioning

An API is vulnerable if there is a difference between its average-case and worst-case syn-
chronous costs, provided of course that this worst-case cost is unbearable. A service can
achieve EHP safety by statically bounding the cost of each of its APIs, both those that it
invokes and those that it defines itself. For example, a developer could partition every API
into a sequence of Constant Worst-Case Execution Time stages. Such a partitioning would
render the service immune to EHP attacks since it would bound the synchronous complexity
and time of each lifeline.

9.6.3.2 Detect and react through timeouts

The goal of the partitioning approach is to bound a lifeline’s synchronous complexity as a
way to bound its synchronous time. Instead of statically bounding an API’s synchronous
complexity through program refactoring, using timeouts we can dynamically bound its syn-
chronous time. Then the worst-case complexity of each callback and task would be irrelevant,
because they would be unable to take more than the quantum provided by the runtime. In
this approach, the runtime detects and aborts long-running callbacks and tasks by emitting
a TimeoutError, thrown from synchronous code (callbacks) and returned from asynchronous
code (tasks).

We refer to this approach as First-Class Timeouts. First-class timeouts are distinct com-
pared to the two existing timeout schemes. One timeout scheme is per-API, e.g. the timeout
option in the .NET framework’s regular expression API to combat ReDoS. Another timeout
scheme is on a per-process or per-thread basis. For example, desktop and mobile operating
systems commonly use a heartbeat mechanism to detect and restart unresponsive applica-

192 Chapter 9. Techniques to cap per-client resource utilization

tions, and in the OTPCA a client thread can easily be killed and replaced if it exceeds a
timeout. This approach fails in the EDA because clients are not isolated on separate execu-
tion resources. Detecting and restarting a blocked Event Loop will break all existing client
connections, resulting in DoS. Because of this, timeouts must be a first-class member of an
EDA framework, non-destructively guaranteeing that no Event Handler can block.

9.6.3.3 Analysis

Soundness The partitioning approach can prevent EHP attacks that exploit operations
with high computational complexity. However, soundly preventing EHP attacks by this
means is difficult since it requires case-by-case changes. In addition, it is not clear how to
apply the partitioning approach to I/O. At the application level, I/O can be partitioned
at the byte granularity, but an I/O may be just as slow for 1 byte as for 1 MB. If an OS
offers truly asynchronous I/O interfaces then these provide an avenue to more fine-grained
partitioning, but unfortunately Linux’s asynchronous I/O mechanisms are incomplete for
both file I/O and DNS resolution.

If timeouts are applied systematically across the software stack (application, framework,
language), then they offer a strong guarantee against EHP attacks. When a timeout is
detected, the application can respond appropriately to it. The difficulty with timeouts is
choosing a threshold [278], since a too-generous threshold still permits an attacker to disrupt
legitimate requests. As a result, if the timeout threshold cannot be tightly defined, then it
ought to be used in combination with a blocklist; after observing a client request time out,
the server should drop subsequent connections from that client.

Refactoring cost Both of these approaches incur a refactoring cost. For partitioning the
cost is prohibitive. Any APIs invoked by an EHP-safe service must have (small) bounded
synchronous time. To guarantee this bound, developers would need to re-implement any
third-party APIs with undesirable performance. This task would be particularly problematic
in a module-dominated ecosystem similar to Node.js. As the composition of safe APIs may
be vulnerable,7 application APIs might also need to be refactored. The partitioning approach
must be done in a case-by-case manner, and future service development and maintenance
would need to preserve the bounds required by the service.

For timeouts, we perceive a lower refactoring cost. The timeout must be handled by applica-
tion developers, but they can do so using existing exception handling mechanisms. Adding
a new try-catch block should be easier than re-implementing functionality in a partitioned
manner.

7For example, consider while(1){}, which makes an infinite sequence of constant-time language “API
calls”.

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 193

Our recommendation We believe that relying on developers to implement fair cooper-
ative multitasking via partitioning is unsafe. Just as modern languages offer null pointer
exceptions and buffer overflow exceptions to protect against common security vulnerabili-
ties, so too should modern EDA frameworks offer timeout exceptions to protect against EHP
attacks.

9.6.4 Implementation of First-Class Timeouts in Node.js

Next we describe our implementation of Node.cure, a prototype implementation of first-
class timeouts for Node.js. Supporting first-class timeouts requires changes across the entire
Node.js stack [161], from the language runtime (V8), to the event-driven library (libuv), and
to the Node.js core libraries.

Though first-class timeouts are conceptually simple, realizing them in a real-world framework
such as Node.js is not trivial. For soundness, every aspect of the Node.js framework must
be able to emit TimeoutErrors without compromising the system state, from the language
to the libraries to the application logic, and in both synchronous and asynchronous aspects.
For practicality, monitoring for timeouts must be lightweight, lest they cost more than they
are worth.

Desired behavior of first-class timeouts We want to bound the synchronous time of
every callback and task and deliver a TimeoutError if this bound is exceeded. A long-running
callback poisons the Event Loop; with first-class timeouts a TimeoutError should be thrown
within such a callback. A long-running task poisons its Worker; such a task should be
aborted and fulfilled with a TimeoutError.

To ensure soundness, we begin with a taxonomy of the places where vulnerable APIs can
be found in a Node.js application. The subsequent subsections describe how we provide
TimeoutErrors across this taxonomy, and touch on some optimizations.

9.6.4.1 Taxonomy of vulnerable Node.js APIs

Table 9.4 classifies vulnerable APIs along three axes. Along the first two axes, a vulnerable
API affects either the Event Loop or a Worker, and it might be CPU-bound or I/O-bound.
Along the third axis, a vulnerable API can be found in the language, the framework, or the
application. In our evaluation we provide an exhaustive list of vulnerable APIs for Node.js at
the time of this study (§9.6.5.1). Although the examples in Table 9.4 are specific to Node.js,
the same general classification can be applied to other EDA frameworks.

194 Chapter 9. Techniques to cap per-client resource utilization

Table 9.4: Taxonomy of vulnerable APIs in Node.js, with examples. An EHP attack
through a vulnerable API poisons the Event Loop or a Worker, and its synchronous time is
due to CPU-bound or I/O-bound activity. A vulnerable API might be part of the language,
framework, or application, and might be synchronous (runs on the Event Loop) or asyn-
chronous (runs on the Worker Pool). zlib is the Node.js compression library. N/A: At the
time of this study, JavaScript has no native Worker Pool nor any I/O APIs. At present,
the Web Workers proposal is increasingly relevant and support for Web Workers should be
included in any future embodiment of First Class Timeouts. We do not consider memory
access as I/O.

Vuln. APIs Event Loop (§9.6.4.3) Worker Pool (§9.6.4.2)
CPU-bound I/O-bound CPU-bound I/O-bound

Language Regexp, JSON N/A N/A N/A
Framework Crypto, zlib FS Crypto, zlib FS, DNS
Application while(1) DB query Regexps via [18] DB query

9.6.4.2 Timeout-aware tasks

EHP attacks targeting the Worker Pool use vulnerable APIs to submit long-running tasks
that poison a Worker. Node.cure defends against such attacks by bounding the synchronous
time of tasks. Node.cure short-circuits long-running tasks with a TimeoutError.

Timeout-aware Worker Pool Node.js’s Worker Pool is implemented in libuv. As illus-
trated in Figure 9.1, the Workers pop tasks from a shared queue, handle them, and return
the results to the Event Loop. Each Worker handles its tasks synchronously.

We modified the libuv Worker Pool to be timeout-aware, replacing libuv’s Workers with
Executors that combine a permanent Manager with a disposable Worker. Every time a
Worker picks up a task, it notifies its Manager. If the task takes the Worker too long,
the Manager kills it with a Hangman and creates a new Worker. The long-running task
is returned to the Event Loop with a TimeoutError for processing, while the new Worker
resumes handling tasks. These roles are illustrated in Figure 9.4.

This design required several changes to the libuv Worker Pool API. The libuv library exposes
a task submission API uv_queue_work, which we extended as shown in Table 9.5. Workers
invoke work, which is a function pointer describing the task. On completion the Event Loop
invokes done. This is also the typical behavior of our timeout-aware Workers. When a
task takes too long, however, the potentially-poisoned Worker’s Manager invokes the new
timed_out callback. If the submitter does not request an extension, the Manager creates a
replacement Worker so that it can continue to process subsequent tasks, creates a Hangman

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 195

Figure 9.4: Node.cure’s Event Handler Poisoning-proof architecture. This figure
illustrates Node.cure’s timeout-aware Worker Pool, including the roles of Event Loop, ex-
ecutors (both worker pool and priority), and Hangman. Grey entities were present in the
original Worker Pool, and black are new. The Event Loop can synchronously access the
Priority Executor, or asynchronously offload tasks to the Worker Pool. If an Executor’s
manager sees its worker time out, it creates a replacement worker and passes the dangling
worker to a Hangman.

thread for the poisoned Worker, and notifies the Event Loop that the task timed out. The
Event Loop then invokes its done callback with a TimeoutError, permitting a rapid response
to evil input. Concurrently, once the Hangman successfully kills the Worker thread, it
invokes the task’s killed callback for resource cleanup, and returns. We used synchronization
primitives to prevent races when a task completes just after it is declared timed out.

Differentiating between timed_out and killed permits more flexible error handling, but
introduces technical challenges. If a rapid response to a timeout is unnecessary, then it is
simple to defer done until killed finishes, since they run on separate threads. If a rapid
response is necessary, then done must be able to run before killed finishes, resulting in
a dangling worker problem: an API’s work implementation may access externally-visible
state after the Event Loop receives the associated TimeoutError. We addressed the dangling
worker problem in Node.js’s Worker Pool customers using a mix of killed-waiting, message
passing, and blocklisting.

Affected APIs The Node.js APIs affected by this change (viz. those that create tasks)
are in the encryption, compression, DNS, and file system modules. In all cases we allowed
timeouts to proceed, killing the long-running Worker. Handling encryption and compression
was straightforward, while the DNS and file system APIs were more complex.

Node.js’s asynchronous encryption and compression APIs are implemented in Node.js C++
bindings by invoking APIs from openssl and zlib, respectively. If the Worker Pool notifies
these APIs of a timeout, they wait for the Worker to be killed before returning, to ensure it

196 Chapter 9. Techniques to cap per-client resource utilization

Table 9.5: Summary of our extended Worker Pool API. This table summarizes our
extended Worker Pool API to support first-class timeouts in Node.cure. The work function is
invoked on the Worker. The done callback is invoked on the Event Loop. The new callbacks,
timed_out and killed, are invoked on the Manager and the Hangman, respectively. On a
timeout, work, timed_out, and done are invoked, in that order; there is no ordering between
the done and killed callbacks, which sometimes requires reference counting for safe memory
cleanup. *New callbacks.

Callback Description
void work Perform task.

int timed_out* When task has timed out. Can request extension.
void done When task is done. Special error code for timeout.
void killed* When a timed_out task’s thread has been killed.

no longer modifies state in these libraries nor accesses memory that might be released after
done is invoked. Since openssl and zlib are purely computational, the dangling worker is
killed immediately.

Node.js implements its file system and DNS APIs by relying on libuv’s file system and
DNS support, which on Linux make the appropriate calls to libc. Because the libuv file
system and DNS implementations share memory between the Worker and the submitter, we
modified them to use message passing for memory safety of dangling workers — wherever the
original implementation’s work accessed memory owned by the submitter, e.g. for read and
write, we introduced a private buffer for work and added copyin/copyout steps. In addition,
we used pthread_setcancelstate to ensure that Workers will not be killed while in a non-
cancelable libc API [27]. DNS queries are read-only so there is no risk of the dangling worker
modifying external state. In the file system, write modifies external state, but we avoid any
dangling worker state pollution via blocklisting. Our blocklisting-based Slow Resource policy
is discussed in more detail in §9.6.4.6.

At the top of the Node.js stack, when the Event Loop sees that a task timed out, it invokes
the application’s callback with a TimeoutError.

9.6.4.3 Timeouts for callbacks

Node.cure defends against EHP attacks that target the Event Loop by bounding the syn-
chronous time of callbacks. To make callbacks timeout-aware, we introduce a TimeoutWatch-
dog that monitors the start and end of each callback and ensures that no callback exceeds
the timeout threshold. We time out JavaScript instructions using V8’s interrupt mechanism,
and we modify Node.js’s C++ bindings to ensure that callbacks that enter these bindings

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 197

will also be timed out.

Timeouts for JavaScript TimeoutWatchdog. Our TimeoutWatchdog instruments every
callback using the experimental Node.js async-hooks module [19], which allows an applica-
tion to register special callbacks before and after a callback is invoked.

Before a callback begins, our TimeoutWatchdog starts a timer. If the callback completes
before the timer expires, we erase the timer. If the timer expires, the watchdog signals V8
to interrupt JavaScript execution by throwing a TimeoutError. The watchdog then starts
another timer, ensuring that recursive timeouts while handling the previous TimeoutError
are also detected. While an infinite sequence of TimeoutErrors is possible with this approach,
this concern seems more academic than practical.8

V8 interrupts. To handle the TimeoutWatchdog’s request for a TimeoutError, Node.cure
extends the interrupt infrastructure of Node.js’s V8 JavaScript engine to support timeouts.
In V8, low priority interrupts such as a pending garbage collection are checked regularly
(e.g. each loop iteration, function call, etc.), but no earlier than after the current JavaScript
instruction finishes. In contrast, high priority interrupts take effect immediately, interrupting
long-running JavaScript instructions. Timeouts require the use of a high priority interrupt
because they must be able to interrupt long-running individual JavaScript instructions such
as str.match(regexp) (possible ReDoS).

To support a TimeoutError, we modified V8 as follows: (1) We added the definition of a
TimeoutError into the Error class hierarchy; (2) We added a TimeoutInterrupt into the list
of high-priority interrupts; and (3) We added a V8 API to raise a TimeoutInterrupt. The
TimeoutWatchdog calls this API, which interrupts the current JavaScript stack by throwing
a TimeoutError.

The only JavaScript instructions that V8 instruments to be interruptible are regular ex-
pression matching and JSON parsing; these are the language-level vulnerable APIs. Other
JavaScript instructions are viewed as effectively constant-time, so these interrupts may be
slightly deferred, e.g. to the end of the nearest basic block. We agreed with the V8 developers
in this,9 and did not instrument other JavaScript instructions to poll for pending interrupts.

9.6.4.4 Timeouts for the Node.js C++ bindings

The TimeoutWatchdog described in the previous section will interrupt any vulnerable APIs
implemented in JavaScript, including language-level APIs such as regular expressions and
application-level APIs that contain blocking code such as while(1){}. It remains to give

8To obtain an infinite sequence of TimeoutErrors in a first-class timeouts system, place a try-catch
block containing an infinite loop inside another infinite loop.

9For example, we found that string operations complete in milliseconds even when a string is hundreds
of MBs long.

198 Chapter 9. Techniques to cap per-client resource utilization

a sense of time to the Node.js C++ bindings that allow the JavaScript code in Node.js
applications to interface with the broader world. A separate effort is required here because a
pending TimeoutError triggered by the TimeoutWatchdog will not be delivered until control
returns from a C++ binding to JavaScript.

Node.js has asynchronous and synchronous C++ bindings. The asynchronous bindings are
safe in general because they do a fixed amount of synchronous work to submit a task and
then return; the tasks are protected as discussed earlier. However, the synchronous C++
bindings complete the entire operation on the Event Loop before returning, and therefore
must be given a sense of time. The relevant vulnerable synchronous APIs are those in the
file system, cryptography, and compression modules. Both synchronous and asynchronous
APIs in the child_process module are also vulnerable, but these are intended for scripting
purposes rather than the server context with which we are concerned.

Because the Event Loop holds the state of all pending clients, we cannot pthread_cancel it as
we do poisoned Workers, since this would result in the DoS the attacker desired. We could
build off of our timeout-aware Worker Pool by offloading the request to the Worker Pool
and awaiting its completion, but this would incur high request latencies when the Worker
Pool’s queue is not empty. We opted to combine these approaches by offloading the work in
vulnerable synchronous framework APIs to a dedicated Worker, which can be safely killed
and whose queue never has more than one item.

In our implementation, we extended the Worker Pool paradigm with a Priority Executor
whose queue is exposed via a new API: uv_queue_work_prio (Figure 9.4). This Executor fol-
lows the same Manager-Worker-Hangman paradigm as the Executors in Node.cure’s Worker
Pool. To make these vulnerable synchronous APIs timeout-aware, we offload them to the
Priority Executor using the existing asynchronous implementation of the API, and had the
Event Loop await the result. Because these synchronous APIs are performed on the Event
Loop as part of a callback, we propagate the callback’s remaining time to this Executor’s
Manager to ensure that the TimeoutWatchdog’s timer is honored.

9.6.4.5 Timeouts for application-level vulnerable APIs

As described above, Node.cure makes tasks (§9.6.4.2) and callbacks (§9.6.4.3) timeout-aware
to defeat EHP attacks against language and framework APIs. An application composed of
calls to these APIs will be EHP-safe.

However, an application could still escape the reach of these timeouts by defining its own
C++ bindings. These bindings would need to be made timeout-aware, following the ex-
ample we set while making Node.js’s vulnerable C++ bindings timeout-aware (file system,
DNS, encryption, and compression). Without refactoring, applications with their own C++
bindings may not be EHP-safe. In our evaluation we found that application-defined C++
bindings are rare (§9.6.5.3).

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 199

9.6.4.6 Performance optimizations

Since first-class timeouts are an always-on mechanism, it is important that their performance
impact be negligible. Here we describe two optimizations.

Lazy TimeoutWatchdog Promptly detecting TimeoutErrors with a precise Timeout-
Watchdog can be expensive, because the Event Loop must synchronize with the Timeout-
Watchdog every time a callback is entered and exited. If the application workload contains
many small callbacks, whose cost is comparable to this synchronization cost, then the over-
head of a precise TimeoutWatchdog may be considerable.

If the timeout threshold is soft, then the overhead from a TimeoutWatchdog can be reduced
by making the Event Loop-TimeoutWatchdog communication asynchronous. When entering
and exiting a callback the Event Loop can simply increment a shared counter. A lazy
TimeoutWatchdog wakes up at intervals and checks whether the callback it last observed
has been executing for more than the timeout threshold; if so, it emits a TimeoutError. A lazy
TimeoutWatchdog reduces the overhead of making a callback, but decreases the precision of
the TimeoutError threshold based on the frequency of its wake-up interval.

Slow resource policies Our Node.cure runtime detects and aborts long-running callbacks
and tasks executing on Node.js’s Event Handlers. For unique evil input this is the best we
can do at runtime, because accurately predicting whether a not-yet-seen input will time out
is difficult. If an attacker might re-use the same evil input multiple times, however, we can
track whether or not an input led to a timeout and short-circuit subsequent requests that
use this input with an early timeout.

While evil input memoization could in principle be applied to any API, the size of the input
space to track is a limiting factor. The evil inputs that trigger CPU-bound EHP attacks such
as ReDoS exploit properties of the vulnerable algorithm and are thus usually not unique. In
contrast, the evil inputs that trigger I/O-bound EHP attacks such as ReadDoS must name
a particularly slow resource, presenting an opportunity to short-circuit requests on this slow
resource.

In Node.cure we implemented a slow resource management policy for libuv’s file system
APIs, targeting those that reference a single resource (e.g. open, read, write). When one of
the APIs we manage times out, we mark the file descriptor and the associated inode number
as slow. We took the simple approach of permanently blocklisting these aliases by rejecting
subsequent accesses,10 with the happy side effect of solving the dangling worker problem for
write. This policy is appropriate for the file system, where access times are not likely to
change.11 We did not implement a policy for DNS queries. In the context of DNS, timeouts

10To avoid leaking file descriptors, we do not eagerly abort close.
11Of course, if the slow resource is in a networked file system such as NFS or GPFS, slowness might be

200 Chapter 9. Techniques to cap per-client resource utilization

might be due to a network hiccup, and a temporary blocklist might be more appropriate.

9.6.4.7 Prototype details

Node.cure is built on top of Node.js LTS v8.8.1, a recent long-term support version of Node.js
at the time of this study.12 Our prototype is for Linux. We added 4,000 lines of C, C++,
and JavaScript code across 50 files spanning V8, libuv, the Node.js C++ bindings, and the
Node.js JavaScript libraries.

Node.cure passes the core Node.js test suite, with a handful of failures due to bad interactions
with experimental or deprecated features. In addition, several cases fail when they invoke
rarely-used file system APIs we did not make timeout-aware. Real applications run on
Node.cure without difficulty (Table 9.6).

In Node.cure, timeouts for callbacks and tasks are controlled by environment variables. Our
implementation would readily accommodate a fine-grained assignment of timeouts for indi-
vidual callbacks and tasks.

9.6.5 Evaluation

Node.cure enables the detection of and response to EHP attacks with application performance
overheads ranging from 0% to 24%. Our prototype secures real applications from all known
EHP attacks with low overhead.

We evaluated Node.cure in terms of its effectiveness (§9.6.5.1), runtime overhead (§9.6.5.2),
and security guarantees (§9.6.5.3). In summary: with a lazy TimeoutWatchdog, Node.cure
detects all known EHP attacks with overhead ranging from 1.3x-7.9x on micro-benchmarks
but manifesting at 1.0x-1.24x using real applications. Node.cure guarantees EHP-safety to
all Node.js applications that do not define their own C++ bindings.

All measurements provided in this section were obtained on an otherwise-idle desktop running
Ubuntu 16.04.1 (Linux 4.8.0-56-generic), 16 GB RAM, Intel i7 @3.60GHz, 4 physical cores
with 2 threads per core. For a baseline we used Node.js LTS v8.8.1 from which Node.cure
was derived, compiled with the same flags. We used a default Worker Pool (4 Workers).

9.6.5.1 Effectiveness

To evaluate the effectiveness of Node.cure, we developed an EHP test suite that makes
every type of EHP attack, as enumerated in Table 9.4. Our suite is comprehensive and
conducts EHP attacks using every vulnerable API we identified, including the language level

due to a network hiccup, and incorporating temporary device-level blocklisting might be more appropriate.
12Specifically, we built Node.cure on Node.js v8.8.1 commit dc6bbb44da from Oct. 25, 2017.

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 201

(regular expressions, JSON), framework level (all vulnerable APIs from the file system, DNS,
cryptography, and compression modules), and application level (infinite loops, long string
operations, array sorting, etc.). This test suite includes each type of real EHP attack from
our study of EHP vulnerabilities in npm modules. Node.cure detects all 92 EHP attacks in
this suite: each synchronous vulnerable API throws a TimeoutError, and each asynchronous
vulnerable API returns a TimeoutError. Our suite could be used to evaluate alternative
defenses against EHP attacks.

To evaluate any difficulties in porting real-world Node.js software to Node.cure, we ported
the node-oniguruma [18] npm module. This module offloads worst-case exponential regular
expression queries from the Event Loop to the Worker Pool using a C++ add-on. We ported
it using the API described in Table 9.5 without difficulty, as we did for the core modules,
and Node.cure then successfully detected ReDoS attacks against this module’s vulnerable
APIs.

9.6.5.2 Runtime overhead

We evaluated the runtime overhead using micro-benchmarks and macro-benchmarks. We
address other costs in the Discussion.

Micro-benchmarks Whether or not they time out, Node.cure introduces several sources
of overheads to monitor callbacks and tasks. We evaluated the most likely candidates for
performance overheads using micro-benchmarks:

1. Every time V8 checks for interrupts, it now tests for a pending timeout as well.
2. Both the precise and lazy versions of the TimeoutWatchdog require instrumenting ev-

ery asynchronous callback using async-hooks, with relative overhead dependent on the
complexity of the callback.

3. To ensure memory safety for dangling workers, Workers operate on buffered data that
must be allocated when the task is submitted. For example, Workers must copy the I/O
buffers supplied to read and write twice.

New V8 interrupt. We found that the overhead of our V8 Timeout interrupt was negligible,
simply a test for one more interrupt in V8’s interrupt infrastructure.

TimeoutWatchdog’s async hooks. We measured the additional cost of invoking a callback
due to TimeoutWatchdog’s async hooks. A precise TimeoutWatchdog increases the cost of
invoking a callback by 7.9x due to the synchronous communication between Event Loop and
TimeoutWatchdog, while a lazy TimeoutWatchdog increases the cost by 2.4x due to the
reduced cost of asynchronous communication. While these overheads are large, note that
they are for an empty callback. As the number of instructions in a callback increases, the
cost of executing the callback will begin to dominate the cost of issuing the callback. For
example, if the callback executes 500 empty loop iterations, the precise overhead drops to

202 Chapter 9. Techniques to cap per-client resource utilization

2.7x and the lazy overhead drops to 1.3x. At 10,000 empty loop iterations, the precise and
lazy overheads are 1.15x and 1.01x, respectively.

Worker buffering. Our timeout-aware Worker Pool requires buffering data to accommodate
dangling workers, affecting DNS queries and file system I/O. Our micro-benchmark indicated
a 1.3x overhead using read and write calls with a 64 KB buffer. This overhead will vary
from API to API.

Macro-benchmarks Our micro-benchmarks suggested that the overhead introduced by
Node.cure may vary widely depending on what an application is doing. Applications that
make little use of the Worker Pool will pay the overhead of the additional V8 interrupt check
(minimal) and the TimeoutWatchdog’s async hooks, whose cost is strongly dependent on
the number of instructions executed in the callbacks. Applications that use the Worker Pool
will pay these as well as the overhead of Worker buffering (variable, perhaps 1.3x).

We chose macro-benchmarks using a GitHub potpourri technique: we searched GitHub for
“language:JavaScript”, sorted by “Most starred”, and identified server-side projects from the
first 50 results. To add additional complete servers, we also included LokiJS [8], a popular
key-value store, and IBM’s Acme-Air airline simulation [15], which is used in the Node.js
benchmark suite.

Table 9.6 lists the macro-benchmarks we used and the performance overhead for each type
of TimeoutWatchdog. These results show that Node.cure introduces minimal overhead on
real server applications, and they confirm the value of a lazy TimeoutWatchdog. Matching
our micro-benchmark assessment of the TimeoutWatchdog’s overhead, the overhead from
Node.cure increased as the complexity of the callbacks used in the macro-benchmarks de-
creased — the middleware benchmarks sometimes used empty callbacks to handle client
requests. In non-empty callbacks similar to those of the real servers, this overhead is amor-
tized.

9.6.5.3 Security guarantees

Our Node.cure prototype implements first-class timeouts for Node.js. Node.cure enforces
timeouts for all vulnerable JavaScript and framework APIs identified by both us and the
Node.js developers as long-running: regular expressions, JSON, file system, DNS, cryptog-
raphy, and compression. Application-level APIs composed of these timeout-aware language
and framework APIs are also timeout-aware.

However, Node.js also permits applications to add their own C++ bindings, and these may
not be timeout-aware without refactoring. To evaluate the extent of this limitation, we
measured the number of npm modules that define C++ bindings. These modules typically
depend on the node-gyp and/or nan modules [52, 53]. We obtained the dependency list for
each of the 628,863 npm modules from skimdb.npmjs.com and found that 4,384 modules

skimdb.npmjs.com

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 203

Table 9.6: Performance evaluation of Node.cure using macro-benchmarks. Re-
sults of our macro-benchmark evaluation of Node.cure’s overhead. Where available, we used
the benchmarks defined by the project itself. Otherwise, we ran its test suite. Overheads
are reported as “precise, lazy”, and are the ratio of Node.cure’s performance to that of the
baseline Node.js, averaged over several steady-state runs. We report the average overhead be-
cause we observed no more than 3% standard deviation in all but LokiJS, which averaged 8%
standard deviation across our samples of its sub-benchmarks. *: Median of sub-benchmark
overheads.

Benchmark Description Overheads
LokiJS [8] Server, Key-value store 1.00, 1.00

Node Acme-Air [15] Server, Airline simulation 1.03, 1.02
webtorrent [40] Server, P2P torrenting 1.02, 1.02

ws [41] Utility, websockets 1.00, 1.00*
Three.js [23] Utility, graphics library 1.09, 1.08

Express [25] Middleware 1.24, 1.06
Sails [21] Middleware 1.23, 1.14*

Restify [38] Middleware 1.63, 1.14*
Koa [7] Middleware 1.60, 1.24

204 Chapter 9. Techniques to cap per-client resource utilization

(0.7%) had these dependencies.13

As only 0.7% of npm modules define C++ bindings, we conclude that C++ bindings are
not widely used and that they thus do not represent a serious limitation of our approach.
In addition, we found the refactoring process for C++ bindings straightforward when we
performed it on the Node.js framework and the node-oniguruma module as described earlier.

9.6.6 Discussion of EHP and First-Class Timeouts

Programming with first-class timeouts What would it be like to develop software
for an EDA framework with first-class timeouts? First-class timeouts change the language
and framework specifications. First, developers must choose a timeout threshold. Then,
exception handling code will be required for both asynchronous APIs, which may be fulfilled
with a TimeoutError, and synchronous APIs, which may throw a TimeoutError.

The choice of a timeout is a Goldilocks problem. Too short, and legitimate requests will
result in an erroneous TimeoutError (false positive). Too long, and malicious requests will
waste a lot of service time before being detected (false negative). Timeouts in other contexts
have been shown to be selected without much apparent consideration [278], but for first-class
timeouts we suggest that a good choice is relatively easy. Consider that a typical web server
can handle hundreds or thousands of clients per second. Since each of these clients requires
the invocation of at least one callback on the Event Loop, simple arithmetic tells us that in
an EDA-based server, individual callbacks and tasks must take no longer than milliseconds
to complete. Thus, a universal callback-task timeout on the order of 1 second should not
result in erroneous timeouts during the normal execution of callbacks and tasks, but would
permit relatively rapid detection of and response to an EHP attack.14 By definition, first-
class timeouts preclude the possibility of undetected EHP attacks (false negatives) with a
reasonable choice of timeout, and our Node.cure prototype demonstrates that this guarantee
can be provided in practice.

Developers can assign tighter timeout thresholds to reduce the impact of an EHP attack.
If a tight timeout can be assigned, then a malicious request trying to trigger EHP will get
about the same amount of server time as a legitimate request will, before the malicious
request is detected and aborted with a TimeoutError. The lower the variance in callback
and task times, the more tightly the timeout thresholds can be set without false positives.
Though our implementation uses coarse-grained timeouts for callbacks and tasks, more fine-
grained timeouts are possible. Such an API might be called process.runWithTimeout(func).
Appropriate coarse or fine-grained timeout thresholds could also be suggested automatically
or tuned over the process lifetime of the server.

13We counted those that matched the regexp "nan"|"node-gyp" on 11 May 2018.
14If a service is unusually structured so as to run operations on behalf of many clients in a single callback,

then when this service is overloaded such a callback might throw a TimeoutError. We recommend that
such a callback be partitioned.

9.6. RQ3: How might a web framework be designed from scratch to
incorporate resource caps? 205

If a tight timeout cannot be assigned, perhaps because there is significant natural variation in
the cost of handling legitimate requests, then we recommend that the TimeoutError exception
handling logic incorporate a blocklist. With a blocklist, the total time wasted by EHP attacks
is equal to the number of attacks multiplied by the timeout threshold. Since DDoS is outside
of our threat model, this value should be small and EHP attacks should not prove overly
disruptive.

After choosing a timeout, software engineers would need to modify their code to han-
dle any TimeoutErrors. For asynchronous APIs that submit tasks to the Worker Pool, a
TimeoutError will be delivered just like any other error, and error handling logic should
already be present. This logic could be extended, for example to blocklist the client. For
synchronous APIs or synchronous links in an asynchronous sequence of callbacks, we ac-
knowledge that it is a bit strange that an unexceptional-looking sequence of code such as
a loop can now throw an error, and wrapping every function with a try-catch block seems
inelegant. Happily, recent trends in asynchronous programming techniques have made it
easier for software engineers to handle these errors. The ECMAScript 6 specification made
Promises a native JavaScript feature, simplifying data-flow programming (explicit encoding
of a lifeline) [101]. Promise chains permit catch-all handling of exceptions thrown from any
link in the chain, so existing catch-all handlers can be extended to handle a TimeoutError.

Other examples of EHP attacks Two other EHP attacks are worth mentioning. First,
if the EDA framework uses a garbage collected language for the Event Loop (as do Node.js,
Vert.x, Twisted, etc.), then triggering many memory allocations could lead to unpredictable
blockage of the Event Loop. We are not aware of any reported attacks of this form, but such
an attack would defeat first-class timeouts unless the GC were partitioned. Second, Linux
lacks kernel support for asynchronous DNS requests, so they are typically implemented in
EDA frameworks in the Worker Pool. If an attacker controls a DNS nameserver configured
as a tarpit [226] and can convince an EDA-based victim to resolve name requests using this
server, then each such request will poison one of the Workers in the Worker Pool. First-class
timeouts will protect against this class of attacks as it does ReadDoS.

Detecting EHP attacks without first-class timeouts Without first-class timeouts,
a service that is not perfectly partitioned may have EHP vulnerabilities. In existing EDA
frameworks there is no way to elegantly detect and recover from an EHP attack. Introducing
a heartbeat mechanism into the service would enable the detection of an EHP attack, but
what then? If more than one client is connected, as is inevitable given the multiplexing
philosophy of the EDA, it is not feasible to interrupt the hung request without disrupting
the other clients, nor it does seem straightforward to identify which client was responsible. In
contrast, first-class timeouts will produce a TimeoutError at some point during the handling
of the malicious request, permitting exception handling logic to easily respond by dropping
the client and, perhaps, adding them to a blocklist.

206 Chapter 9. Techniques to cap per-client resource utilization

Other avenues toward EHP-safety In §9.6.3 we described two ways to achieve EHP-
safety within the existing EDA paradigm. Other approaches are also viable but they depart
from the EDA paradigm. Significantly increasing the size of the Worker Pool, performing
speculative concurrent execution [111], or switching to preemptable callbacks and tasks could
each prevent or reduce the impact of EHP attacks. However, each of these is a variation
on the same theme: dedicating isolated execution resources to each client, a road that
leads to the One Thread Per Client Architecture. The recent development of serverless
architectures [214] is yet another form of the OTPCA, with the load balancing role played
by a vendor rather than the service provider. If the server community wishes to use the EDA,
which offers high responsiveness and scalability through the use of cooperative multitasking,
we believe first-class timeouts are a good path to EHP-safety.

Generalizability Our first-class timeouts technique can be applied to any EDA frame-
work. Callbacks must be made interruptible, and tasks must be made abortable. While these
properties are more readily obtained in an interpreted language, they could in principle be
enforced in compiled or VM-based languages as well.

9.6.7 Related Work

JavaScript and Node.js Ojamaa and Duuna assessed the security risks in Node.js appli-
cations [266]. Their analysis included ReDoS and other expensive computation as a means
of blocking the event loop, though they overlooked the risks of I/O and the fact that the
small Worker Pool makes its poisoning possible.

Other works have identified the use of untrusted third-party modules as a common liability
in Node.js applications. DeGroef et al. proposed a reference monitor approach to securely
integrate third-party modules from npm [143]. Vasilakis et al. went a step further in their
BreakApp system, providing strong isolation guarantees at module boundaries with dynamic
policy enforcement at runtime [327]. The BreakApp approach is complete enough that it
can be used to defeat EHP attacks, through what might be called Second-Class Timeouts.
Our work mistrusts particular instructions and permits the delivery of TimeoutErrors at
arbitrary points in sequential code, while these reference monitor approaches mistrust mod-
ules and thus only permit the delivery of TimeoutErrors at module boundaries. In addition,
moving modules to separate processes in order to handle EHP attacks incurs significant
performance overheads at start-up and larger performance overheads than Node.cure at run-
time, and places more responsibility on developers to understand implementation details in
their dependencies.

Static analysis can be used to identify a number of vulnerabilities in JavaScript and Node.js
applications. Guarnieri and Livshits demonstrated static analyses to eliminate the use of
vulnerable language features or program behaviors in the client-side context [182]. Staicu
et al. offered static analyses and dynamic policy enforcement to prevent command injection

9.7. Discussion 207

vulnerabilities in Node.js applications [308]. Static taint analysis for JavaScript, as proposed
by Tripp et al. enables the detection of other injection attacks as well [322]. The techniques
in these works can detect the possibility of EHP attacks that exploit known-vulnerable
APIs (e.g. I/O such as fs.readFile), but not those exploiting arbitrary computation. Our
first-class timeouts approach is instead a dynamic detect-and-respond defense against EHP
attacks.

Embedded systems Time is precious in embedded systems as well. Lyons et al. proposed
the use of TimeoutErrors in mixed-criticality systems to permit higher-priority tasks to
interrupt lower-priority tasks [228]. Their approach incorporates timeouts as a notification
mechanism for processes that have overrun their time slices, toying with preemption in a
non-preemptive operating system. Our work is similar in principle but differs significantly
in execution.

Denial of Service attacks Research on DoS can be broadly divided into network-level
attacks (e.g. DDoS attacks) and application-level attacks [60]. Since EHP attacks exploit
the semantics of the application, they are application-level attacks, not easily defeated by
network-level defenses.

DoS attacks seek to exhaust the resources critical to the proper operation of a server, and
various kinds of exhaustion have been considered. The brunt of the literature has focused
on exhausting the CPU, e.g. via worst-case performance [135, 136, 231, 267, 302], infinite
recursion [113], and infinite loops [106, 304]. We are not aware of prior research work that
incurs DoS using the file system, as our ReadDoS attacks do, though we have found a handful
of CVE reports to this effect through a semi-automated search.15

9.7 Discussion

Algorithm-oriented resource caps From our investigation of RQ1, we learned that
existing algorithm-oriented resource caps are ineffective. We were particularly surprised to
learn that Perl’s approach cannot detect certain exponentially slow regex matches, which
we suggest should be the minimum standard for such a resource cap. This finding may
speak to the difficulty of identifying and monitoring algorithm-oriented measures of resource
utilization in sufficiently complex software. Regardless, this finding certainly speaks to the
value of a strong test suite for such defenses. Our corpus of super-linear regexes may be of
value to other regex engine developers interested in incorporating algorithm-oriented resource

15For DoS by reading the slow file /dev/random, see CVE-2012-1987 and CVE-2016-6896. For a related
DOS by reading large files, CVE-2001-0834, CVE-2008-1353, CVE-2011-1521, and CVE-2015-5295 mention
DoS by memory exhaustion using /dev/zero.

208 Chapter 9. Techniques to cap per-client resource utilization

caps, in validating that their implementations actually address a variety of super-linear
regexes.

Time-oriented resource caps In RQ1 we found that the .NET framework’s time-oriented
solution was more effective at preventing super-linear regex evaluations than the algorithm-
oriented solutions of PHP and Perl were. We therefore recommend that the maintainers of
Spencer-style regex engines consider a time-oriented approach to resource caps.

However, our investigation of RQ2 showed that most of the C# software projects that we
considered have not availed themselves of the time-oriented resource caps offered by the .NET
framework. In order to nudge engineers towards the safer APIs, it might be advisable for
the .NET framework maintainers to deprecate the unprotected versions of the regex APIs.

In RQ3 we explored a from-scratch implementation of a time-oriented resource cap. The
First-Class Timeouts we proposed are capable of protected applications against ReDoS as
well as the larger family of Event Handler Poisoning attacks. We believe this stronger ap-
proach to resource caps is feasible in new web frameworks, and represents a more systematic
approach in the resource cap design space than introducing resource caps into expensive
APIs one by one.

9.8 Threats to validity

In §9.5 we conducted an empirical study whose conclusions face certain threats to validity.
Many of these threats are shared with other, similar experiments in this dissertation and
have been discussed earlier. Two threats are new.

Internal validity Our methodology considered all C# modules that were hosted on
GitHub. We did not filter out projects based on versions of the .NET framework that
predate the support for regex timeouts. In particular, regex timeouts were introduced in
.NET framework version 4.5. Although .NET framework version 4.5 is was dropped in 2016
in favor of version 4.5.2, Microsoft still supports the legacy .NET framework 3.5 SP1.16 It
strikes us as unlikely that the vast majority of C# modules would target a legacy version of
the .NET framework, but we have not tested this assumption.

External validity C# is less well represented in the open-source community than many
other programming languages [169]. The threat of non-generalization to (closed-source)
applications may be exacerbated when studying open-source C# software.

16Microsoft’s lifecycle policy for the .NET framework is described here: https://support.microsoft.
com/en-us/help/17455/lifecycle-faq-net-framework.

https://support.microsoft.com/en-us/help/17455/lifecycle-faq-net-framework
https://support.microsoft.com/en-us/help/17455/lifecycle-faq-net-framework

Part IV

Conclusions and Recommendations

209

Chapter 10

Conclusions and recommendations

10.1 Summary

In §1.2 I stated my thesis:

Because 10% of regexes exhibit super-linear worst-case behavior in typical
regex engine implementations, ReDoS is a significant security threat to real-
world software. Existing solutions are ineffective or impractical, while our new
approaches appear promising.

In the preceding chapters, I provided evidence in support of this thesis. This evidence is
summarized next.

10.1.1 ReDoS is a problem in practice

In Part II I provided evidence for the first part of my thesis: ReDoS is a serious security
threat for modern software applications. These empirical studies are the only large-scale
surveys of the risk of ReDoS in practice, both in depth (conducted at ecosystem scale) and
breadth (covering eight programming languages). Although these studies have limitations,
two findings from these efforts are clear:

Common in practice Regexes with the potential to be super-linear are commonly de-
ployed in practice (Chapter 4). Up to 10% of real regexes are potentially super-linear, a
result that holds across many programming languages (Chapter 5).

Risky regex engines In many programming languages, these regexes exhibit super-linear
worst-case behavior in the real regex engines in which they are deployed (§5.7). In six
of the eight regex engines we considered, up to 10% of regexes exhibit polynomial or
exponential worst-case behavior.

These empirical studies of software products are corroborated by qualitative studies of en-
gineering practices. In their surveys of practicing software engineers, Michael et al. found
that a majority of those surveyed were unaware of the risk of ReDoS and the performance
risks of copy-pasting regexes across programming language boundaries [237, 238]. Given the

210

10.1. Summary 211

relative ease of creating a super-linear regex, and the widespread ignorance of the risks of
ReDoS, it is unsurprising that ReDoS vulnerabilities appear to be widespread.

10.1.2 Recommended ReDoS solution

In Part III I provided evidence for the second part of my thesis: Existing ReDoS solutions
are ineffective or impractical, but our new approaches appear promising. To summarize my
findings:

Regex refactoring is difficult Although many super-linear regex behaviors can be iden-
tified using existing heuristics and research tools, software engineers struggle to repair a
super-linear regex once they identify it (Chapter 6).

Regex engines are incompatible Real regex engines are insufficiently compatible to per-
mit trivially substituting one regex engine for another (Chapter 7). Even accounting for
syntactic differences, PCRE-style regex engines differ in their match semantics. Some of
these semantic differences are subtle but apparently deliberate, while others are defects
that had not been identified by engine maintainers. These regex engines were designed
to be compatible with one another. Their inconsistencies highlight the risk of regressions
that could result from a major refactoring (e.g., to a linear-time algorithm).

Selective memoization is promising Memoization has been proposed as a solution to
address ReDoS, but its high space cost on typical regexes makes it unattractive. We have
proposed and proved the theoretical guarantees afforded by two selective memoization
schemes (Chapter 8). We showed that they offer similar time complexity as full memo-
ization with far lower space complexity, and that with an appropriate encoding scheme,
the space complexity can be reduced to a constant in most cases.

Time-based resource caps can protect web services Various classes of resource caps,
both algorithmic and time-based, have been proposed and implemented in several regex
engines. We report that time-based schemes are far more effective than algorithmic-
oriented schemes, and that off-by-default schemes are rarely adopted (Chapter 9). We
explored the design and implementation of First-Class Timeouts, always-on time-based
resource cap, which can protect web services against ReDoS and a variety of other denial
of service attacks. This approach combines strong security guarantees with a natural
programming model.

Although first-class timeouts have strong security guarantees, they would entail a significant
refactoring burden for existing applications. We therefore recommend that regex engine de-
velopers pursue selective memoization as a solution to ReDoS. Memoization is a transparent
solution, improving the worst-case performance of a regex match without introducing any
change in the outcome of the match. Selective memoization reduces the accompanying space
cost, making memoization a practical approach. Even if it is not extended to E-regexes
(§8.7), selective memoization is applicable to the truly regular K-regexes that comprise 95%
of our large-scale many-language regex corpus.

212 Chapter 10. Conclusions and recommendations

10.2 Future work

In this dissertation, we believe that we have conducted the critical measurements to establish
the risk of REDOS in modern software, and that we have considered all of the major means
of addressing ReDoS. There are, however, opportunities for several lines of work in these
directions.

10.2.1 Empirical studies

Our empirical studies have focused on the use of regexes in software modules, and the
concomitant risk of ReDoS for applications that depend on these modules. We omitted,
however, two aspects of regex usage: the ways in which these modules are used by software
applications, and the regexes used in applications themselves.

An end-to-end understanding of ReDoS It would be helpful to understand the end-to-
end implications of the super-linear regexes we have identified in software modules. Each of
these super-linear regexes may affect many applications among its dependencies. We are not
concerned about over-stating the risk of ReDoS— the analysis of Wüstholz et al. included
reachability, and on a small set of high-quality Java applications they still identified 1.5% of
regex usages as super-linear [341]. But a better understanding of the typical implications of
using the modules we studied may guide software engineers as they select dependencies.

Regex engineering practices in specialized domains One aspect of our research has
been to better understand software engineering practices surrounding regexes. Our studies
have examined regexes as they are used in “standard” engineering practice, with no eye on
particular application domains. One common and critical use of regexes is in processing net-
work traffic, e.g., in routing (§3.3) and NIDS use cases ([127]). Another common case is in
text processing, e.g., in natural language processing or as input to machine learning models.
Understanding the variation of regexes by application domain may expose further opportuni-
ties for tool development. It may also motivate domain-specific regex engine optimizations,
as Intel has recently demonstrated [334].

10.2.2 Solution approaches

We have demonstrated that ReDoS is a security vulnerability affecting many real-world ap-
plications. We have discussed several solution approaches at different levels of the application
stack. Several of these approaches require further study. In the near term, refactoring will
be necessary, but in the long term we hope to have given regex engine developers sufficient
motivation to address this problem.

10.2. Future work 213

Regex engine semantics No matter the approach, any ReDoS solution must avoid un-
expected changes in the behavior of the regex match observed by the application. Our study
in Chapter 7 demonstrated that production regex engines exhibit subtle semantic differences.
A richer understanding of practical regex engine semantics is necessary to ensure that Re-
DoS solutions do not introduce application errors. Work led by Câmpeanu [107, 108] and
Berglund [84, 87, 88] has begun this effort, but we do not yet understand individual regex
engines in enough detail to validate ReDoS solutions. Defining semantics would also permit
the systematic testing of a regex engine in isolation, rather than relying on differential testing
as we did in Chapter 7.

Automatic refactoring In Chapter 6 we described the difficulty that practitioners had
in solving ReDoS problems. Automated refactoring support seems to be in order. These
solutions should propose regexes that meet three conditions: they are linear-time, they
match a similar-enough language of strings to be useful, and they are maintainable. If the
refactoring can guarantee identical semantics (but against what semantics?), as does that
of van der Merwe et al. [326], then it can be performed at compilation or run-time without
regard to maintainability. If the refactoring does not preserve the regex’s language [125],
then understanding its usefulness (difficult without an adequate test suite [332]) and ensuring
maintainability (an under-studied area [116]) are both concerns.

Run-time cost prediction In Chapter 9 we discussed resource-cap approaches to ad-
dressing ReDoS: monitor the cost of an evaluation, and limit it using an exception. An
alternative approach is to predict the cost of a regex evaluation. Such an approach might
take several forms, including:

• Super-linear regexes could be identified at regex compilation time. Accurate analysis has
high time complexity [69], so this approach might be more preferable during software
testing than deployment. This cost need be paid only once per regex, however, and regex
engines could incorporate a directory of (the hashes of) commonly-used regexes and their
complexity.

• The sound and complete identification of super-linear regexes is expensive, making their
identification potentially undesirable in production using accurate methods. Perhaps the
structural characteristics that lead to super-linear behavior could be learned offline by a
machine learning model. If the necessary regex characteristics can be extracted quickly,
inferences could be made at runtime instead.

• Although many regexes exhibit super-linear worst-case behavior, they only do so on spe-
cially crafted input. Problematic input could be soundly identified by testing for mem-
bership using Wüstholz’s attack automata [341]; the regex engine could construct an
accompanying attack automaton when a regex is compiled. As proposed for regexes, an
unsound approach for identifying problematic input would be to search it for the signa-
ture of problematic input: a prefix, a sequence of pumps, and a suffix. This task is trivial

214 Chapter 10. Conclusions and recommendations

when repeated strings are unique (e.g., /(a+)+$/, which is only triggered by pumping
“a”). But for some regexes, the problematic repeated strings must instead be generalized
in terms of a regular language (e.g., /(\w|\d)*$/, for which any sequence of digits is
problematic). The symbolic regex analysis techniques of Veanes et al. might be helpful
to apply in this context [328].

The engineering costs of memoization in practice In Chapter 8 we showed that se-
lective memoization is a promising approach to offer linear time complexity with lowered
constant-to-linear space complexity. Two aspects of this work remain for future study. First,
incorporating memoization into a prototype regex engine is straightforward, just a few lines
of code on the matching algorithm (Listing 10). The engineering costs of incorporating
memoization into one of the production-grade backtracking regex engines, with their many
special cases and optimizations, remain to be seen. Second, a simple RLE scheme offered
constant space costs for the majority of the super-linear regexes, under the worst-case inputs
proposed by the super-linear regex detectors. It is unclear whether this property is guaran-
teed or merely an accident of the input generation regime, and whether the length of the
runs can be tuned to the regex to guarantee constant space costs.

10.2.3 Additional future work

The human side of the problem This dissertation has focused on the technical side
of the ReDoS problem. Qualitative work by Michael et al. [238], Michael [237], and Dono-
hue [149] has shown that there is a human side as well. Unlike well-known security vulner-
abilities like SQL injection [311] and cross-site scripting (XSS) [211], fewer than half of the
hundreds of practitioners they surveyed understood the risks of ReDoS. Addressing ReDoS
in practice will therefore require considering social aspects including how best to educate
practitioners about this problem, and how to incentivize practitioners to adopt ReDoS de-
fenses. Lessons learned from such studies may be applicable to other emerging security
vulnerabilities, e.g., GraphQL-based DoS [186, 339].

Applications of our regex corpus In Chapter 8 we showed two applications of our
polyglot regex corpus: in motivating regex engine optimizations, and in evaluating the effect
of these optimizations. We believe that software engineers and researchers can benefit from
other applications of this corpus. For example, it could be used to support the development
of semantic code search techniques [207]. This should be an improvement over the current
practice of browsing Stack Overflow and other code for relevant regexes (§7.5). As another
example, in analysis of our corpus we found that many regexes are unique, suggesting that
regexes could be used to fingerprint otherwise-obfuscated software. Regex-based fingerprint-
ing may in turn may motivate the development of semantics-preserving regex obfuscation

10.3. Broader implications for computing systems 215

techniques, but we believe that syntactic obfuscation cannot obscure the equivalence of the
underlying automata.

Regex tools and regex engines In Chapter 7 and [141] we showed that regexes are
commonly (but unsafely) used across programming language boundaries. We envision a regex
“universal translator” to help developers port regexes between languages, perhaps assisted
by a regex-specific “diff” tool. This task is complicated by incomplete regex specifications,
different feature support in different programming languages, and performance variations.

Rethinking Regular Expressions We have shown that super-linear regexes commonly
occur in practice. This may indicate that regexes are a fundamentally hazardous tool — use-
ful in theory, but dangerous in practice. It may instead indicate that regexes are an abused
tool, used in inappropriate contexts or by ill-informed engineers. We invite a deeper qual-
itative investigation into regex usage, as well as usability studies of the various approaches
for encoding string constraints (e.g., indexof, regular expressions, PEGs, CFGs, etc.). We
expect such studies to have implications for other tools used by software engineers.

10.3 Broader implications for computing systems

Beyond regular expressions, my work has broader implications for the design of computing
systems. Although the details will vary from one system to the next, I suggest that this
dissertation provides a case study in the value of data-driven engineering. Most production-
grade regex engines are legacy systems. They were developed before the Internet era and its
concomitant security considerations. Changing a legacy system requires strong justification,
which I provided in Part II: although these engines were suitable in their original deployment
contexts, through large-scale empirical studies I and others have shown that super-linear
regexes are widely used in security-sensitive contexts. In light of how regexes are used in
practice, we can conclude that applications or regex engines should be re-designed. In Part III
we examined a range of potential re-designs with a range of compatibility and security.
Thanks to our empirical studies, we were able to evaluate these re-designs on representative
use cases.

In brief, my dissertation completes the general engineering cycle as applied to regex engines
— build and deploy (done in the 1980s, cf. Chapter 2), then measure (Part II) and refine
(Part III) in light of practical usage, leaving iterate for future work. It is disconcerting that
legacy regex engines have persisted so long without refinement. As a discipline, we should
not take for granted that the assumptions underlying existing systems will continue to hold
in the future. For example, similar questions should be (and are being) asked about our
compilers and IDEs (e.g., for engineers from different linguistic and cultural contexts [75]),
our software analysis and verification systems (e.g., considering factors beyond accuracy to

216 Chapter 10. Conclusions and recommendations

Table 10.1: Artifacts for reproducibility. Summary of the research artifacts associated
with this dissertation.

Material Relevant chapter(s) Link to Artifact
Original regex corpus Chapters 4 and 6 https://doi.org/10.5281/zenodo.1294300

Polyglot corpus Chapters 5 and 7 https://doi.org/10.5281/zenodo.3257777
Regex metrics Chapter 5 https://doi.org/10.5281/zenodo.3424960

Node.cure prototype Chapter 9 https://github.com/VTLeeLab/node-cure
Memoized regex engine Chapter 8 Not yet available

encourage adoption in practice [122]), our version control systems and continuous integra-
tion tools (e.g., as applied to engineering trends like mono-repos [72]), our web API designs
(e.g., for typed, quickly-evolving data [186]), and our data serialization tools (e.g., accom-
modating developers’ preferred serialization formats [224]). What other critical computing
infrastructure requires refinement as its deployment context shifts?

10.4 Reproducibility and open science

Much of the data, analysis software, and experimental results from this dissertation are
available in artifacts hosted by Zenodo and GitHub. See Table 10.1 for details.

10.5 Closing remarks

Regular expressions are an ancient technology, predating most aspects of modern program-
ming. That regular expressions are still widely used in modern software is a testament to
their utility. That regular expressions are a widespread security risk could be interpreted
as a testament to futility. Engineering secure software is a difficult task, from the technical
challenges of secure systems design to the social aspects of human operators. When even
the fundamental building blocks of software are a security risk, it is hard to say with any
confidence that software can truly be made secure. But we have also shown that at least
one building block, regular expressions, can be secured in a backwards-compatible manner.
Perhaps this is one security vulnerability that can be made a thing of the past.

https://doi.org/10.5281/zenodo.1294300
https://doi.org/10.5281/zenodo.3257777
https://doi.org/10.5281/zenodo.3424960
https://github.com/VTLeeLab/node-cure

Bibliography

[1] astor: Python ast read/write. https://github.com/berkerpeksag/astor.

[2] Atom: A hackable text editor for the 21st century. https://atom.io/.

[3] Babel. https://babeljs.io/.

[4] About cloudflare. https://www.cloudflare.com/about-overview/.

[5] Possessive quantifiers. https://www.regular-expressions.info/possessive.html.

[6] Javaparser. https://javaparser.org/.

[7] Koa. https://github.com/koajs/koa.

[8] Lokijs. https://github.com/techfort/LokiJS.

[9] Mediawiki manual: Extensions. https://www.mediawiki.org/wiki/Manual:
Extensions, .

[10] Mediawiki. https://www.mediawiki.org/wiki/MediaWiki, .

[11] Mediawiki extension: Quiz. https://www.mediawiki.org/wiki/Extension:Quiz, .

[12] Sites using mediawiki. https://www.mediawiki.org/wiki/Sites_using_
MediaWiki/Wikimedia, .

[13] MySQL Reference Manual: Regular Expressions. URL https://dev.mysql.com/doc/
refman/8.0/en/regexp.html.

[14] networkx.algorithms.simple_paths.all_simple_paths. https://web.archive.org/
save/https://networkx.github.io/documentation/networkx-2.3/reference/
algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.
html.

[15] acmeair-node. https://github.com/acmeair/acmeair-nodejs, .

[16] 2017 User Survey Executive Summary. The Linux Foundation, .

[17] Node.js foundation members. https://foundation.nodejs.org/about/members, .

[18] Node-oniguruma regexp library. https://github.com/atom/node-oniguruma, .

[19] Nodejs async hooks. https://nodejs.org/api/async_hooks.html, .

217

https://github.com/berkerpeksag/astor
https://atom.io/
https://babeljs.io/
https://www.cloudflare.com/about-overview/
https://www.regular-expressions.info/possessive.html
https://javaparser.org/
https://github.com/koajs/koa
https://github.com/techfort/LokiJS
https://www.mediawiki.org/wiki/Manual:Extensions
https://www.mediawiki.org/wiki/Manual:Extensions
https://www.mediawiki.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/Extension:Quiz
https://www.mediawiki.org/wiki/Sites_using_MediaWiki/Wikimedia
https://www.mediawiki.org/wiki/Sites_using_MediaWiki/Wikimedia
https://dev.mysql.com/doc/refman/8.0/en/regexp.html
https://dev.mysql.com/doc/refman/8.0/en/regexp.html
https://web.archive.org/save/https://networkx.github.io/documentation/networkx-2.3/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.html
https://web.archive.org/save/https://networkx.github.io/documentation/networkx-2.3/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.html
https://web.archive.org/save/https://networkx.github.io/documentation/networkx-2.3/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.html
https://web.archive.org/save/https://networkx.github.io/documentation/networkx-2.3/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.html
https://github.com/acmeair/acmeair-nodejs
https://foundation.nodejs.org/about/members
https://github.com/atom/node-oniguruma
https://nodejs.org/api/async_hooks.html

218 BIBLIOGRAPHY

[20] Perl regular expressions - perl. https://perldoc.perl.org/5.22.0/perlre.html.

[21] sails. https://github.com/balderdashy/sails.

[22] Welcome to stack overflow. https://stackoverflow.com/tour.

[23] three.js. https://github.com/mrdoob/three.js.

[24] distutils: Building and installing python modules. https://docs.python.org/3/
library/distutils.html.

[25] express. https://github.com/expressjs/express.

[26] gradle: Adaptable, fast automation for all. https://github.com/gradle/gradle.

[27] Gnu libc – posix safety concepts. https://www.gnu.org/software/libc/manual/
html_node/POSIX-Safety-Concepts.html.

[28] Maven repository. https://mvnrepository.com/, .

[29] mvn: Apache maven. https://github.com/apache/maven, .

[30] nosetests: Nose is nicer testing for python. https://github.com/nose-devs/nose.

[31] nox: Flexible test automation for python. https://github.com/theacodes/nox.

[32] npm - the heart of the modern development community. https://www.npmjs.com/, .

[33] npm: A package manager for javascript. https://github.com/npm/cli, .

[34] Pypi - the python package index. https://pypi.org/.

[35] pytest: The pytest framework. https://github.com/pytest-dev/pytest.

[36] Online regex tester and debugger: Php, pcre, python, golang and javascript. https:
//regex101.com, .

[37] Regexr: Learn, build, & test regex. https://regexr.com, .

[38] restify. https://github.com/restify/node-restify.

[39] tox: Command line driven ci frontend and development task automation tool. https:
//github.com/tox-dev/tox.

[40] webtorrent. https://github.com/webtorrent/webtorrent.

[41] ws: a node.js websocket library. https://github.com/websockets/ws.

[42] taskset – set or retrieve a process’s cpu affinity. https://web.archive.org/web/
20180801003855/https://linux.die.net/man/1/taskset, 2004.

https://perldoc.perl.org/5.22.0/perlre.html
https://github.com/balderdashy/sails
https://stackoverflow.com/tour
https://github.com/mrdoob/three.js
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://github.com/expressjs/express
https://github.com/gradle/gradle
https://www.gnu.org/software/libc/manual/html_node/POSIX-Safety-Concepts.html
https://www.gnu.org/software/libc/manual/html_node/POSIX-Safety-Concepts.html
https://mvnrepository.com/
https://github.com/apache/maven
https://github.com/nose-devs/nose
https://github.com/theacodes/nox
https://www.npmjs.com/
https://github.com/npm/cli
https://pypi.org/
https://github.com/pytest-dev/pytest
https://regex101.com
https://regex101.com
https://regexr.com
https://github.com/restify/node-restify
https://github.com/tox-dev/tox
https://github.com/tox-dev/tox
https://github.com/webtorrent/webtorrent
https://github.com/websockets/ws
https://web.archive.org/web/20180801003855/https://linux.die.net/man/1/taskset
https://web.archive.org/web/20180801003855/https://linux.die.net/man/1/taskset

BIBLIOGRAPHY 219

[43] regex(7) - linux manual page - posix.2 regular expressions. http://man7.org/linux/
man-pages/man7/regex.7.html, 2009.

[44] What’s new in the .net framework 4.5. https://web.archive.org/web/
20180801003332/https://docs.microsoft.com/en-us/dotnet/framework/
whats-new/index, 2012.

[45] Cve-2015-6736. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-6736, 2015.

[46] Revision history for post 38484433: “join tiles in corona sdk into one word for a
breakout game grid?”. https://stackoverflow.com/posts/38484433/revisions,
2016.

[47] Atomic grouping. https://web.archive.org/web/20180801003637/https://www.
regular-expressions.info/atomic.html, 2017.

[48] Microsoft’s Node.js Guidelines. https://github.com/Microsoft/
nodejs-guidelines, 2017.

[49] Babylon: Babylon is a javascript parser used in babel. http://web.archive.org/
web/20171231170138/https://github.com/babel/babel/tree/master/packages/
babylon, 2017.

[50] regexp-tree: Regular expressions processor in javascript. https://web.archive.org/
web/20180801004201/https://github.com/DmitrySoshnikov/regexp-tree, 2017.

[51] Node.js at IBM. https://developer.ibm.com/node/, 2018.

[52] Node.js v10.1.0: C++ Addons. https://nodejs.org/api/addons.html, 2018.

[53] Node.js v10.1.0: N-API. https://nodejs.org/api/n-api.html, 2018.

[54] Digital Transformation with the Node.js DevOps Stack. https://pages.nodesource.
com/digital-transformation-devops-stack-tw.html, 2018.

[55] cloc: Count lines of code. https://web.archive.org/web/20180801003246/https:
//github.com/AlDanial/cloc, 2018.

[56] npm. https://web.archive.org/web/20180801003712/https://www.npmjs.com,
2018.

[57] Pypi – the python package index. https://web.archive.org/web/20180801003833/
https://pypi.org/, 2018.

[58] Stackexchange traffic. https://stackexchange.com/sites?view=list#traffic,
2020.

http://man7.org/linux/man-pages/man7/regex.7.html
http://man7.org/linux/man-pages/man7/regex.7.html
https://web.archive.org/web/20180801003332/https://docs.microsoft.com/en-us/dotnet/framework/whats-new/index
https://web.archive.org/web/20180801003332/https://docs.microsoft.com/en-us/dotnet/framework/whats-new/index
https://web.archive.org/web/20180801003332/https://docs.microsoft.com/en-us/dotnet/framework/whats-new/index
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6736
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6736
https://stackoverflow.com/posts/38484433/revisions
https://web.archive.org/web/20180801003637/https://www.regular-expressions.info/atomic.html
https://web.archive.org/web/20180801003637/https://www.regular-expressions.info/atomic.html
https://github.com/Microsoft/nodejs-guidelines
https://github.com/Microsoft/nodejs-guidelines
http://web.archive.org/web/20171231170138/https://github.com/babel/babel/tree/master/packages/babylon
http://web.archive.org/web/20171231170138/https://github.com/babel/babel/tree/master/packages/babylon
http://web.archive.org/web/20171231170138/https://github.com/babel/babel/tree/master/packages/babylon
https://web.archive.org/web/20180801004201/https://github.com/DmitrySoshnikov/regexp-tree
https://web.archive.org/web/20180801004201/https://github.com/DmitrySoshnikov/regexp-tree
https://developer.ibm.com/node/
https://nodejs.org/api/addons.html
https://nodejs.org/api/n-api.html
https://pages.nodesource.com/digital-transformation-devops-stack-tw.html
https://pages.nodesource.com/digital-transformation-devops-stack-tw.html
https://web.archive.org/web/20180801003246/https://github.com/AlDanial/cloc
https://web.archive.org/web/20180801003246/https://github.com/AlDanial/cloc
https://web.archive.org/web/20180801003712/https://www.npmjs.com
https://web.archive.org/web/20180801003833/https://pypi.org/
https://web.archive.org/web/20180801003833/https://pypi.org/
https://stackexchange.com/sites?view=list#traffic

220 BIBLIOGRAPHY

[59] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad Shi-
hab. Why Do Developers Use Trivial Packages? An Empirical Case Study on npm.
In Foundations of Software Engineering (FSE), 2017. ISBN 9781450351058. doi:
10.1145/3106237.3106267.

[60] Mehmud Abliz. Internet Denial of Service Attacks and Defense Mechanisms. Technical
report, 2011.

[61] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization. In
Principles of Programming Languages (POPL), 2003. ISBN 1581136285. doi: 10.
1145/640128.604133.

[62] Alfred V Aho. Pattern matching in strings. In Formal Language Theory, pages 325–347.
Elsevier, 1980.

[63] Alfred V Aho. Algorithms for finding patterns in strings, chapter 5, pages 255–300.
Elsevier, 1990.

[64] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibli-
ographic search. Communications of the ACM (CACM), 18(6):333–340, 1975. ISSN
00010782. doi: 10.1145/360825.360855.

[65] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles,
Technologies, and Tools, 2006.

[66] Fahad Aldebeyan. Improving Software Quality for Regular Expression Matching Tools
Using Automated Combinatorial Testing. PhD thesis, Simon Fraser University, 2018.

[67] James Algina, HJ Keselman, and Randall D Penfield. An alternative to cohen’s stan-
dardized mean difference effect size: a robust parameter and confidence interval in the
two independent groups case. Psychological methods, 10(3):317, 2005.

[68] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Understanding Asyn-
chronous Interactions in Full-Stack JavaScript. In International Conference on Soft-
ware Engineering (ICSE), 2016. ISBN 9781450339001. doi: 10.1145/2884781.2884864.

[69] Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi. General Algorithms for Testing
the Ambiguity of Finite Automata. In International Conference on Developments in
Language Theory, 2008.

[70] Rene Alquezar and A Sanfeliu. Incremental Grammatical Inference From Positive and
Negative Data Using Unbiased Finite State Automata. 1999.

[71] Torben Amtoft and Jesper Larsson Träff. Partial memoization for obtaining linear
time behavior of a 2DPDA. Theoretical Computer Science, 98(2):347–356, 1992. ISSN
03043975. doi: 10.1016/0304-3975(92)90008-4.

BIBLIOGRAPHY 221

[72] Sundaram Ananthanarayanan, Masoud Saeida Ardekani, Denis Haenikel, Balaji
Varadarajan, Simon Soriano, Dhaval Patel, and Ali Reza Adl-Tabatabai. Keeping
master green at scale. In European Conference on Computer Systems (EuroSys), 2019.
ISBN 9781450362818. doi: 10.1145/3302424.3303970.

[73] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. MutRex: A Mutation-
Based Generator of Fault Detecting Strings for Regular Expressions. In International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
2017. ISBN 9781509066766. doi: 10.1109/ICSTW.2017.23.

[74] Bill Atkinson. Hypercard. Apple Computer, 1988.

[75] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. How should compil-
ers explain problems to developers? In European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 633–643,
2018. ISBN 9781450355735. doi: 10.1145/3236024.3236040.

[76] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. Inference
of Regular Expressions for Text Extraction from Examples. IEEE Transactions on
Knowledge and Data Engineering, 28(5):1217–1230, 2016. ISSN 10414347. doi: 10.
1109/TKDE.2016.2515587.

[77] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered
harmful in client-side XSS filters. In The Web Conference (WWW), 2010. ISBN
9781605587998. doi: 10.1145/1772690.1772701. URL http://portal.acm.org/
citation.cfm?doid=1772690.1772701.

[78] Michela Becchi. Data Structures, Algorithms, and Architectures for Efficient Regular
Expression Evaluation. PhD thesis, 2009.

[79] Michela Becchi and Patrick Crowley. Extending finite automata to efficiently match
perl-compatible regular expressions. In ACM International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT), 2008. ISBN 9781605582108.
doi: 10.1145/1544012.1544037.

[80] Fabian Beck, Stefan Gulan, Benjamin Biegel, Sebastian Baltes, and Daniel Weiskopf.
RegViz: Visual Debugging of Regular Expressions. In Companion Proceedings of
the 36th International Conference on Software Engineering (ICSE), 2014. ISBN
9781450327688. doi: 10.1145/2591062.2591111. URL http://stackoverflow.com/
questions/46155/.

[81] Ralph Becket and Zoltan Somogyi. DCGs + Memoing = Packrat parsing but is it
worth it? In International Symposium on Practical Aspects of Declarative Languages,
2008. ISBN 3540774416. doi: 10.1007/978-3-540-77442-6{_}13.

http://portal.acm.org/citation.cfm?doid=1772690.1772701
http://portal.acm.org/citation.cfm?doid=1772690.1772701
http://stackoverflow.com/questions/46155/
http://stackoverflow.com/questions/46155/

222 BIBLIOGRAPHY

[82] Peter Van Beek. Backtracking Search Algorithms. In Handbook of Constraint Pro-
gramming, chapter 4, pages 85–134. 2006.

[83] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966. ISSN
23249757. doi: 10.1007/978-3-319-17933-9{_}5.

[84] Martin Berglund and Brink Van Der Merwe. Regular Expressions with Backreferences.
In Prague Stringology, pages 30–41, 2017. ISBN 9788001061930.

[85] Martin Berglund and Brink van der Merwe. On the Semantics of Regular Expression
parsing in the Wild. Theoretical Computer Science, 578:292–304, 2015. ISSN 03043975.
doi: 10.1016/j.tcs.2015.03.032.

[86] Martin Berglund, Henrik Björklund, Frank Drewes, Brink Van Der Merwe, and Bruce
Watson. Cuts in regular expressions. In Conference on Developments in Language
Theory, volume 7907 LNCS, pages 70–81, 2013. ISBN 9783642387708. doi: 10.1007/
978-3-642-38771-5{_}8.

[87] Martin Berglund, Frank Drewes, and Brink Van Der Merwe. Analyzing Catastrophic
Backtracking Behavior in Practical Regular Expression Matching. EPTCS: Automata
and Formal Languages 2014, 151:109–123, 2014. ISSN 20752180. doi: 10.4204/EPTCS.
151.7.

[88] Martin Berglund, Brink Van Der Merwe, Bruce Watson, and Nicolaas Weideman. On
the Semantics of Atomic Subgroups in Practical Regular Expressions. Springer CIAA,
2017. ISSN 03043975. doi: 10.1016/j.tcs.2015.03.032.

[89] Martin Berglund, Willem Bester, and Brink van der Merwe. Formalising Boost POSIX
Regular Expression Matching. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11187
LNCS:99–115, 2018. ISSN 16113349. doi: 10.1007/978-3-030-02508-3{_}6.

[90] Alexander Birman and Jeffrey D Ullman. Parsing Algorithms With Backtrack. Sym-
posium on Switching and Automata Theory (SWAT), 1970. doi: 10.1109/swat.1970.18.

[91] A Blackwell. SWYN: A visual representation for regular expressions. Your
Wish is My Command: Programming by …, pages 1–18, 2001. URL
http://books.google.com/books?hl=en&lr=&id=wM2JYafw11gC&oi=fnd&pg=
PA245&dq=SWYN+:+A+Visual+Representation+for+Regular+Expressions&ots=
xyFQTGRSo0&sig=6ee-HY_N5hknlI40TmMPys1dPgo.

[92] Ronald Book, Shimon Even, Sheila Greibach, and Gene Ott. Ambiguity in Graphs
and Expressions. IEEE Transactions on Computers, C-20(2):149–153, 1971. ISSN
00189340. doi: 10.1109/T-C.1971.223204.

[93] Taylor L Booth. Sequential machines and automata theory. 1967.

http://books.google.com/books?hl=en&lr=&id=wM2JYafw11gC&oi=fnd&pg=PA245&dq=SWYN+:+A+Visual+Representation+for+Regular+Expressions&ots=xyFQTGRSo0&sig=6ee-HY_N5hknlI40TmMPys1dPgo
http://books.google.com/books?hl=en&lr=&id=wM2JYafw11gC&oi=fnd&pg=PA245&dq=SWYN+:+A+Visual+Representation+for+Regular+Expressions&ots=xyFQTGRSo0&sig=6ee-HY_N5hknlI40TmMPys1dPgo
http://books.google.com/books?hl=en&lr=&id=wM2JYafw11gC&oi=fnd&pg=PA245&dq=SWYN+:+A+Visual+Representation+for+Regular+Expressions&ots=xyFQTGRSo0&sig=6ee-HY_N5hknlI40TmMPys1dPgo

BIBLIOGRAPHY 223

[94] Mehra Nouroz Borazjany. Applying Combinatorial Testing to Systems with a Complex
Input Space. PhD thesis, The University of Texas at Arlington, 2013.

[95] Hudson Borges and Marco Tulio Valente. What’s in a GitHub Star? Understanding
Repository Starring Practices in a Social Coding Platform. Journal of Systems and
Software, 146:112–129, 2018. ISSN 01641212. doi: 10.1016/j.jss.2018.09.016. URL
https://linkinghub.elsevier.com/retrieve/pii/S0164121218301961.

[96] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Com-
munications of the ACM (CACM), 20(10):762–772, 1977. ISSN 00010782. doi:
10.1145/359842.359859.

[97] Claus Brabrand and Jakob G. Thomsen. Typed and unambiguous pattern matching on
strings using regular expressions. Symposium on Principles and Practice of Declarative
Programming (PPDP), pages 243–254, 2010. doi: 10.1145/1836089.1836120.

[98] Claus Brabrand, Robert Giegerich, and Anders Møller. Analyzing ambiguity of
context-free grammars. Science of Computer Programming, 75(3):176–191, 2010. ISSN
01676423. doi: 10.1016/j.scico.2009.11.002. URL http://dx.doi.org/10.1016/j.
scico.2009.11.002.

[99] James Britt and Neurogami Secret Laboratory. Regexp - ruby. https://ruby-doc.
org/core-2.3.1/Regexp.html.

[100] Benjamin C. Brodle, Ron K. Cytron, and David E. Taylor. A scalable architecture for
high-throughput regular-expression pattern matching. In International Symposium on
Computer Architecture (ISCA), volume 2006, pages 191–202, 2006. ISBN 076952608X.
doi: 10.1109/ISCA.2006.7.

[101] Etienne Brodu, S Frénot, and F Oblé. Toward automatic update from call-
backs to Promises. In Workshop on All-Web Real-Time Systems (AWeS),
2015. ISBN 9781450334778. doi: 10.1145/2749215.2749216. URL https:
//hal.archives-ouvertes.fr/hal-01132776https://hal.archives-ouvertes.
fr/hal-01132776/.

[102] Jr. Brooks, Frederick P. The Computer Scientist as Toolsmith II. Communications of
the ACM (CACM), 39(3):61–68, 1996. ISSN 0001-0782. doi: 10.1145/227234.227243.

[103] Janusz A. Brzozowski. Derivatives of Regular Expressions. Journal of the Association
for Computing Machinery, 11(4):481–494, 1964.

[104] Ivan Budiselic, Sinisa Srbljic, and Miroslav Popovic. RegExpert: A tool for visualiza-
tion of regular expressions. In The International Conference on Computer as a Tool
(EUROCON), pages 2387–2389, 2007. ISBN 142440813X. doi: 10.1109/EURCON.
2007.4400374.

https://linkinghub.elsevier.com/retrieve/pii/S0164121218301961
http://dx.doi.org/10.1016/j.scico.2009.11.002
http://dx.doi.org/10.1016/j.scico.2009.11.002
https://ruby-doc.org/core-2.3.1/Regexp.html
https://ruby-doc.org/core-2.3.1/Regexp.html
https://hal.archives-ouvertes.fr/hal-01132776 https://hal.archives-ouvertes.fr/hal-01132776/
https://hal.archives-ouvertes.fr/hal-01132776 https://hal.archives-ouvertes.fr/hal-01132776/
https://hal.archives-ouvertes.fr/hal-01132776 https://hal.archives-ouvertes.fr/hal-01132776/

224 BIBLIOGRAPHY

[105] Arthur W Burks and Hao Wang. The Logic of Automata - part 2. Journal of the
Association for Computing Machinery (JACM), 4(3):279–297, 1957.

[106] Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and Koushik Sen. Looper:
Lightweight detection of infinite loops at runtime. In International Conference on
Automated Software Engineering (ASE), 2009. ISBN 9780769538914. doi: 10.1109/
ASE.2009.87.

[107] Cezar Câmpeanu and Nicolae Santean. On the intersection of regex languages with
regular languages. Theoretical Computer Science, 410(24-25):2336–2344, 2009. ISSN
03043975. doi: 10.1016/j.tcs.2009.02.022. URL http://dx.doi.org/10.1016/j.tcs.
2009.02.022.

[108] CEZAR CÂMPEANU, KAI SALOMAA, and SHENG YU. A Formal Study of Prac-
tical Regular Expressions. International Journal of Foundations of Computer Science,
14(06):1007–1018, 2003. ISSN 0129-0541. doi: 10.1142/s012905410300214x.

[109] Niccolo Cascarano, Pierluigi Rolando, Fulvio Risso, Riccardo Sisto, Niccolo Cascarano,
Pierluigi Rolando, Fulvio Risso, Riccardo Sisto, and Politecnico Torino. Public Review
for iNFAnt: NFA Pattern Matching on GPGPU Devices. ACM SIGCOMM Computer
Communication Review, 40(5):20–26, 2010.

[110] Matthew Casias, Kevin Angstadt, Tommy Tracy II, Kevin Skadron, and Westley
Weimer. Debugging Support for Pattern-Matching Languages and Accelerators. In
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2019. ISBN 9781450362405.

[111] Gaurav Chadha, Scott Mahlke, and Satish Narayanasamy. Accelerating Asynchronous
Programs Through Event Sneak Peek. In International Symposium on Computer Ar-
chitecture (ISCA), 2015. ISBN 978-1-4503-3402-0. doi: 10.1145/2749469.2750373.

[112] Chia-Hsiang Chang and Robert Paige. From regular expressions to DFA’s using com-
pressed NFA’s. Theoretical Computer Science, 178(178):1–36, 1997. URL https://
pdfs.semanticscholar.org/cb61/da2f10ed3521140f0c6ecdd1c524fc0aab59.pdf.

[113] Richard Chang, Guofei Jiang, Franjo Ivančić, Sriram Sankaranarayanan, and Vitaly
Shmatikov. Inputs of coma: Static detection of denial-of-service vulnerabilities. In
IEEE Computer Security Foundations Symposium (CSF), 2009. ISBN 9780769537122.
doi: 10.1109/CSF.2009.13.

[114] Yeim Kuan Chang and Ching Hsuan Shih. A Memory Efficient Pattern Matching
Scheme for Regular Expressions. Procedia Computer Science, 110:250–257, 2017. ISSN
18770509. doi: 10.1016/j.procs.2017.06.092. URL http://dx.doi.org/10.1016/j.
procs.2017.06.092.

http://dx.doi.org/10.1016/j.tcs.2009.02.022
http://dx.doi.org/10.1016/j.tcs.2009.02.022
https://pdfs.semanticscholar.org/cb61/da2f10ed3521140f0c6ecdd1c524fc0aab59.pdf
https://pdfs.semanticscholar.org/cb61/da2f10ed3521140f0c6ecdd1c524fc0aab59.pdf
http://dx.doi.org/10.1016/j.procs.2017.06.092
http://dx.doi.org/10.1016/j.procs.2017.06.092

BIBLIOGRAPHY 225

[115] Carl Chapman and Kathryn T Stolee. Exploring regular expression usage and context
in Python. In International Symposium on Software Testing and Analysis (ISSTA),
2016. ISBN 9781450343909. doi: 10.1145/2931037.2931073.

[116] Carl Chapman, Peipei Wang, and Kathryn T Stolee. Exploring Regular Expression
Comprehension. In Automated Software Engineering (ASE), 2017.

[117] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian Liu.
A systematic review of fuzzing techniques. Computers and Security, 75:118–137, 2018.
ISSN 01674048. doi: 10.1016/j.cose.2018.02.002. URL https://doi.org/10.1016/j.
cose.2018.02.002.

[118] Zhifeng Chen, T. V. Lakshman, Randy H. Katz, Fang Yu, and Yanlei Diao. Fast and
memory-efficient regular expression matching for deep packet inspection. Symposium
on Architecture For Networking And Communications Systems (ANCS), 2006. doi:
10.1145/1185347.1185360.

[119] Sang Cho and Dung T. Huynh. The parallel complexity of finite-state automata
problems. Information and Computation, 97(1):1–22, 1992. ISSN 10902651. doi:
10.1016/0890-5401(92)90002-W.

[120] Seongmyun Cho. iptables string regex, 2016. URL https://web.archive.
org/web/20191010134733/https://github.com/smcho-kr/kpcre/wiki/
iptables-string-regex.

[121] Noam Chomsky. Three Models for the Description of Language. IRE Transactions on
information theory, 2(3):113–124, 1956.

[122] Maria Christakis and Christian Bird. What developers want and need from program
analysis: An empirical study. In Automated Software Engineering (ASE), 2016. ISBN
9781450338455. doi: 10.1145/2970276.297.

[123] Alonzo Church. A Note on the Entscheidungsproblem. The Journal of Symbolic Logic,
1(1):40–41, 1936. ISSN 1098-6596. doi: 10.1017/CBO9781107415324.004.

[124] Charles L. A. Clarke and Gordon V. Cormack. On the use of regular expressions for
searching text. ACM Transactions on Programming Languages and Systems, 19(3):
413–426, 2002. ISSN 01640925. doi: 10.1145/256167.256174.

[125] Brendan Cody-Kenny, Michael Fenton, Adrian Ronayne, Eoghan Considine, Thomas
McGuire, and Michael O’Neill. A Search for Improved Performance in Regular
Expressions. In Genetic and Evolutionary Computation Conference, 2017. doi:
doi:10.1145/3071178.3071196. URL http://arxiv.org/abs/1704.04119.

[126] Jacob Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.

https://doi.org/10.1016/j.cose.2018.02.002
https://doi.org/10.1016/j.cose.2018.02.002
https://web.archive.org/web/20191010134733/https://github.com/smcho-kr/kpcre/wiki/iptables-string-regex
https://web.archive.org/web/20191010134733/https://github.com/smcho-kr/kpcre/wiki/iptables-string-regex
https://web.archive.org/web/20191010134733/https://github.com/smcho-kr/kpcre/wiki/iptables-string-regex
http://arxiv.org/abs/1704.04119

226 BIBLIOGRAPHY

[127] C. Jason Coit, Stuart Staniford, and Joseph McAlerney. Towards faster string matching
for intrusion detection or exceeding the speed of Snort. In Proceedings DARPA Infor-
mation Survivability Conference and Exposition II (DISCEX), 2001. ISBN 0769512127.
doi: 10.1109/DISCEX.2001.932231.

[128] Byron Cook and John Launchbury. Disposable memo functions. In Haskell Workshop,
1997. doi: 10.1145/258949.258979.

[129] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009.

[130] Oracle Corp. Pattern - java. https://docs.oracle.com/en/java/javase/11/docs/
api/java.base/java/util/regex/Pattern.html.

[131] Erik Corry, Christian Plesner Hansen, and Lasse Reichstein Holst Nielsen. Irregexp,
Google Chrome’s New Regexp Implementation, 2009. URL https://blog.chromium.
org/2009/02/irregexp-google-chromes-new-regexp.html.

[132] Russ Cox. Regular Expression Matching Can Be Simple And Fast (but is slow in Java,
Perl, PHP, Python, Ruby, ...), 2007.

[133] Russ Cox. Regular Expression Matching in the Wild, 2010. URL https://swtch.
com/~rsc/regexp/regexp3.html.

[134] Russ Cox. RE2, 2010. URL https://github.com/google/re2https://github.com/
google/re2/wiki/WhyRE2.

[135] Scott Crosby and T H E Usenix Magazine. Denial of service through regular expres-
sions. In USENIX Security work in progress report, volume 28, 2003.

[136] Scott A Crosby and Dan S Wallach. Denial of Service via Algorithmic Complexity
Attacks. In USENIX Security, 2003.

[137] James R Dabrowski and Ethan V Munson. Is 100 milliseconds too fast? In CHI’01
extended abstracts on Human factors in computing systems, pages 317–318, 2001.

[138] James Davis, Gregor Kildow, and Dongyoon Lee. The Case of the Poisoned Event
Handler: Weaknesses in the Node.js Event-Driven Architecture. In European Workshop
on Systems Security (EuroSec), 2017. ISBN 9781450349352.

[139] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. The Impact
of Regular Expression Denial of Service (ReDoS) in Practice: an Empirical Study at
the Ecosystem Scale. In The ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2018. ISBN
9781450355735.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html
https://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html
https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html
https://github.com/google/re2 https://github.com/google/re2/wiki/WhyRE2
https://github.com/google/re2 https://github.com/google/re2/wiki/WhyRE2

BIBLIOGRAPHY 227

[140] James C Davis, Eric R Williamson, and Dongyoon Lee. A Sense of Time for JavaScript
and Node.js: First-Class Timeouts as a Cure for Event Handler Poisoning. In USENIX
Security Symposium (USENIX Security), 2018.

[141] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant, and
Dongyoon Lee. Why aren’t regular expressions a lingua franca? an empirical study on
the re-use and portability of regular expressions. In The ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2019. ISBN 9781450355728. doi: 10.1145/3338906.3338909.

[142] James C Davis, Daniel Moyer, Ayaan M Kazerouni, and Dongyoon Lee. Testing Regex
Generalizability And Its Implications: A Large-Scale Many-Language Measurement
Study. In IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2019.

[143] Willem De Groef, Fabio Massacci, and Frank Piessens. NodeSentry: Least-privilege li-
brary integration for server-side JavaScript. In Annual Computer Security Applications
Conference (ACSAC), 2014. ISBN 9781450330053. doi: 10.1145/2664243.2664276.

[144] Erik DeBill. Module counts. http://modulecounts-production.herokuapp.com/.

[145] François Denis. Learning regular languages from simple positive examples. Machine
Learning, 44(1-2):37–66, 2001. ISSN 08856125. doi: 10.1023/A:1010826628977.

[146] The Rust Project Developers. regex - rust. https://docs.rs/regex/1.1.0/regex/.

[147] MDN Web Docs. Regular expressions - javascript. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions, .

[148] MDN Web Docs. Regexp - javascript. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/RegExp, .

[149] James Donohue. Industrial developers’ perspectives and processes around regular ex-
pression use and ReDoS. PhD thesis, University of Bradford, 2019.

[150] Stephen C. Drye and William C. Wake. Java Swing reference. Manning Publications
Company, 1999.

[151] Jay Earley. An Efficient Context-Free Parsing Algorithm. Communications of the
ACM, 13(2):94–102, 1970. ISSN 15577317. doi: 10.1145/357980.358005.

[152] Eclipse. Eclipse Find/Replace. URL https://help.eclipse.org/kepler/index.
jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fviews%2Fshared%
2Fref-findreplace.htm.

http://modulecounts-production.herokuapp.com/
https://docs.rs/regex/1.1.0/regex/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fviews%2Fshared%2Fref-findreplace.htm
https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fviews%2Fshared%2Fref-findreplace.htm
https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fviews%2Fshared%2Fref-findreplace.htm

228 BIBLIOGRAPHY

[153] Stack Exchange. Outage postmortem. http://web.archive.org/
web/20180801005940/http://stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016, 2016.

[154] Steve Ferg. Event-driven programming: introduction, tutorial, history. 2006. URL
http://eventdrivenpgm.sourceforge.net/.

[155] Stenio Fernandes, Géza Szabó, Judith Kelner, Rafael Antonello, and Djamel Sadok.
Design and optimizations for efficient regular expression matching in DPI systems.
Computer Communications, 61:103–120, 2015. ISSN 01403664. doi: 10.1016/j.comcom.
2014.12.011. URL http://dx.doi.org/10.1016/j.comcom.2014.12.011.

[156] Michael Fitzgerald. Introducing regular expressions. O’Reilly Media, Inc., 2012.

[157] Bryan Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time. In The Inter-
national Conference on Functional Programming (ICFP), volume 37, 2002. ISBN
1581134878. URL http://arxiv.org/abs/cs/0603077.

[158] Bryan Ford. Parsing Expression Grammars: A Recognition-Based Syntactic Founda-
tion. In Principles of Programming Languages (POPL), page 354. ACM, 2004. ISBN
158113729X.

[159] Apache Software Foundation. The Apache web server, . URL http://www.apache.
org.

[160] Python Software Foundation. re – regular expression operations - python. https:
//docs.python.org/3.6/library/re.html, .

[161] Scott Frees. C++ and Node.js Integration. 2016. URL https://scottfrees.com/
ebooks/nodecpp/.

[162] Dominik D. Freydenberger. Extended Regular Expressions: Succinctness and Decid-
ability. Theory of Computing Systems, 53(2):159–193, 2013. ISSN 14324350. doi:
10.1007/s00224-012-9389-0.

[163] Jeffrey EF Friedl. Mastering regular expressions. O’Reilly Media, Inc., 2002.

[164] Ugo Galassi and Attilio Giordana. Learning regular expressions from noisy sequences.
In International Symposium on Abstraction, Reformulation, and Approximation, 2005.
ISBN 3540278729. doi: 10.1007/11527862{_}7.

[165] David Galbraith. How i fixed atom: When good regexes go bad. https:
//web.archive.org/web/20191226230445/http://davidvgalbraith.com/
how-i-fixed-atom/, 2016.

[166] David Galbraith. decreasenextindentpattern: prevent catastrophic backtracking.
https://github.com/atom/language-go/pull/79, 2016.

http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://eventdrivenpgm.sourceforge.net/
http://dx.doi.org/10.1016/j.comcom.2014.12.011
http://arxiv.org/abs/cs/0603077
http://www.apache.org
http://www.apache.org
https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html
https://scottfrees.com/ebooks/nodecpp/
https://scottfrees.com/ebooks/nodecpp/
https://web.archive.org/web/20191226230445/http://davidvgalbraith.com/how-i-fixed-atom/
https://web.archive.org/web/20191226230445/http://davidvgalbraith.com/how-i-fixed-atom/
https://web.archive.org/web/20191226230445/http://davidvgalbraith.com/how-i-fixed-atom/
https://github.com/atom/language-go/pull/79

BIBLIOGRAPHY 229

[167] Garun, Natt. Downdetector down as another cloudflare outage affects
services across the web. https://www.theverge.com/2019/7/2/20678958/
downdetector-down-cloudflare-502-gateway-error-discord-outage, 2019.

[168] Gershgorn, Dave. An internet backbone leaked data from millions of
sites. here’s how to check if you’re affected. https://qz.com/918941/
cloudflare-leaked-user-data-from-millions-of-websites-heres-how-to-check-if-you-were-affected/,
2017.

[169] GitHub. The state of the octoverse. https://octoverse.github.com/, 2018.

[170] Herbert Glantz. On the recognition of information with a digital computer. In ACM
national meeting, 1956.

[171] V M Glushkov. The Abstract Theory of Automata. Russian Mathematical Surveys,
16(5):1–53, 1961. ISSN 0036-0279. doi: 10.1070/rm1961v016n05abeh004112.

[172] Viktor M Glushkov. On a synthesis algorithm for abstract automata. Ukr. Matem.
Zhurnal, 12(2):147–156, 1960.

[173] Kurt Godel. Uber formal unentscheidbare Satze der Principia Mathematica und ver-
wandter Systeme I. Monthly magazines for mathematics and physics, 38(1), 1931.

[174] Eric Goebelbecker. Using grep. Linux Journal, 1995.

[175] Danny Goodman and Paula Ferguson. Dynamic HTML: The Definitive Reference.
O’Reilly, 1 edition, 1998.

[176] Google. regexp - go. https://golang.org/pkg/regexp/.

[177] Jan Goyvaerts. Regular Expressions: The Complete Tutorial. Lulu Press, 2006.

[178] Jan Goyvaerts. A list of popular tools, utilities and programming languages that
provide support for regular expressions, and tips for using them, 2016. URL https:
//www.regular-expressions.info/tools.html.

[179] Jan Goyvaerts and Steven Levithan. Regular expressions cookbook. O’Reilly Media,
Inc., 2012.

[180] Graham-Cumming, John. Details of the cloudflare outage on july 2, 2019.
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/
details-of-the-cloudflare-outage-on-july-2-2019/.

[181] The PHP Group. Regexp - php. http://php.net/manual/en/regexp.
introduction.php.

https://www.theverge.com/2019/7/2/20678958/downdetector-down-cloudflare-502-gateway-error-discord-outage
https://www.theverge.com/2019/7/2/20678958/downdetector-down-cloudflare-502-gateway-error-discord-outage
https://qz.com/918941/cloudflare-leaked-user-data-from-millions-of-websites-heres-how-to-check-if-you-were-affected/
https://qz.com/918941/cloudflare-leaked-user-data-from-millions-of-websites-heres-how-to-check-if-you-were-affected/
https://octoverse.github.com/
https://golang.org/pkg/regexp/
https://www.regular-expressions.info/tools.html
https://www.regular-expressions.info/tools.html
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
http://php.net/manual/en/regexp.introduction.php
http://php.net/manual/en/regexp.introduction.php

230 BIBLIOGRAPHY

[182] Salvatore Guarnieri and V Benjamin Livshits. GATEKEEPER: Mostly Static Enforce-
ment of Security and Reliability Policies for JavaScript Code. USENIX Security, 2009.
URL https://css.csail.mit.edu/6.858/2014/readings/gatekeeper.pdf.

[183] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynam-
ics, and function using networkx. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[184] Christian Hagenah and Anca Muscholl. Computing e-free NFA from regular expres-
sions in O(n log^2(n)) time. Informatique theorique et applications, 34(4):257–277,
2000.

[185] Jeff Harrell. Node.js at PayPal. https://www.paypal-engineering.com/2013/11/
22/node-js-at-paypal/, 2013.

[186] Olaf Hartig and Jorge Pérez. Semantics and Complexity of GraphQL. In Conference on
World Wide Web (WWW), 2018. ISBN 9781450356398. doi: 10.1145/3178876.3186014.
URL http://dl.acm.org/citation.cfm?doid=3178876.3186014.

[187] Philip Hazel. PCRE - Perl Compatible Regular Expressions, 1997.

[188] Philip Hazel. PCRE2 - Perl Compatible Regular Expressions, 2ed, 2018. URL https:
//www.pcre.org/current/doc/html/pcre2pattern.html.

[189] Hazel, Philip. Pcre - perl compatible regular expressions. https://web.archive.org/
web/20180919101106/https://www.pcre.org/, 2018.

[190] Marius Hoch. Change 209153: Quote params passed into regular expressions. https:
//gerrit.wikimedia.org/r/#/c/mediawiki/extensions/Quiz/+/209153/, 2015.

[191] Renáta Hodován, Zoltán Herczeg, and Ákos Kiss. Regular expressions on the web. In
International Symposium on Web Systems Evolution (WSE), pages 29–32, 2010. ISBN
9781424486366. doi: 10.1109/WSE.2010.5623572.

[192] Markus Holzer and Martin Kutrib. Descriptional and computational complexity of
finite automata - A survey. Information and Computation, 209(3):456–470, 2011. ISSN
08905401. doi: 10.1016/j.ic.2010.11.013. URL http://dx.doi.org/10.1016/j.ic.
2010.11.013.

[193] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
Technical Report 2, 1971.

[194] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Automata theory, languages,
and computation, volume 24. 2006.

https://css.csail.mit.edu/6.858/2014/readings/gatekeeper.pdf
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
http://dl.acm.org/citation.cfm?doid=3178876.3186014
https://www.pcre.org/current/doc/html/pcre2pattern.html
https://www.pcre.org/current/doc/html/pcre2pattern.html
https://web.archive.org/web/20180919101106/https://www.pcre.org/
https://web.archive.org/web/20180919101106/https://www.pcre.org/
https://gerrit.wikimedia.org/r/#/c/mediawiki/extensions/Quiz/+/209153/
https://gerrit.wikimedia.org/r/#/c/mediawiki/extensions/Quiz/+/209153/
http://dx.doi.org/10.1016/j.ic.2010.11.013
http://dx.doi.org/10.1016/j.ic.2010.11.013

BIBLIOGRAPHY 231

[195] Juraj Hromkovič, Sebastian Seibert, and Thomas Wilke. Translating regular expres-
sions into small ε-free nondeterministic finite automata. Journal of Computer and
System Sciences, 62:565–588, 2001. ISSN 16113349.

[196] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R Lorch, Yingnong Dang, Murali
Chintalapati, and Randolph Yao. Gray Failure: The Achilles’ Heel of Cloud-Scale
Systems. In Hot Topics in Operating Systems (HotOS), 2017. doi: 10.1145/3102980.
3103005. URL https://doi.org/10.1145/3102980.3103005.

[197] John Hughes. Lazy memo-functions. In Conference on Functional Programming
Languages and Computer Architecture, 1985. ISBN 9783540159759. doi: 10.1007/
3-540-15975-4{_}34.

[198] Andrew Hume. A Tale of Two Greps. Software - Practice and Experience, 18(11):
1063–1072, 1988.

[199] Andrew Hume and Daniel Sunday. Fast String Searching. Software - Practice and
Experience, 21(11):1221–1248, 1991. doi: 10.2991/ifsa-eusflat-15.2015.60.

[200] IBM. IBM Db2. URL https://www.ibm.com/support/knowledgecenter/en/
SSEPGG_10.5.0/com.ibm.db2.luw.xml.doc/doc/xqrregexp.html.

[201] IEEE and The Open Group. The Open Group Base Specifications Issue 7, 2018 edition.
2018.

[202] IEEE and The Open Group. The open group base specifications issue 7, 2018 edition,
ieee std 1003.1-2017, 2018.

[203] Jamie Jennings. The Rosie Pattern Language. https://rosie-lang.org/, 2020.

[204] Tao Jiang and B Ravikumar. Minimal NFA problems are Hard. SIAM Journal on
Computing, 22(6):1117–1141, 1993.

[205] Derek Jones. Patterns of regular expression usage: duplicate
regexs. http://shape-of-code.coding-guidelines.com/2020/02/16/
patterns-of-regular-expression-usage-duplicate-regexs/, 2020.

[206] Julliard, Alexandre. Wine is not an emulator (wine): a windows compatibility layer.
https://www.winehq.org/.

[207] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. Repairing programs
with semantic code search. In Automated Software Engineering (ASE), pages 295–306,
2016. ISBN 9781509000241. doi: 10.1109/ASE.2015.60.

https://doi.org/10.1145/3102980.3103005
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.5.0/com.ibm.db2.luw.xml.doc/doc/xqrregexp.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.5.0/com.ibm.db2.luw.xml.doc/doc/xqrregexp.html
https://rosie-lang.org/
http://shape-of-code.coding-guidelines.com/2020/02/16/patterns-of-regular-expression-usage-duplicate-regexs/
http://shape-of-code.coding-guidelines.com/2020/02/16/patterns-of-regular-expression-usage-duplicate-regexs/
https://www.winehq.org/

232 BIBLIOGRAPHY

[208] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst.
HAMPI: A solver for string constraints. In International Symposium on Software
Testing and Analysis (ISSTA), pages 105–115, 2009. ISBN 9781605583389. doi: 10.
1145/1572272.1572286.

[209] James Kirrage, Asiri Rathnayake, and Hayo Thielecke. Static Analysis for Regular
Expression Denial-of-Service Attacks. In International Conference on Network and
System Security (NSS), pages 35–148, 2013. ISBN 9783642386305.

[210] S. C. Kleene. Representation of events in nerve nets and finite automata. Automata
Studies, pages 3–41, 1951.

[211] Amit Klein. DOM Based Cross Site Scripting or XSS of the Third Kind. Technical
Report July, 2005. URL http://www.webappsec.org/projects/articles/071105.
shtml.

[212] Donald E Knuth, Jr. Morris, James H, and Vaughan R Pratt. Fast pattern matching
in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[213] Andrew Koenig. Patterns and antipatterns. The patterns handbook: techniques, strate-
gies, and applications, 13:383, 1998.

[214] Ricardo Koller and Dan Williams. Will Serverless End the Dominance of Linux
in the Cloud? In Hot Topics in Operating Systems (HotOS), pages 169–173,
2017. ISBN 9781450350686. doi: 10.1145/3102980.3103008. URL https:
//pdfs.semanticscholar.org/7e4c/7ed7c772ef43eda726afe68c25cb2e2357f3.
pdfhttp://dl.acm.org/citation.cfm?doid=3102980.3103008%0Ahttps:
//www.sigops.org/hotos/hotos17/papers/hotos17-final99.pdf.

[215] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance analysis.
Journal of the American statistical Association, 47(260):583–621, 1952.

[216] A.M. Kuchling. Regular expression howto - python. https://docs.python.org/3.
6/howto/regex.html.

[217] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner, and George Vargh-
ese. Curing regular expressions matching algorithms from insomnia, amnesia, and
acalculia. In Symposium on Architecture For Networking And Communications Sys-
tems (ANCS), volume 25, page 155, 2007. ISBN 9781595939456. doi: 10.1145/1323548.
1323574.

[218] Mark Kvale. Perl regular expressions tutorial - perl. https://perldoc.perl.org/5.
22.0/perlretut.html.

[219] Eric Larson. Automatic Checking of Regular Expressions. In Source Code Analysis
and Manipulation (SCAM), 2018.

http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
https://pdfs.semanticscholar.org/7e4c/7ed7c772ef43eda726afe68c25cb2e2357f3.pdf http://dl.acm.org/citation.cfm?doid=3102980.3103008%0Ahttps://www.sigops.org/hotos/hotos17/papers/hotos17-final99.pdf
https://pdfs.semanticscholar.org/7e4c/7ed7c772ef43eda726afe68c25cb2e2357f3.pdf http://dl.acm.org/citation.cfm?doid=3102980.3103008%0Ahttps://www.sigops.org/hotos/hotos17/papers/hotos17-final99.pdf
https://pdfs.semanticscholar.org/7e4c/7ed7c772ef43eda726afe68c25cb2e2357f3.pdf http://dl.acm.org/citation.cfm?doid=3102980.3103008%0Ahttps://www.sigops.org/hotos/hotos17/papers/hotos17-final99.pdf
https://pdfs.semanticscholar.org/7e4c/7ed7c772ef43eda726afe68c25cb2e2357f3.pdf http://dl.acm.org/citation.cfm?doid=3102980.3103008%0Ahttps://www.sigops.org/hotos/hotos17/papers/hotos17-final99.pdf
https://docs.python.org/3.6/howto/regex.html
https://docs.python.org/3.6/howto/regex.html
https://perldoc.perl.org/5.22.0/perlretut.html
https://perldoc.perl.org/5.22.0/perlretut.html

BIBLIOGRAPHY 233

[220] Eric Larson and Anna Kirk. Generating Evil Test Strings for Regular Expressions. In
International Conference on Software Testing, Verification and Validation (ICST),
2016. ISBN 9781509018260. doi: 10.1109/ICST.2016.29. URL https://pdfs.
semanticscholar.org/abbb/a5867872ab723b272a13607b649f6e7bf008.pdf.

[221] Ville Laurikari. NFAs with tagged transitions, their conversion to determinis-
tic automata and application to regular expressions. International Symposium on
String Processing and Information Retrieval (SPIRE), pages 181–187, 2000. doi:
10.1109/SPIRE.2000.878194.

[222] Johnson Ching-Hong Li. Effect size measures in a two-independent-samples case with
nonnormal and nonhomogeneous data. Behavior Research Methods, 48(4):1560–1574,
Dec 2016.

[223] Nuo Li, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wol-
fram Schulte. Reggae: Automated Test Generation for Programs Us-
ing Complex Regular Expressions. In Automated Software Engineering
(ASE), 2009. ISBN 978-1-4244-5259-0. doi: 10.1109/ASE.2009.67. URL
https://www.researchgate.net/profile/Wolfram_Schulte/publication/
220883583_Reggae_Automated_Test_Generation_for_Programs_Using_
Complex_Regular_Expressions/links/00b7d5141dce1354d8000000.pdfhttp:
//ieeexplore.ieee.org/document/5431742/.

[224] Yinan Li, Nikos R Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein,
and Donald Kossmann. Mison: A Fast JSON Parser for Data Analyt-
ics. Very Large DataBases (VLDB), 10(10):1118–1129, 2017. ISSN 21508097.
URL http://www.vldb.org/pvldb/vol10/p1118-li.pdfhttps://www.microsoft.
com/en-us/research/wp-content/uploads/2017/05/mison-vldb17.pdf.

[225] Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan,
and H. V. Jagadish. Regular expression learning for information extraction. In Con-
ference on Empirical Methods in Natural Language Processing, pages 21–30, 2008. doi:
10.3115/1613715.1613719.

[226] Tom Liston. Welcome To My Tarpit: The Tactical and Strategic Use of LaBrea.
http://www.threenorth.com/LaBrea/LaBrea.txt, 2001.

[227] Blake Loring, Duncan Mitchell, and Johannes Kinder. Sound regular expression seman-
tics for dynamic symbolic execution of JavaScript. In Programming Language Design
and Implementation (PLDI), pages 425–438. Association for Computing Machinery, 6
2019. ISBN 9781450367127. doi: 10.1145/3314221.3314645.

[228] Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. Scheduling-Context
Capabilities: A Principled, Light-Weight Operating-System Mechanism for Managing

https://pdfs.semanticscholar.org/abbb/a5867872ab723b272a13607b649f6e7bf008.pdf
https://pdfs.semanticscholar.org/abbb/a5867872ab723b272a13607b649f6e7bf008.pdf
https://www.researchgate.net/profile/Wolfram_Schulte/publication/220883583_Reggae_Automated_Test_Generation_for_Programs_Using_Complex_Regular_Expressions/links/00b7d5141dce1354d8000000.pdf http://ieeexplore.ieee.org/document/5431742/
https://www.researchgate.net/profile/Wolfram_Schulte/publication/220883583_Reggae_Automated_Test_Generation_for_Programs_Using_Complex_Regular_Expressions/links/00b7d5141dce1354d8000000.pdf http://ieeexplore.ieee.org/document/5431742/
https://www.researchgate.net/profile/Wolfram_Schulte/publication/220883583_Reggae_Automated_Test_Generation_for_Programs_Using_Complex_Regular_Expressions/links/00b7d5141dce1354d8000000.pdf http://ieeexplore.ieee.org/document/5431742/
https://www.researchgate.net/profile/Wolfram_Schulte/publication/220883583_Reggae_Automated_Test_Generation_for_Programs_Using_Complex_Regular_Expressions/links/00b7d5141dce1354d8000000.pdf http://ieeexplore.ieee.org/document/5431742/
http://www.vldb.org/pvldb/vol10/p1118-li.pdf https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/mison-vldb17.pdf
http://www.vldb.org/pvldb/vol10/p1118-li.pdf https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/mison-vldb17.pdf
http://www.threenorth.com/LaBrea/LaBrea.txt

234 BIBLIOGRAPHY

Time. In European Conference on Computer Systems (EuroSys), 2018. doi: 10.1145/
3190508.3190539. URL https://doi.org/10.1145/3190508.3190539.

[229] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems-A systematic
literature review. Journal of Systems and Software, 86(5):1294–1306, 2013. ISSN
01641212. doi: 10.1016/j.jss.2012.12.026. URL https://pdfs.semanticscholar.
org/75fb/1e203859e11afa5deaec07acfff215adeed0.pdf.

[230] Warren S. McCulloch and Walter Pitts. A Logical Calculus of the Ideas Immanent in
Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943. ISSN
00074985. doi: 10.1007/BF02478259.

[231] M D Mcilroy. Killer adversary for quicksort. Software - Practice and Experience, 29(4):
341–344, 1999. ISSN 00380644. doi: 10.1002/(SICI)1097-024X(19990410)29:4<341::
AID-SPE237>3.0.CO;2-R.

[232] William M Mckeeman. Differential Testing for Software. Digital Technical Journal, 10
(1), 1998.

[233] Lee E. McMahon. sed, 1973. URL http://sed.sourceforge.net/sedfaq2.html.

[234] R McNaughton and H Yamada. Regular Expressions and State Graphs for Automata.
IRE Transactions on Electronic Computers, 5:39–47, 1960.

[235] George H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System Tech-
nical Journal, 34(5):1045–1079, 1955. ISSN 15387305. doi: 10.1002/j.1538-7305.1955.
tb03788.x.

[236] Sérgio Medeiros, Fabio Mascarenhas, and Roberto Ierusalimschy. From regexes to
parsing expression grammars. Science of Computer Programming, 93(PART A):3–18,
2014. ISSN 01676423. doi: 10.1016/j.scico.2012.11.006. URL http://dx.doi.org/
10.1016/j.scico.2012.11.006.

[237] Louis GMichael IV. Exploring the Process and Challenges of Programming with Regular
Expressions. PhD thesis, Virginia Tech, 2019.

[238] Louis G Michael IV, James Donohue, James C Davis, Dongyoon Lee, and Francisco
Servant. Regexes are Hard : Decision-making, Difficulties, and Risks in Programming
Regular Expressions. In IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2019.

[239] Donald Michie. ”Memo” Functions and Machine Learning. Nature, 1968.

[240] Microsoft. Regex class - c#. https://docs.microsoft.com/en-us/dotnet/api/
system.text.regularexpressions.regex, .

https://doi.org/10.1145/3190508.3190539
https://pdfs.semanticscholar.org/75fb/1e203859e11afa5deaec07acfff215adeed0.pdf
https://pdfs.semanticscholar.org/75fb/1e203859e11afa5deaec07acfff215adeed0.pdf
http://sed.sourceforge.net/sedfaq2.html
http://dx.doi.org/10.1016/j.scico.2012.11.006
http://dx.doi.org/10.1016/j.scico.2012.11.006
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex

BIBLIOGRAPHY 235

[241] Microsoft. Automata and transducer library for .net. https://github.com/
AutomataDotNet/Automata, .

[242] Microsoft. Microsoft Word Help and Training: Find and replace
text, 2019. URL https://support.office.com/en-us/article/
find-and-replace-text-c6728c16-469e-43cd-afe4-7708c6c779b7.

[243] Microsoft. Use regular expressions in Visual Studio, 2019.
URL https://docs.microsoft.com/en-us/visualstudio/ide/
using-regular-expressions-in-visual-studio.

[244] Matthew Might, David Darais, and Daniel Spiewak. Parsing with derivatives: A
functional pearl. In The International Conference on Functional Programming (ICFP),
2011. ISBN 9781450308656. doi: 10.1145/2034574.2034801.

[245] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reli-
ability of UNIX utilities. Communications of the ACM, 33(12):32–44, 1990. ISSN
00010782. doi: 10.1145/96267.96279. URL http://ftp.cs.wisc.edu/paradyn/
technical_papers/fuzz.pdf.

[246] Jelena Mirkovic and Peter Reiher. A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39, 2004.
ISSN 01464833. doi: 10.1145/997150.997156.

[247] Jelena Mirkovic, Sven Dietrich, David Dittrich, and Peter Reiher. Internet denial of
service: attack and defense mechanisms. Prentice Hall PTR, 2004.

[248] David G Mitchell. A SAT Solver Primer. Technical report, 2005.

[249] Kota Mizushima, Atusi Maeda, and Yoshinori Yamaguchi. Packrat parsers can handle
practical grammars in mostly constant space. ACM SIGPLAN/SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE), pages 29–36, 2010.
doi: 10.1145/1806672.1806679.

[250] Abhijeet Mohapatra and Michael Genesereth. Incrementally maintaining run-length
encoded attributes in column stores. ACM International Conference Proceeding Series,
pages 146–154, 2012. doi: 10.1145/2351476.2351493.

[251] Mohd_PH. Regex Search (Firefox plugin). URL https://addons.mozilla.org/
en-US/firefox/addon/regexsearch/.

[252] Anders Møller. dk. brics. automaton–finite-state automata and regular expressions for
java, 2010, 2010.

[253] Edward F Moore. Gedanken-experiments on sequential machines. In Automata Studies.
1956.

https://github.com/AutomataDotNet/Automata
https://github.com/AutomataDotNet/Automata
https://support.office.com/en-us/article/find-and-replace-text-c6728c16-469e-43cd-afe4-7708c6c779b7
https://support.office.com/en-us/article/find-and-replace-text-c6728c16-469e-43cd-afe4-7708c6c779b7
https://docs.microsoft.com/en-us/visualstudio/ide/using-regular-expressions-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/using-regular-expressions-in-visual-studio
http://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
http://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
https://addons.mozilla.org/en-US/firefox/addon/regexsearch/
https://addons.mozilla.org/en-US/firefox/addon/regexsearch/

236 BIBLIOGRAPHY

[254] Robert Muth and Udi Manber. Approximate Multiple String Search. In Annual
Symposium on Combinatorial Pattern Matching, 1996.

[255] Eugene W. Myers and Webb Miller. Approximate matching of regular expressions.
Bulletin of Mathematical Biology, 51(1):5–37, 1989. ISSN 15229602. doi: 10.1007/
BF02458834.

[256] Kedar Namjoshi and Girija Narlikar. Robust and fast pattern matching for intrusion
detection. IEEE INFOCOM, 2010. ISSN 0743166X. doi: 10.1109/INFCOM.2010.
5462149.

[257] Gonzalo Navarro. NR-grep: A fast and flexible pattern-matching tool. Software -
Practice and Experience, 31(13):1265–1312, 2001. ISSN 00380644. doi: 10.1002/spe.
411.

[258] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2002. ISSN 03600300. doi: 10.1145/375360.375365.

[259] Gonzalo Navarro and Mathieu Raffinot. New techniques for regular expression search-
ing. Algorithmica, 41:89–116, 2005. ISSN 01784617. doi: 10.1007/s00453-004-1120-3.

[260] Gonzalo Navarro and Mathieu Raffinot. A bit-parallel approach to suffix automata:
Fast extended string matching. pages 14–33, 2005. doi: 10.1007/bfb0030778.

[261] Nehman, Lily Hay. Cloudflare’s plan to protect the whole internet comes into focus.
https://www.wired.com/story/cloudflare-spectrum-iot-protection/, 2018.

[262] Cyril Nicaud. On the Average Size of Glushkov’s Automata. In International Confer-
ence on Language and Automata Theory and Applications (LATA), number Lata 2009,
pages 626–637, 2009.

[263] Eric Norige and Alex Liu. A De-compositional Approach to Regular Expression Match-
ing for Network Security Applications. International Conference on Distributed Com-
puting Systems (ICDCS), 2016-Augus:680–689, 2016. doi: 10.1109/ICDCS.2016.63.

[264] Peter Norvig. Techniques for Automatic Memoization with Applications to Context-
Free Parsing. Computational Linguistics, 17(1):91–98, 1991. ISSN 0362-613X.

[265] J. O’Dell. Exclusive: How LinkedIn used Node.js and HTML5 to build a better, faster
app. http://venturebeat.com/2011/08/16/linkedin-node/, 2011.

[266] A Ojamaa and K Duuna. Assessing the security of Node.js platform. In 7th Interna-
tional Conference for Internet Technology and Secured Transactions (ICITST), 2012.
ISBN VO -.

https://www.wired.com/story/cloudflare-spectrum-iot-protection/
http://venturebeat.com/2011/08/16/linkedin-node/

BIBLIOGRAPHY 237

[267] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Detecting and Exploiting Second Order
Denial-of-Service Vulnerabilities in Web Applications. ACM Conference on Computer
and Communications Security (CCS), 2015. ISSN 15437221. doi: 10.1145/2810103.
2813680.

[268] John K. Ousterhout. Scripting: Higher-level programming for the 21st century. Com-
puter, 31(3):23–30, 1998. ISSN 00189162. doi: 10.1109/2.660187.

[269] Overleaf. (Overleaf) How do I get to the next search match result, or perform a search
and replace? URL https://www.overleaf.com/learn/how-to/How_do_I_get_to_
the_next_search_match_result,_or_perform_a_search_and_replace%3F.

[270] OWASP. Web application firewall. https://owasp.org/www-community/Web_
Application_Firewall.

[271] Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-
examined. Journal of Functional Programming, 19(2):173–190, 2009. ISSN 09567968.
doi: 10.1017/S0956796808007090.

[272] Senthil Padmanabhan. How We Built eBay’s First Node.js
Application. https://www.ebayinc.com/stories/blogs/tech/
how-we-built-ebays-first-node-js-application/, 2013.

[273] Vivek S Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An Efficient and Portable
Web Server. In USENIX Annual Technical Conference (ATC), 1999. doi: 10.1.1.119.
6738.

[274] pam. Issue 287: Long, complex regexp pattern (in webkit layout test) hangs. https:
//bugs.chromium.org/p/v8/issues/detail?id=287.

[275] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, Amol Shukla, and David R Cheri-
ton. Comparing the performance of web server architectures. In European Conference
on Computer Systems (EuroSys). ACM, 2007.

[276] Davide Pasetto, Fabrizio Petrini, and Virat Agarwal. Tools for very fast regular ex-
pression matching. IEEE Computer, pages 50–58, 2010.

[277] Perl monks. Perl regexp matching is slow?? https://perlmonks.org/?node_id=
597262.

[278] Simon Peter, Andrew Baumann, Timothy Roscoe, Paul Barham, and Rebecca
Isaacs. 30 seconds is not enough! In European Conference on Computer Sys-
tems (EuroSys), 2008. ISBN 978-1-60558-013-5. doi: 10.1145/1357010.1352614.
URL http://delivery.acm.org/10.1145/1360000/1352614/p205-peter.pdf?
ip=128.173.237.147&id=1352614&acc=ACTIVESERVICE&key=B33240AC40EC9E30.
80AE0C8B3B97B250.4D4702B0C3E38B35.4D4702B0C3E38B35&__acm__=1516978495_
3a3c2334d5b881c3ca6d5d24400d34b4http://portal.acm.o.

https://www.overleaf.com/learn/how-to/How_do_I_get_to_the_next_search_match_result,_or_perform_a_search_and_replace%3F
https://www.overleaf.com/learn/how-to/How_do_I_get_to_the_next_search_match_result,_or_perform_a_search_and_replace%3F
https://owasp.org/www-community/Web_Application_Firewall
https://owasp.org/www-community/Web_Application_Firewall
https://www.ebayinc.com/stories/blogs/tech/how-we-built-ebays-first-node-js-application/
https://www.ebayinc.com/stories/blogs/tech/how-we-built-ebays-first-node-js-application/
https://bugs.chromium.org/p/v8/issues/detail?id=287
https://bugs.chromium.org/p/v8/issues/detail?id=287
https://perlmonks.org/?node_id=597262
https://perlmonks.org/?node_id=597262
http://delivery.acm.org/10.1145/1360000/1352614/p205-peter.pdf?ip=128.173.237.147&id=1352614&acc=ACTIVE SERVICE&key=B33240AC40EC9E30.80AE0C8B3B97B250.4D4702B0C3E38B35.4D4702B0C3E38B35&__acm__=1516978495_3a3c2334d5b881c3ca6d5d24400d34b4 http://portal.acm.o
http://delivery.acm.org/10.1145/1360000/1352614/p205-peter.pdf?ip=128.173.237.147&id=1352614&acc=ACTIVE SERVICE&key=B33240AC40EC9E30.80AE0C8B3B97B250.4D4702B0C3E38B35.4D4702B0C3E38B35&__acm__=1516978495_3a3c2334d5b881c3ca6d5d24400d34b4 http://portal.acm.o
http://delivery.acm.org/10.1145/1360000/1352614/p205-peter.pdf?ip=128.173.237.147&id=1352614&acc=ACTIVE SERVICE&key=B33240AC40EC9E30.80AE0C8B3B97B250.4D4702B0C3E38B35.4D4702B0C3E38B35&__acm__=1516978495_3a3c2334d5b881c3ca6d5d24400d34b4 http://portal.acm.o
http://delivery.acm.org/10.1145/1360000/1352614/p205-peter.pdf?ip=128.173.237.147&id=1352614&acc=ACTIVE SERVICE&key=B33240AC40EC9E30.80AE0C8B3B97B250.4D4702B0C3E38B35.4D4702B0C3E38B35&__acm__=1516978495_3a3c2334d5b881c3ca6d5d24400d34b4 http://portal.acm.o

238 BIBLIOGRAPHY

[279] Theoolos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. SlowFuzz: Au-
tomated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities. In
Computer and Communications Security (CCS), 2017. doi: 10.1145/3133956.3134073.
URL https://arxiv.org/pdf/1708.08437.pdf.

[280] Lutz Prechelt. An empirical comparison of seven programming languages. Computer,
33(10):23–29, 2000.

[281] M. Rabin and D. Scott. Finite Automata and their Decision Problems. IBM
Journal of Research and Development, 3:114–125, 1959. URL https://www.
researchgate.net/profile/Dana_Scott3/publication/230876408_Finite_
Automata_and_Their_Decision_Problems/links/582783f808ae950ace6cd752/
Finite-Automata-and-Their-Decision-Problems.pdf.

[282] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A. Smolka, Ter-
rance Swift, and David S. Warren. Efficient model checking using tabled resolution.
In International Conference on Computer Aided Verification (CAV), 1997. ISBN
3540631666. doi: 10.1007/3-540-63166-6{_}16.

[283] Ghulam Rasool and Nadim Asif. Software artifacts recovery using abstract regu-
lar expressions. In IEEE International Multitopic Conference (INMIC), 2007. ISBN
1424415535. doi: 10.1109/INMIC.2007.4557710.

[284] Asiri Rathnayake and Hayo Thielecke. Static Analysis for Regular Expression Expo-
nential Runtime via Substructural Logics. Technical report, 2014.

[285] Eric S. Raymod. The Jargon File: Entry for ’grep’. URL http://www.catb.org/
~esr/jargon/html/G/grep.html.

[286] Eric S. Raymond. The Cathedral and the Bazaar. Number July 1997. 2000. ISBN
0596001088. doi: 10.1007/s12130-999-1026-0.

[287] A. H. Robinson and Colin Cherry. Results of a Prototype Television Bandwidth Com-
pression Scheme. Proceedings of the IEEE, 55(3):356–364, 1967. ISSN 15582256. doi:
10.1109/PROC.1967.5493.

[288] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In Large In-
stallation System Administration Conference (LISA), 1999. ISBN 1-880446-25-1. doi:
http://portal.acm.org/citation.cfm?id=1039834.1039864.

[289] Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike. Android application
development: Programming with the Google SDK. O’Reilly Media, Inc., 1 edition,
2009.

[290] Alex Roichman and Adar Weidman. VAC - ReDoS: Regular Expression Denial Of
Service. Open Web Application Security Project (OWASP), 2009.

https://arxiv.org/pdf/1708.08437.pdf
https://www.researchgate.net/profile/Dana_Scott3/publication/230876408_Finite_Automata_and_Their_Decision_Problems/links/582783f808ae950ace6cd752/Finite-Automata-and-Their-Decision-Problems.pdf
https://www.researchgate.net/profile/Dana_Scott3/publication/230876408_Finite_Automata_and_Their_Decision_Problems/links/582783f808ae950ace6cd752/Finite-Automata-and-Their-Decision-Problems.pdf
https://www.researchgate.net/profile/Dana_Scott3/publication/230876408_Finite_Automata_and_Their_Decision_Problems/links/582783f808ae950ace6cd752/Finite-Automata-and-Their-Decision-Problems.pdf
https://www.researchgate.net/profile/Dana_Scott3/publication/230876408_Finite_Automata_and_Their_Decision_Problems/links/582783f808ae950ace6cd752/Finite-Automata-and-Their-Decision-Problems.pdf
http://www.catb.org/~esr/jargon/html/G/grep.html
http://www.catb.org/~esr/jargon/html/G/grep.html

BIBLIOGRAPHY 239

[291] Indranil Roy, Ankit Srivastava, Matt Grimm, Marziyeh Nourian, Michela Becchi, and
Srinivas Aluru. Evaluating High Performance Pattern Matching on the Automata
Processor. IEEE Transactions on Computers, 68(8):1201–1212, 2019. ISSN 15579956.
doi: 10.1109/TC.2019.2901466.

[292] Rshen. Chrome Regex Search (Chrome plugin). URL https://chrome.google.com/
webstore/detail/chrome-regex-search/bpelaihoicobbkgmhcbikncnpacdbknn?
hl=en-US.

[293] Olli Saarikivi, Margus Veanes, Tiki Wan, and Eric Xu. Symbolic regex matcher.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 11427 LNCS, pages 372–378, 2019. ISBN 9783030174613. doi: 10.1007/
978-3-030-17462-0{_}24.

[294] Markus L. Schmid. Characterising REGEX languages by regular languages equipped
with factor-referencing. Information and Computation, 249:1–17, 2016. ISSN 10902651.
doi: 10.1016/j.ic.2016.02.003.

[295] Niko Schwarz, Aaron Karper, and Oscar Nierstrasz. Efficiently extracting full parse
trees using regular expressions with capture groups. PeerJ Preprints, 2015. doi: 10.
7287/peerj.preprints.1248.

[296] Claude E Shannon and John McCarthy. Automata studies, volume 34. 1956.

[297] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. ReScue:
Crafting Regular Expression DoS Attacks. In Automated Software Engineering (ASE),
2018. ISBN 9781450359375.

[298] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Con-
cepts. Wiley Publishing, 9th edition, 2012. ISBN 0470128720.

[299] Janice Singer and Timothy Lethbridge. What’s so great about ’grep’? Implications
for program comprehension tools. Technical report, 2002.

[300] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An ex-
amination of software engineering work practices. In Centre for Advanced Studies on
Collaborative Research (CASCON), 1997. doi: 10.1145/1925805.1925815.

[301] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

[302] Randy Smith, Cristian Estan, and Somesh Jha. Backtracking Algorithmic Complex-
ity Attacks Against a NIDS. In Annual Computer Security Applications Conference
(ACSAC), pages 89–98, 2006.

https://chrome.google.com/webstore/detail/chrome-regex-search/bpelaihoicobbkgmhcbikncnpacdbknn?hl=en-US
https://chrome.google.com/webstore/detail/chrome-regex-search/bpelaihoicobbkgmhcbikncnpacdbknn?hl=en-US
https://chrome.google.com/webstore/detail/chrome-regex-search/bpelaihoicobbkgmhcbikncnpacdbknn?hl=en-US

240 BIBLIOGRAPHY

[303] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. Deflating the Big Bang:
Fast and Scalable Deep Packet Inspection with Extended Finite Automata. In SIG-
COMM, 2008. ISBN 9781605581750. URL http://pages.cs.wisc.edu/~estan/
publications/bigbang.pdf.

[304] Sooel Son and Vitaly Shmatikov. SAFERPHP Finding Semantic Vulnerabilities in
PHP Applications. In Workshop on Programming Languages and Analysis for Security
(PLAS), pages 1–13, 2011. ISBN 9781450308304. doi: 10.1145/2166956.2166964.

[305] Henry Spencer. A regular-expression matcher. In Software solutions in C, pages 35–71.
1994.

[306] Eric Spishak, Werner Dietl, and Michael D. Ernst. A type system for regular expres-
sions. In Workshop on Formal Techniques for Java-like Programs. (FTfJP), 2012.
ISBN 9781450312721. doi: 10.1145/2318202.2318207.

[307] Cristian-Alexandru Staicu and Michael Pradel. Freezing the Web: A Study of
ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium (USENIX Security), 2018. URL https://www.npmjs.com/package/
safe-regexhttp://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf.

[308] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. Synode:
Understanding and Automatically Preventing Injection Attacks on Node.js. In
Network and Distributed System Security (NDSS), 2018. ISBN 1-891562-49-5. doi:
10.14722/ndss.2018.23071. URL http://software-lab.org/publications/
ndss2018.pdfhttps://www.microsoft.com/en-us/research/publication/
understanding-automatically-preventing-injection-attacks-node-js/.

[309] Richard M. Stallman. GNUs Flashes, February 1988, 1988. URL https://www.gnu.
org/bulletins/bull4.html.

[310] R E Stearns and H B Hunt III. On the Equivalence and Containment Problems for
Unambiguous Regular Expressions, Regular Grammars and Finite Automata. SIAM
Journal on Computing, 14(3):598–611, 1985.

[311] Zhendong Su and Gary Wassermann. The essence of command injection attacks in
web applications. In Principles of Programming Languages (POPL), 2006. doi: 10.
1145/1111320.1111070.

[312] substack. safe-regex. https://web.archive.org/web/20180801003748/https://
github.com/substack/safe-regex, 2013.

[313] Satoshi Sugiyama and Yasuhiko Minamide. Checking Time Linearity of Regular Ex-
pression Matching Based on Backtracking. Information and Media Technologies, 9(3):
222–232, 2014.

http://pages.cs.wisc.edu/~estan/publications/bigbang.pdf
http://pages.cs.wisc.edu/~estan/publications/bigbang.pdf
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
http://software-lab.org/publications/ndss2018.pdf https://www.microsoft.com/en-us/research/publication/understanding-automatically-preventing-injection-attacks-node-js/
http://software-lab.org/publications/ndss2018.pdf https://www.microsoft.com/en-us/research/publication/understanding-automatically-preventing-injection-attacks-node-js/
http://software-lab.org/publications/ndss2018.pdf https://www.microsoft.com/en-us/research/publication/understanding-automatically-preventing-injection-attacks-node-js/
https://www.gnu.org/bulletins/bull4.html
https://www.gnu.org/bulletins/bull4.html
https://web.archive.org/web/20180801003748/https://github.com/substack/safe-regex
https://web.archive.org/web/20180801003748/https://github.com/substack/safe-regex

BIBLIOGRAPHY 241

[314] Bryan Sullivan. Security Briefs - Regular Expression Denial of Service Attacks
and Defenses. Technical report, 2010. URL https://msdn.microsoft.com/en-us/
magazine/ff646973.aspx.

[315] Bryan Sullivan. New Tool: SDL Regex Fuzzer, 2010. URL https://blogs.
microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/.

[316] Martin Sulzmann and Kenny Zhuo Ming Lu. Regular expression sub-matching using
partial derivatives. In ACM SIGPLAN Principles and Practice of Declarative Pro-
gramming (PPDP), pages 79–90, 2012. ISBN 9781450315227. doi: 10.1145/2370776.
2370788.

[317] Martin Sulzmann and Kenny Zhuo Ming Lu. Derivative-Based Diagnosis of Regular
Expression Ambiguity. International Journal of Foundations of Computer Science, 28
(5):543–561, 4 2017. ISSN 01290541. doi: 10.1142/S0129054117400068. URL http:
//arxiv.org/abs/1604.06644.

[318] Richard E Sweet. The Mesa programming environment. ACM SIGPLAN Notices, 20
(7):216–229, 1985. ISSN 0362-1340. doi: 10.1145/17919.806843.

[319] Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In Interna-
tional Conference on Logic Programming, 1986. ISBN 9783540164920. doi: 10.1007/
3-540-16492-8{_}66.

[320] Jorma Tarhio and Esko Ukkonen. Approximate Boyer-Moore String Matching. SIAM,
22(2):243–260, 1993.

[321] Ken Thompson. Regular Expression Search Algorithm. Communications of the ACM
(CACM), 1968.

[322] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri.
Andromeda : Accurate and Scalable Security Analysis of Web Applications. In
International Conference on Fundamental Approaches to Software Engineering
(FASE), pages 210–225, 2013. doi: 10.1007/978-3-642-37057-1{_}15. URL https:
//link.springer.com/content/pdf/10.1007/978-3-642-37057-1_15.pdfhttps:
//s3.amazonaws.com/academia.edu.documents/45250213/ANDROMEDA_accurate_
and_scalable_security20160501-11331-1y0jt30.pdf?AWSAccessKeyId=
AKIAIWOWYYGZ2Y53UL3A&Expires=1513738670&Signa.

[323] Iain Truskett. Perl regular expressions reference - perl. https://perldoc.perl.org/
5.22.0/perlreref.html.

[324] Alan M Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Mathematica, 38(1936):230–265, 1936. ISSN 1460244X. doi: 10.1112/
plms/s2-42.1.230. URL http://draperg.cis.byuh.edu/archive/winter2014/
cs320/Turing_Paper_1936.pdf.

https://msdn.microsoft.com/en-us/magazine/ff646973.aspx
https://msdn.microsoft.com/en-us/magazine/ff646973.aspx
https://blogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/
https://blogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/
http://arxiv.org/abs/1604.06644
http://arxiv.org/abs/1604.06644
https://link.springer.com/content/pdf/10.1007/978-3-642-37057-1_15.pdf https://s3.amazonaws.com/academia.edu.documents/45250213/ANDROMEDA_accurate_and_scalable_security20160501-11331-1y0jt30.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1513738670&Signa
https://link.springer.com/content/pdf/10.1007/978-3-642-37057-1_15.pdf https://s3.amazonaws.com/academia.edu.documents/45250213/ANDROMEDA_accurate_and_scalable_security20160501-11331-1y0jt30.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1513738670&Signa
https://link.springer.com/content/pdf/10.1007/978-3-642-37057-1_15.pdf https://s3.amazonaws.com/academia.edu.documents/45250213/ANDROMEDA_accurate_and_scalable_security20160501-11331-1y0jt30.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1513738670&Signa
https://link.springer.com/content/pdf/10.1007/978-3-642-37057-1_15.pdf https://s3.amazonaws.com/academia.edu.documents/45250213/ANDROMEDA_accurate_and_scalable_security20160501-11331-1y0jt30.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1513738670&Signa
https://link.springer.com/content/pdf/10.1007/978-3-642-37057-1_15.pdf https://s3.amazonaws.com/academia.edu.documents/45250213/ANDROMEDA_accurate_and_scalable_security20160501-11331-1y0jt30.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1513738670&Signa
https://perldoc.perl.org/5.22.0/perlreref.html
https://perldoc.perl.org/5.22.0/perlreref.html
http://draperg.cis.byuh.edu/archive/winter2014/cs320/Turing_Paper_1936.pdf
http://draperg.cis.byuh.edu/archive/winter2014/cs320/Turing_Paper_1936.pdf

242 BIBLIOGRAPHY

[325] D. A. Turner. The Semantic Equivalence of Applicative Languges. In Conference on
Functional Programming Languages and Computer Architecture, pages 85–92, 1981.
ISBN 0897910605.

[326] Brink Van Der Merwe, Nicolaas Weideman, and Martin Berglund. Turning Evil
Regexes Harmless. In SAICSIT, 2017. ISBN 9781450352505. doi: 10.1145/3129416.
3129440. URL https://doi.org/10.1145/3129416.3129440.

[327] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhan, Andre DeHon, and
Jonathan M Smith. BreakApp: Automated, Flexible Application Compartmental-
ization. In Network and Distributed System Security (NDSS), 2018. doi: 10.14722/
ndss.2018.23131. URL http://nathandautenhahn.com/downloads/publications/
vasilakis-breakapp-2018.pdf.

[328] Margus Veanes, Peli De Halleux, and Nikolai Tillmann. Rex: Symbolic regular ex-
pression explorer. International Conference on Software Testing, Verification and
Validation (ICST), 2010. ISSN 2159-4848. doi: 10.1109/ICST.2010.15.

[329] Larry Wall. Perl, 1988.

[330] Wall, Larry. Pcre – perl compatible regular expressions. https://web.archive.org/
web/20180919103344/http://perldoc.perl.org/perlre.html, 2018.

[331] Kai Wang, Zhe Fu, Xiaohe Hu, and Jun Li. Practical regular expression matching free
of scalability and performance barriers. Computer Communications, 54:97–119, 2014.
ISSN 01403664. doi: 10.1016/j.comcom.2014.08.005. URL http://dx.doi.org/10.
1016/j.comcom.2014.08.005.

[332] Peipei Wang and Kathryn T Stolee. How well are regular expressions tested in the
wild? In Foundations of Software Engineering (FSE), 2018. ISBN 9781450355735.

[333] Peipei Wang, Gina R Bai, and Kathryn T Stolee. Exploring Regular Expression
Evolution. In Software Analysis, Evolution, and Reengineering (SANER), 2019.

[334] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu
Hu, and Heqing Zhu. Hyperscan: A Fast Multi-pattern Regex Matcher for Mod-
ern CPUs. In Networked Systems Design and Implementation (NSDI), pages 631–648,
2019. ISBN 9781931971492. URL https://www.usenix.org/conference/nsdi19/
presentation/wang-xiang.

[335] Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce Watson. An-
alyzing matching time behavior of backtracking regular expression matchers by using
ambiguity of NFA. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9705,
pages 322–334, 2016. ISBN 9783319409450.

https://doi.org/10.1145/3129416.3129440
http://nathandautenhahn.com/downloads/publications/vasilakis-breakapp-2018.pdf
http://nathandautenhahn.com/downloads/publications/vasilakis-breakapp-2018.pdf
https://web.archive.org/web/20180919103344/http://perldoc.perl.org/perlre.html
https://web.archive.org/web/20180919103344/http://perldoc.perl.org/perlre.html
http://dx.doi.org/10.1016/j.comcom.2014.08.005
http://dx.doi.org/10.1016/j.comcom.2014.08.005
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang

BIBLIOGRAPHY 243

[336] Nicolaas Hendrik Weideman. Static Analysis of Regular Expressions. PhD thesis,
Stellenbosch University, 2017.

[337] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services. In Symposium on Operating Systems Princi-
ples (SOSP), 2001. ISBN 1581133898. doi: 10.1145/502059.502057.

[338] Wikipedia contributors. Regular expression — Wikipedia, the free encyclo-
pedia. https://web.archive.org/web/20180920152821/https://en.wikipedia.
org/w/index.php?title=Regular_expression, 2018.

[339] Erik Wittern, Alan Cha, James C. Davis, Guillaume Baudart, and Louis Mandel.
An Empirical Study of GraphQL Schemas. In International Conference on Service-
Oriented Computing (ICSOC), pages 3–19, 2019. doi: 10.1007/978-3-030-33702-5{_
}1.

[340] Sun Wu and Udi Manber. AGREP - A fast approximate pattern-matching tool. In
USENIX Annual Technical Conference (ATC), 1992.

[341] Valentin Wüstholz, Oswaldo Olivo, Marijn J H Heule, and Isil Dillig. Static Detection
of DoS Vulnerabilities in Programs that use Regular Expressions. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2017.

[342] Chengcheng Xu, Jinshu Su, and Shuhui Chen. Exploring efficient grouping algorithms
in regular expression matching. PLoS ONE, 13(10):1–15, 2018. ISSN 19326203. doi:
10.1371/journal.pone.0206068.

[343] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. Stack Overflow in
Github: Any Snippets There? In Mining Software Repositories (MSR), 2017. ISBN
9781538615447. doi: 10.1109/MSR.2017.13.

[344] Liu Yang, Vinod Ganapathy, Pratyusa Manadhata, and Ye Wu. A novel algorithm for
pattern matching with back references. In International Performance Computing and
Communications Conference (IPCCC), 2015. ISBN 9781467385909.

[345] Xiaochun Yang, Tao Qiu, Bin Wang, Chen Li, Baihua Zheng, and Yaoshu Wang.
Negative Factor: Improving Regular-Expression Matching in Strings. ACM Trans-
actions on Database Systems, 40(25):1–46, 2016. doi: 10.1145/2847525. URL
http://dx.doi.org/10.1145/2847525.

[346] Yi-Hua E. Yang and Viktor K. Prasanna. Optimizing Regular Expression Matching
with SR-NFA on Multi-Core Systems. In International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), 2011. ISBN 9780769545660. doi:
10.1109/PACT.2011.73.

https://web.archive.org/web/20180920152821/https://en.wikipedia.org/w/index.php?title=Regular_expression
https://web.archive.org/web/20180920152821/https://en.wikipedia.org/w/index.php?title=Regular_expression
http://dx.doi.org/10.1145/2847525

244 BIBLIOGRAPHY

[347] Xiaodong Yu and Michela Becchi. Exploring different automata representations for ef-
ficient regular expression matching on GPUs. ACM SIGPLAN Notices, 48(8):287–288,
2013. ISSN 15232867. doi: 10.1145/2517327.2442548.

[348] Xiaodong Yu and Michela Becchi. GPU acceleration of regular expression matching
for large datasets: Exploring the implementation space. In Proceedings of the ACM
International Conference on Computing Frontiers (CF), 2013. ISBN 9781450320535.
doi: 10.1145/2482767.2482791.

[349] Lukasz Ziarek, K. C. Sivaramakrishnan, and Suresh Jagannathan. Partial memoization
of concurrency and communication. In ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 161–172, 2009. ISBN 9781605583327. doi:
10.1145/1596550.1596575.

[350] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qunfeng
Dong. GPU-based NFA implementation for memory efficient high speed regular ex-
pression matching. In Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2012. ISBN 9781450311601. doi: 10.1145/2370036.2145833.

Appendices

245

Appendix A

Notes on the Perl regex engine

A.1 Introduction

When scientists have considers a “production” regex engine, they use the Java regex engine
as a representative of the “production” regex engines [297, 335, 341]. The Perl regex engine
is also of scientific interest, because as discussed in Chapter 8 it is the most sophisticated of
the Spencer-style backtracking regex engines in terms of its optimizations. Here I give some
notes on its structure to guide future researchers.

A.2 Origins

As mentioned in Chapter 2, many production regex engines follow the structure of Henry
Spencer’s backtracking-based regex engine. The Perl regex engine is in fact a literal descen-
dant of Henry Spencer’s library. The Perl file regexec.c begins as follows: “NOTE: this is
derived from Henry Spencer’s regexp code, and should not confused with the original package.
Thanks, Henry!”

A.3 Conversion from pattern to automaton

A regular expression is converted to an automaton in regcomp.c. This conversion builds
up a structure of vertices whose types are taken from regcomp.sym. The compilation also
analyzes the sub-patterns of the regex, for example distinguishing between constant, fixed-
width, and variable-width sub-patterns. These distinctions permit various optimizations,
e.g., the backtracking optimization discussed in §8.2. These analyses are performed in the
study_chunk function.

246

A.4. Automaton simulation 247

A.4 Automaton simulation

The automaton simulation is performed by the S_regmatch function. This function tracks the
current engine search state, 〈q, i〉, and manipulates its backtracking stack based on the type
and information associated with each vertex. The simulation is begun at various feasible
starting points, as determined by Perl_re_intuit_start.

A.5 Avoiding super-linear behavior

The memoization discussed in §8.2 is applied during the processing of complex quantified sub-
patterns (CURLYX-WHILEM). There is a lengthy comment block that begins “super-linear cache
processing” and discusses the properties of the cache. The cache uses a bitmap representation
to track visits to up to 16 automaton vertices. The cache is invalidated under the conditions
explained in §8.2, by setting reginfo->poscache_maxiter = 0.

As discussed in Chapter 9, the Perl regex engine also measures resource usage and short-
circuits evaluations that are too costly. Resource usage is measured in regexec.c. The
measure used by Perl is the “recursion limit”; this terminology is presumably a holdover
from when the regex engine used recursion rather than iteration during evaluations. The
Perl regex engine’s measure limits the cost of a single path through the automaton simulation,
but unlike PHP’s approach it does not limit the overall cost of the simulation. The relevant
variable is the curlyx.count associated with the automaton’s loop vertices. The interested
reader may search regexec.c for the error message, “Complex regular subexpression recursion
limit exceeded”, to learn more.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	I Introduction and Background
	Introduction
	Context and problem statement
	Thesis
	Scientific contributions and applications
	Organization
	Statement of authorship, attribution, and copyright

	Background and related work
	Outline
	The theory of regular languages
	Algorithms for regex membership testing
	Regular expressions in software engineering practice
	Regular expression denial of service (ReDoS)
	Research on the use of regexes in practice
	What we don't yet know

	II Is ReDoS a Problem in Practice?
	Case studies of problematic super-linear regex behavior
	Summary
	CVE 2015-6736 at MediaWiki
	July 2019 service outage at Cloudflare
	July 2016 service outage at Stack Overflow
	Performance problem in the Atom editor
	Lessons learned

	Measuring the use of super-linear regexes in practice
	Summary
	Study design and research questions
	RQ1: How prevalent are super-linear regexes in practice?
	RQ2: How strongly vulnerable are the super-linear regexes?
	RQ3: Which application domains do super-linear regexes affect?
	Discussion
	Threats to validity

	Generalizing regex measurements
	Summary
	Motivation
	Study design and research questions
	Regex metrics for use in hypothesis testing
	RQ1: Does the Extraction Methodology Hypothesis hold?
	RQ2: Does the Cross-Language Hypothesis hold?
	RQ3: Does super-linear behavior generalize to other regex engines?
	RQ4: Can we replicate other previous regex research?
	Discussion
	Threats to validity

	III Evaluating Approaches to Address ReDoS
	Application-level refactoring
	Summary
	Study design and research questions
	RQ1: Do ambiguity anti-patterns signal SL regexes?
	RQ2: How have software engineers repaired ReDoS vulnerabilities?
	RQ3: What ReDoS repair strategies do software engineers prefer?
	RQ4: How effective are software engineers' manual repairs?
	Discussion

	Replacing the regex engine
	Summary
	Study design and research questions
	RQ1: To what extent does moving from one regex engine to another offer consistent performance benefits?
	RQ2: To what extent do syntactically-compatible regexes exhibit semantic differences between regex engines, and why?
	RQ3: To what extent are a common core of regexes used across regex engine boundaries?
	Discussion
	Threats to validity

	Optimizing a regex engine through memoization
	Summary
	Related work
	Study design and research questions
	RQ1: What is the expected effect of memoization on K-regexes?
	RQ2: How might the space costs of K-regex memoization be reduced?
	RQ3: Experimentally, what are the space and time costs of K-regex memoization?
	RQ4: How might memoization be extended to E-regexes?
	Discussion
	Threats to validity

	Techniques to cap per-client resource utilization
	Summary
	Related work — resource caps in mainstream regex engines
	Study design and research questions
	RQ1: How effective are existing resource-cap solutions?
	RQ2: How commonly do software engineers adopt a retrofitted resource-cap solution once it becomes available?
	RQ3: How might a web framework be designed from scratch to incorporate resource caps?
	Discussion
	Threats to validity

	IV Conclusions and Recommendations
	Conclusions and recommendations
	Summary
	Future work
	Broader implications for computing systems
	Reproducibility and open science
	Closing remarks

	Bibliography
	Appendix Notes on the Perl regex engine
	Introduction
	Origins
	Conversion from pattern to automaton
	Automaton simulation
	Avoiding super-linear behavior

