
Rethinking Regex Engines to Address ReDoS
James C. Davis
Virginia Tech, USA
davisjam@vt.edu

ABSTRACT
Regular expressions (regexes) are a powerful string manipulation
tool. Unfortunately, in programming languages like Python, Java,
and JavaScript, they are unnecessarily dangerous, implemented
with worst-case exponential matching behavior. This high time
complexity exposes software services to regular expression denial
of service (ReDoS) attacks.

We propose a data-driven redesign of regex engines, to reflect
how regexes are used and what they typically look like. We re-
port that about 95% of regexes in popular programming languages
can be evaluated in linear time. The regex engine is a fundamen-
tal component of a programming language, and any changes risk
introducing compatibility problems. We believe a full redesign is
therefore impractical, and so we describe how the vast majority
of regex matches can be made linear-time with minor, not major,
changes to existing algorithms. Our prototype shows that on a
kernel of the regex language, we can trade space for time to make
regex matches safe.

CCS CONCEPTS
• Software and its engineering→ Software libraries and reposi-
tories; • Security and privacy → Denial-of-service attacks.

KEYWORDS
Regular expressions, empirical software engineering, ReDoS, cata-
strophic backtracking
ACM Reference Format:
James C. Davis. 2019. Rethinking Regex Engines to Address ReDoS. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3338906.3342509

1 INTRODUCTION
A regular expression (regex) is a way to describe strings that follow
a certain pattern. Regexes are supported in most popular program-
ming languages, and are commonly used to solve problems such
as input validation and find/replace [20]. Regexes are widely used,
appearing in 30-40% of the Python, Java, and JavaScript software
analyzed in prior work [3, 7, 18].

Programming language designers and regex engine developers
have several regex matching algorithms to choose from, including

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3342509

Thompson’s [17] and Spencer’s [14]. While the pros and cons of
these algorithms can be debated, some are noticeably more suitable
than others on some regexes, e.g., the well-known advantage of
Thompson over Spencer engines on regexes with high ambigu-
ity [4].

To the best of our knowledge, the regex engines built into many
popular programming languages were designed without consider-
ing the characteristics of real regexes. In this work we characterize
regexes from a security perspective.
• We measure both their vulnerability to regular expression denial
of service (ReDoS) attacks and their potential for linear-time
evaluation.

• We report that although many regexes evaluate in super-linear
time in practice, they could be evaluated in linear time.

• What’s more, we show that a linear-time implementation need
not require significant changes to a regex engine.

2 BACKGROUND AND RELATEDWORK
Regular Expression Algorithms. Regex matching is commonly
implemented through automaton simulation. A programming lan-
guage’s regex engine converts a regex pattern to a Non-deterministic
Finite Automaton (NFA) or Deterministic Finite Automaton (DFA)
representation. The regex engine tests for a pattern match by simu-
lating the behavior of the automaton on a candidate string using
static DFA simulation [13], Spencer’s backtracking NFA simula-
tion [14], or Thompson’s NFA-to-DFA simulation [17].

The Spencer algorithm [14] is used in most programming lan-
guages, including JavaScript, Java, and Python [8] . The Spencer
algorithm relies on a backtracking-based NFA simulation. Each
time a Spencer-style matching algorithm has a choice of edges, it
takes one and saves the others to try later if the first path does not
lead to a match.

ReDoS. The worst-case time complexity of a Spencer-style regex
engine exposes applications to a denial of service vector. Spencer-
style regex engines exhibit linear, polynomial, or exponential worst-
case time complexity [4, 5] due to the “catastrophic backtracking”
that can occur while simulating NFAs with high ambiguity [11, 19,
21]. High-complexity regex matches depend on three conditions:
(1) the regex engine’s algorithm; (2) a regex whose NFA has high
ambiguity; and (3) an input that exploits this ambiguity.

This super-linear worst-case regex match behavior can be lever-
aged in an algorithmic complexity attack [6] known as Regular
expression Denial of Service (ReDoS) [5, 12, 16]. In a ReDoS attack,
an attacker exploits super-linear (polynomial or exponential) regex
match behavior in server-side software to divert resources away
from legitimate clients.

Regular expression Denial of Service (ReDoS) is a major prob-
lem facing Node.js applications due to their event-driven architec-
ture [9, 10, 15]. Staicu and Pradel [15] identifiedmanyNode.js-based
websites that have ReDoS vulnerabilities, and Davis et al. reported

1256

https://doi.org/10.1145/3338906.3342509
https://doi.org/10.1145/3338906.3342509
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3338906.3342509&domain=pdf&date_stamp=2019-08-12

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia James C. Davis

thousands of SL regexes occurring in over 10,000 JavaScript mod-
ules in the Node.js Package Manager, npm [7].

Language developers consider the Spencer algorithm easier to
implement and maintain [14], e.g., to support extended regex fea-
tures like backreferences and lookaround assertions. Thus there
is a tension between language designers’ desires and the needs of
software engineers who rely on “pathological” regexes in practice.

3 EMPIRICAL MOTIVATION
We analyzed a polyglot regex corpus to understand the worst-case
complexity of real regexes in a Spencer-style regex engine. Davis
et al. [8] recently published a dataset of 537,806 regexes statically
extracted from 193,524 popular software modules written in 8 pro-
gramming languages: JavaScript, Java, PHP, Python, Ruby, Go, Perl,
and Rust.We report that super-linear regex complexity is common,
but most regexes can be analyzed in linear time.

Super-linear complexity is common.We measure a regex’s
worst-case partial-match complexity in a Spencer-style engine us-
ing Weideman et al.’s analysis [19]. We report the proportion of
regexes that this analysis reports to be super-linear among those it
successfully analyzes. In Davis et al.’s corpus, the language with
the highest proportion of super-linear regexes was Python (38.4%),
and Ruby had the lowest with “only” 19.1% super-linear regexes.

Most super-linear complexity is avoidable. Most regex en-
gines support a feature set beyond traditional automata-theoretic
regular expressions. Of particular note are backreferences, a self-
referential construct proved to be worst-case exponential in the
length of the input [2], and lookaround assertions, which are typi-
cally implementedwith super-linear complexity. All other commonly-
used features can be implemented in linear time [4]. We measure
the proportion of regexes that rely on these super-linear features
using a Chapman feature vector [3]. Most regexes do not rely on
these features; JavaScript had the highest usage (4.3% of JS regexes)
and Perl the lowest (2.3%). Thus, although 19.1-38.4% of regexes have
super-linear complexity as implemented in major regex engines, over
95% can be implemented in linear time.

4 REGEX ENGINE DESIGN
How can we make regexes safe without breaking existing soft-
ware? On one hand, software developers frequently rely on regexes
with super-linear worst case behavior. Clearly it would be nice if
the regex engine in their programming language supported these
regexes in linear time. On the other hand, programming language
designers are naturally hesitant to make changes to fundamental
language components like regex engines due to the risk of introduc-
ing backwards incompatibilities. It would thus be naive to overhaul
an existing regex engine, e.g., to replace a Spencer algorithm with
a Thompson one. We are not aware of any research discussing a
systematic way to prove that two regex engines are identical, and
recent empirical evidence shows that engines in the same specifica-
tion family have subtle differences in behavior [8].

We propose incorporating a state cache into existing Spencer-
based regex engines. This approach has two desirable properties.
First, it will offer the same worst-case linear-time complexity as
Thompson’s algorithm, albeit with larger space complexity. Sec-
ond, it will not change the match/mismatch behavior of an engine,
merely the time and space required to reach the conclusion.

Figure 1: Cache prevents redundant state exploration.

To see why the time complexity becomes linear, consider a regex
whose ϵ-free NFA has m states1. An NFA simulation consists of
attempting to move from the NFA start state to the NFA accept state
via the transitions in the NFA, consuming one of the n characters
in the input at each transition and backtracking when multiple
transitions are available. The number of NFA states visited during
the simulation indicates the cost of determining the regexmatch— if
the engine backtracks exponentiallymany times, then exponentially
many states are visited. However, when a given <NFA state, input
offset> is visited more than once, this visit is clearly redundant. If
a regex engine maintains a cache of the <NFA state, input offset>
pairs it visits (space complexity O(m × n)), then upon filling the
cache it can declare a mismatch. When considering a single <NFA
state, input offset> pair, the regex engine must consider at mostm
transitions, for a time complexity of O(m × (m × n)) = O(m2 × n).
In the corpus discussed in §3, the NFA size is typically small, so the
space and time costs are both approximately O(n).

We have not yet considered how to support regexes with super-
linear features like backreferences and lookaround assertions, but
the use of these features is so rare that the common path of a regex
engine need not be optimized for them.

5 RESULTS
We prototyped a cache in a simple backtracking regex engine im-
plementation published by Cox [1]. Though the engine is simple, it
is sufficient for us to demonstrate the potential of a cache. Given
the regex /(a+)*/, Figure 1 plots the number of NFA states visited
for increasing length of input “a.... . .a!” with and without a state
cache. While the original Spencer algorithm blows up quickly, the
engine with cache does not explore redundant states, achieving
linear-time rather than exponential performance in the worst case.

6 CONCLUSIONS
We have showed that although an appreciable proportion of real
regexes have worst-case super-linear behavior, it is possible to
support them in linear time at a modest space cost without making
significant changes to a regex engine. As future work, we will
extend our analysis to handle more complex regex features and
then incorporate our approach into a real regex engine.

1Existing regex engines construct this NFA already, so there is no need to consider the
complexity of the construction itself.

1257

Rethinking Regex Engines to Address ReDoS ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] [n. d.]. re1: A simple regular expression engine, easy to read and study. https:

//code.google.com/archive/p/re1.
[2] Alfred V Aho. 1990. Algorithms for finding patterns in strings. Elsevier, Chapter 5,

255–300.
[3] Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage

and context in Python. International Symposium on Software Testing and Analysis
(ISSTA) (2016). https://doi.org/10.1145/2931037.2931073

[4] Russ Cox. 2007. Regular ExpressionMatching Can Be Simple And Fast (but is slow
in Java, Perl, PHP, Python, Ruby, ...). https://swtch.com/~rsc/regexp/regexp1.html

[5] Scott Crosby. 2003. Denial of service through regular expressions. USENIX
Security work in progress report (2003).

[6] Scott A Crosby and Dan S Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In USENIX Security.

[7] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The Impact of Regular Expression Denial of Service (ReDoS) in Practice: an
Empirical Study at the Ecosystem Scale. In The ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

[8] James C Davis, Michael Michael, Christy A Coghlan, Francisco Servant, and
Dongyoon Lee. 2019. Are Regular Expressions a Lingua Franca? An Empirical
Study on the Re-use and Portability of Regular Expressions. In The ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE).

[9] James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A Sense of Time
for JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In USENIX Security Symposium (USENIX Security).

[10] A Ojamaa and K Duuna. 2012. Assessing the security of Node.js platform. In
7th International Conference for Internet Technology and Secured Transactions

(ICITST).
[11] Asiri Rathnayake and Hayo Thielecke. 2014. Static Analysis for Regular Expression

Exponential Runtime via Substructural Logics. Technical Report.
[12] Alex Roichman and Adar Weidman. 2009. VAC - ReDoS: Regular Expression

Denial Of Service. Open Web Application Security Project (OWASP) (2009).
[13] Michael Sipser. 2006. Introduction to the Theory of Computation. Vol. 2. Thomson

Course Technology Boston.
[14] Henry Spencer. 1994. A regular-expression matcher. In Software solutions in C.

35–71.
[15] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study

of ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium (USENIX Security). https://www.npmjs.com/package/safe-regexhttp:
//mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf

[16] Bryan Sullivan. 2010. New Tool: SDL Regex Fuzzer. https://blogs.microsoft.com/
microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/

[17] Ken Thompson. 1968. Regular Expression Search Algorithm. Communications of
the ACM (CACM) (1968).

[18] Peipei Wang and Kathryn T Stolee. 2018. How well are regular expressions tested
in the wild?. In Foundations of Software Engineering (FSE).

[19] Nicolaas Hendrik Weideman. 2017. Static Analysis of Regular Expressions. Ph.D.
Dissertation. Stellenbosch University.

[20] Wikipedia contributors. 2018. Regular expression — Wikipedia, The Free Ency-
clopedia. https://web.archive.org/web/20180920152821/https://en.wikipedia.org/
w/index.php?title=Regular_expression.

[21] Valentin Wustholz, Oswaldo Olivo, Marijn J H Heule, and Isil Dillig. 2017. Static
Detection of DoS Vulnerabilities in Programs that use Regular Expressions. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS).

1258

https://code.google.com/archive/p/re1
https://code.google.com/archive/p/re1
https://doi.org/10.1145/2931037.2931073
https://swtch.com/~rsc/regexp/regexp1.html
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://blogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/
https://blogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer/
https://web.archive.org/web/20180920152821/https://en.wikipedia.org/w/index.php?title=Regular_expression
https://web.archive.org/web/20180920152821/https://en.wikipedia.org/w/index.php?title=Regular_expression

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Empirical Motivation
	4 Regex Engine Design
	5 Results
	6 Conclusions
	References

