
Experience Paper: A First Offering of Software Engineering
James C. Davis
Purdue University

West Lafayette, Indiana, USA
davisjam@purdue.edu

Paschal Amusuo
Purdue University

West Lafayette, Indiana, USA
pamusuo@purdue.edu

Joseph R. Bushagour
Purdue University

West Lafayette, Indiana, USA
jbushago@purdue.edu

ABSTRACT
This paper describes our first offering of a project-based software
engineering course for undergraduate seniors. The course was
given to 72 undergraduates, mostly seniors majoring in computer
engineering. Our project taught the full engineering cycle with a
narrative based on supporting the re-use of software. In two parts
spanning 13 weeks, successful teams deployed a web service. We
identify lessons learned and opportunities for improvement.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Software and its engineering;

KEYWORDS
Computing Education, Software engineering
ACM Reference Format:
James C. Davis, Paschal Amusuo, and Joseph R. Bushagour. 2022. Experience
Paper: A First Offering of Software Engineering. In Designing and Running
Project-Based Courses in Software Engineering Education (DREE’22), May
19, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3524487.3527357

1 INTRODUCTION
1.1 Course Context
This report describes an offering of the course “ECE 461: Software
Engineering”.1 This course is offered as a senior-level course in the
Elmore Family School of Electrical & Computer Engineering (ECE)
of Purdue University. This course had not been taught since 2011.
In the Fall 2021 offering, the content was redone from scratch.

The 72 enrolled students had relatively homogeneous back-
grounds. All had fulfilled the prerequisites: two introductory pro-
gramming courses and one course in data structures, all taught in
the C programming language. Many had also taken coursework in
data science (Python) and object-oriented programming (Java or
C++). Most were seniors majoring in computer engineering, with
some juniors. The primary relevant difference between the stu-
dents was whether they had held a software engineering internship.
Based on a sample of 21 students, 16 students (76%) had previously
held a software engineering internship.
1At time of writing, the course catalog entry is: https://engineering.purdue.edu/ECE/
Academics/Undergraduates/UGO/CourseInfo/courseInfo?courseid=402.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DREE’22 , May 19, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9288-4/22/05.
https://doi.org/10.1145/3524487.3527357

The course was staffed by one professor, one graduate TA (20
hours/week), and one undergraduate TA (5 hours/week).

1.2 Syllabus and Structure
The course had three learning outcomes. Abridged, they are:

(1) Understanding models of the software engineering process.
(2) Conducting the software engineering process.
(3) Understanding the social aspects of software engineering.

The course followed a typical structure: weekly lectures and
homework; four guest speakers; and a project. The project ac-
counted for 60% of a student’s grade, with the remainder divided
among class participation (25%) and a final exam (15%). Some of this
class participation was designed to support the teamwork aspect
of the project, e.g., a module on intercultural collaboration [5] and
a guest lecture on “How to Run a Meeting” by Dr. Greg Wilson.

1.3 Infrastructure
The teams used a GitHub Classroom instance. Each team had $150
in Cloud credits through the Google Cloud Education program.
Teams also had access to the department’s teaching-focused Linux
cluster, which some students used in Part 1 of the project.

2 THE PROJECT
The course project was designed to assess a student’s mastery of
all of the course learning outcomes. We used a narrative to contex-
tualize the project in a business setting, connecting students’ work
to software engineering practice to increase their motivation [6].

The theme of the project was to develop tools that support engi-
neers in re-using software. Part 1 focused on social and technical
considerations when considering a re-use candidate. Part 2 focused
on a system design that would support re-use at scale. Both aspects
are important to software engineering work, in which re-use plays
a major role [8, 9]. In both parts, student teams had to demonstrate
software engineering skills in developing the specified product.

All teams implemented similar projects. We defined the project’s
baseline requirements in line with the project theme, while allowing
the students some flexibility on additional features to implement.
This choice helped us uniformly grade functional properties, and
also permitted us to have students exchange projects to practice
extending unfamiliar software (§2.5.1).

2.1 Timeline
The project was divided into two parts. In each part, most students
worked on a team of three, with some teams slightly larger or
smaller based on changes in student enrollment. The timeline is
given in Table 1. Purdue University has a 16-week semester, and
the students were engaged with the project for 15 of those weeks.

https://doi.org/10.1145/3524487.3527357
https://doi.org/10.1145/3524487.3527357
https://engineering.purdue.edu/ECE/Academics/Undergraduates/UGO/CourseInfo/courseInfo?courseid=402
https://engineering.purdue.edu/ECE/Academics/Undergraduates/UGO/CourseInfo/courseInfo?courseid=402
https://doi.org/10.1145/3524487.3527357

DREE’22 , May 19, 2022, Pittsburgh, PA, USA James C. Davis, Paschal Amusuo, and Joseph R. Bushagour

Table 1: Project timeline. Minimal homework was assigned in the
first two weeks. We instructed students to spend this time improving
their engineering toolkits (e.g., mastering version control).

Part Semester week Event

1 3 Part 1 published
4 Plan
5 Milestone
6 Milestone
7 Delivery

2 8 Part 1 postmortem; Part 2 published
9 Plan
10 Milestone
11 Milestone
12 Milestone
13 Delivery #1
14 Milestone
15 Milestone
16 Delivery #2

17 (Finals) Postmortem

2.2 General constraints
Since our students were typically seniors, we provided few con-
straints (and, consequently, little scaffolding). In particular, they
were allowed to use the programming language(s) and tool(s) of
their choice. They were permitted to re-use snippets from Stack
Overflow with attribution, and to re-use modules and frameworks
provided that they included them using the package management
tool appropriate to their programming language(s).2 We did require
them to use GitHub for configuration management, and to use the
Google Cloud Platform for deployment.

2.3 General Structure of Each Part
As indicated in Table 1, the teams prepared a plan in the week after
the publication of each project part. In this plan, they were required
to: summarize the project requirements and refine ambiguities into
an informal specification; identify the tools they planned to use;
sketch their designs in UML [4]; outline their validation plan; and
propose a timeline. This timeline was divided into (self-defined)
weekly milestones, based on Shaffer & Kazerouni’s finding that
intermediate milestones improve student outcomes [13].

After preparing their plans, the student teams proceeded at their
chosen pace, providing updates via weekly milestone reports. If
a team departed from its timeline, they discussed corresponding
changes in their plan. On each milestone, team members also indi-
cated their contributions and the number of hours they spent. This
measurement was intended to promote an equitable distribution of
labor by making the efforts of each team member visible.

While most milestones were self-defined, due to the length of
Part 2 we specified the details of one intermediate delivery after
five weeks. Here, students had to demonstrate (1) some end-to-end
working functionality according to their plan; and (2) the use of
continuous integration (via GitHub Actions) as well as an update
on their use of Continuous Deployment.

2In previous courses, students are forbidden to use external resources (e.g., Stack
Overflow). This course is their first instructor-approved opportunity to re-use software.

One week after delivery, teams submitted a postmortem. These
documents asked students to reflect [14] on their projects through
the three lenses of planning, process, and product.

2.4 Project Part 1
This part ran for five weeks, plus one week for the postmortem.

2.4.1 Narrative. Each team was informed that their client, ACME
Corporation, plans to adopt Node.js in their web teams. Part of the
client’s value proposition for using Node.js is the opportunities for
re-use afforded by npm. However, ACME Corporation is concerned
about several aspects of re-use, including documentation, standards
of correctness, and ability to apply security patches in a timely
manner. Each team was responsible for developing a tool to help
ACME Corporation choose dependencies wisely.

2.4.2 Specification. Module Metrics. The project specification
describes 6 attributes that ACME Corporation wants to measure.
These attributes are ambiguous, e.g., “ensure that maintainers will
be responsive to fix any bugs”. Teams had to operationalize these
attributes, e.g., with reference to Munaiah et al. ’s definitions [10].

Non-functional requirements. The client indicated that the
tool should not be slow, it should support multiple levels of log ver-
bosity, and that both the GitHub API and the source code repository
must be used as part of the module measurement process. Teams
were required to provide evidence of a test suite containing at least
20 tests and achieving at least 80% line coverage.

Interface. A team’s software needed to expose a command-line
interface, with commands for installing dependencies, running a
test suite, and measuring a module. Configuration, e.g., logging
verbosity and API tokens, was done via environment variables.

2.5 Project Part 2
This part ran for nine weeks, plus one week for the postmortem.

2.5.1 Narrative. Each team was informed that their company had
lost its contract with ACME Corporation and had gone out of busi-
ness, and that they had been hired on as engineers to the competitor
who won the contract for the next phase of the project. In this part,
ACME Corporation has requested a custom module registry to re-
place npm. This registry should include the ability to score modules
using the metrics from Part 1, as well as a web API to support
operations such as module upload, enumeration, and download.

2.5.2 Specification. The project specification states that it contains
“far more work than I think you can reasonably do in the time allowed.”
The specification distinguished between baseline features that all
teams had to deliver, and extended features from which the teams
could pick and choose. In light of the substantial size of this project
for 3-person teams, each team had to enumerate and organize the
requirements, estimate the cost of each feature, and identify the
subset they planned to deliver. The desired cost was roughly 80
hours per person spread over the 10 weeks for this part.

API. The web service needed to provide endpoints for Create-
Read-Update-Delete interactions with packages. It could optionally
support: a notion of package groups and transactions; a debloat
operation to reduce storage costs; and a security audit mechanism.

Experience Paper: A First Offering of Software Engineering DREE’22 , May 19, 2022, Pittsburgh, PA, USA

Each team’s web API had to follow an OpenAPI specification to
facilitate automated grading.We provided an OpenAPI specification
for the baseline requirements. Teams that implemented additional
features were required to update this specification appropriately.

Teams could optionally implement a web browser interface. Such
an interface needed to be compliant with the Americans with Dis-
abilities Act (ADA), namely via WCAG 2.1 at level AA [3].

Non-functional requirements. In the spirit of the project nar-
rative, teams were required to build on another team’s Project 1
implementation (randomized exchange).

Teams were required to conduct a security analysis. This analysis
used Microsoft’s STRIDE framework [2],3 which applies threat
analysis to dataflow models.

Teams could optionally support: performance—concurrent inter-
actions with up to 10,000 clients, and report the mean, median, and
99th percentile latency for a specific usage scenario; traceability—
tracking all interactions, and supporting a custom monitor-style
check on accesses to “sensitive” packages; and permissions—users,
groups, distinct access permissions, and an authentication endpoint
that provides tokens for service access.

Deployment requirements. Teams were required to assess, se-
lect, and use appropriate components from Google Cloud Platform
(GCP). This was most students’ first interaction with a cloud plat-
form. Each team delivered their system as a public GCP endpoint.

2.6 Connection to Learning Objectives
Project Part 1 connected to learning objectives 2 and 3. For objective
2, the teams had to negotiate ambiguity in the project specification,
design and implement a solution, and validate it based on their plan.
As noted earlier, this was also their first foray into implementation-
level re-use within our department’s software sequence. For both re-
use and security, the project specification described the benefits of
re-use as well as security concerns that the customer has concerned
in the context of re-use. For objective 3, the teams had to develop a
project plan, identify weekly milestones, and collaborate to succeed.

Project Part 2 connected to learning objectives 1–3. For objective
1, the project was long enough (9 weeks of implementation) that
teams could employ various engineering processes. Some teams
opted for a more plan-based approach, with up-front component in-
terface specifications and a detailed timeline. Other teams chose an
incremental process, sketching planned features, deferring most to
a backlog, and working on 1-2 features per milestone. The connec-
tion to objective 2 was similar to that of Part 1, adding requirements
of re-using and extending another team’s implementation from Part
1, and of security through both practical issues (authentication in
CI/CD and GCP) and systematic analysis (STRIDE). The connection
to objective 3 was similar to that of Part 1.

3 ASSESSMENT
We assessed three aspects of each part: process (∼30%), product
(∼50%), and learning from mistakes (∼20%). In most cases, all team
members received the same grade on each assessment. To grade

3STRIDE is a mnemonic for six classes of security threats: Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege.

teams with substantial disparity in effort, e.g., a teammate who did
not attend meetings or contribute code, we used our discretion.

3.1 Assessing the Process
We evaluated each team’s process using two artifacts: their planning
and milestone documents, and their source code repositories. In our
assessment of their documents, we checked for teamwork aspects
including a team contract and milestones; design aspects such as
diagrams (e.g., structural models and dataflow); and the alignment
of their validation approach with the project requirements. In our
assessment of their repositories, we checked for evidence that they
followed their planned process, specifically in terms of code quality
standards and in relatively equal contributions across the team (by
commits and lines of code per person).

3.2 Assessing the Product
We assessed each team’s product using automated tests and manual
inspection. We automatically tested for adherence to the functional
specification, as well as randomized tests for crashes. We manually
inspected a random sample of files from each project for stylistic
consistency and implementation-level documentation. To assess
the non-baseline (and deliberately ambiguous) elements of Part 2,
we examined written documentation in the deliverable report. A
team’s report described their API, design, limitations of the imple-
mentation, validation approach, and provided records of testing.
We graded on the completeness of this documentation.

3.3 Assessing Learning from Mistakes
To assess learning from mistakes, we examined each team’s post-
mortem document. This assessment was generous to account for
the range of learning that can be expressed through reflection. If a
team identified positive and negative practices, covering their plan,
process, and product, then its members received full credit.

4 EXPERIENCES AND LESSONS LEARNED
This section reports on our experiences and lessons learned. Quotes
are taken from student responses to our end-of-course survey,
which was completed by 21 of the 72 enrolled students.

4.1 Are Weekly Milestones Helpful?
On the whole, we think the weekly milestones were helpful [13]. Six
of survey respondents said that the milestones were “Very relevant:
They helped us make considerable progress each week”; another six
were ambivalent (“So-so: We would have made pretty good progress
anyway, so it just felt like paperwork”); and two said that despite
the milestones they ended up doing most of the work close to the
submission date. Since almost half of the respondents said they
strongly benefited, and since paperwork is part of engineering
work, we plan to repeat this aspect of the course.

4.2 The Project Swap
One perennial difficulty in software engineering education is expos-
ing students to the “legacy system” experience [7]. To this end, we
had teams build Part 2 on top of another team’s Part 1 (cf. §2.5.2).
Many students appreciated this, and said things like: “Seeing other

DREE’22 , May 19, 2022, Pittsburgh, PA, USA James C. Davis, Paschal Amusuo, and Joseph R. Bushagour

people’s code was interesting”, “The code we got was pretty poorly de-
signed however that just means it would take a bit more time to refac-
tor”, and “There were some problems getting another team’s project to
run...it was a little bit painful but we will probably experience it in the
future”. However, the project exchange was mildly controversial,
due to variation in the quality of the different Part 1 implemen-
tations. One student observed, “In order to make our project work,
we...completely overhaul[ed] the other team’s project...groups [who
received] poor Project 1s got more work than [other] groups.” We
fear this student was correct — although the project specification
allowed teams to reduce the scope of their project based on the
state of the project they received, no teams took us up on the offer.

In the next offering of the course, we plan to repeat the project
exchange. However, to address the issues that students experienced,
we will make two changes. First, in this offering we did not tell the
students in advance about the swap, and this may have negatively
affected the quality of the code and documentation available to the
inheriting teams. Next time we will inform them of this aspect in
advance. Second, we will make the project hand-off a structured
event, and ensure that the implementations are accompanied by ap-
propriate documentation. We will use one lecture period to provide
teams with a synchronous meeting to conduct the hand-off.

4.3 GCP Token Theft and Bitcoin Mining
In Part 2, project requirements caused inadvertent GCP token theft.
This certainly met the aspect of learning outcome 2 related to
cybersecurity, but we see opportunities to improve.

GCPToken Storage. We required students to implement contin-
uous deployment (CD) to their GCP services. Some students chose
to store GCP access tokens directly in their repositories, enabling a
fully automated CD process. While we advised them not to do so,
this decision was not immediately problematic because we required
teams to use private GitHub repositories to discourage plagiarism.

GitHub Action Threshold. We required teams to use GitHub
Actions to implement their CI/CD pipeline. Unfortunately, GitHub
Classroom limits the number of GitHub Actions that can be made
by private repositories, and students began to experience errors.
We therefore asked the teams to convert their repositories to public,
which removed the Actions cap.

Result: Theft. Upon converting their repositories to public, the
teams that stored GCP access tokens insecurely had now leaked
them publicly. Three teams informed us that they had been affected.
Fortunately, GCP automatically detects anomalous resource usage
consistent with Bitcoin mining, and disables accounts before too
many resources are exhausted.

Discussion. The students got real-world experience in cyber-
security, but we are unsure whether to celebrate this experience.
Following the “Swiss Cheese” failure model [12], students saw how
a fault (unsound GCP token storage) led to an error (public disclo-
sure of tokens) and subsequent failure (break-in and Bitcoinmining).
This is a desirable lesson for students to learn. However, we would
prefer to design the lesson to educate students without emotional
distress or temporary financial impact, e.g., as a game [11].

In the next offering, we will explore a homework assignment
with a “honeypot” repository. This assignment will demonstrate
token theft in a controlled manner.

4.4 Assessing Teamwork
The main area for improvement in our assessment is in the as-
sessment of teamwork. Many teams felt that some member was
not doing their fair share of the work.4 We struggled to identify
scalable metrics that would allow us to fairly grade team members
differently, and eventually opted for a generous interpretation of
traditional software contribution metrics (commits, lines of code).
However, these metrics do not capture non-coding contributions,
e.g., in coordination, design, and research into components to sup-
port re-use. We only acted on them in exceptional circumstances.

In the next offering of the course, we plan to make a more struc-
tured assessment of teamwork aspects using the Comprehensive
Assessment of Team Member Effectiveness (CATME) tool [1].

4.5 Cost-Effectiveness and Sustainability
The course staff did not find it overly costly to supervise this project.
We chose to derive most of a student’s grade from the project. To
help the students (and staff) focus on the project, we set only seven
homework assignments, no quizzes, and one final examination. This
reduced our grading responsibilities and allowed us to spend most
of our out-of-classroom time supporting the project.

We plan to increase the cost of the project in one regard — in-
class time. In this offering, we omitted lectures and homework
connected to the specific services of GCP, both to preserve the
existing lecture sequence and to help students develop self-learning
skills. Based on student feedback, we think this may have unfairly
benefited the students with prior exposure to Cloud technologies,
e.g., through internships. In the next offering we plan to add one
lecture on cloud computing and one homework related to GCP,
concurrent with the release of Part 2 of the project.

4.6 Transferability
This project is transferable to other instructors or institutions. The
project uses only publicly-available resources (e.g., GitHub), with
reliance on infrastructure accessible to most educators (e.g., GitHub
Classroom; Google Cloud Education).

In designing the project, we did assume that this was our stu-
dents’ first many-week software engineering project, and scoped
the project to accommodate teamwork issues. This scope might be
too narrow for classes with broader prerequisite coursework.

ACKNOWLEDGMENTS
We thank the reviewers, Google Cloud Education for cloud credits,
and GitHub for providing free access to GitHub Education.

DATA AVAILABILITY
A Zenodo artifact is available, with: project specification; templates
for project milestones, submissions, postmortems; and rubrics. See
https://doi.org/10.5281/zenodo.5828087.

RESEARCH ETHICS
Purdue University’s IRB approved our use of student data.

4In fairness, many students were honest in reporting lackluster contributions. On 13
of the 24 teams, there was notable inequity in the hours claimed by the team members.

https://doi.org/10.5281/zenodo.5828087

Experience Paper: A First Offering of Software Engineering DREE’22 , May 19, 2022, Pittsburgh, PA, USA

REFERENCES
[1] 2005. About CATME (Comprehensive Assessment of TeamMember Effectiveness).

https://info.catme.org/features/overview/
[2] 2006. Uncover Security Design Flaws Using The STRIDE Approach. https:

//docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-
security-design-flaws-using-the-stride-approach

[3] 2018. Web Content Accessibility Guidelines (WCAG) 2.1. https://www.w3.org/
TR/WCAG21/

[4] Sebastian Baltes and Stephan Diehl. 2014. Sketches and Diagrams in Practice. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (Hong Kong China). ACM, 530–541. https://doi.org/10.
1145/2635868.2635891

[5] Nicole Hornbrook and James C Davis. 2021. An Intercultural Engineering Module
for Software Engineers. In 24th Annual Colloquium on International Engineering
Education (ACIEE).

[6] Brett D Jones. 2009. Motivating Students to Engage in Learning: The MUSIC
Model of Academic Motivation. International Journal of Teaching and Learning
in Higher Education 21, 2 (2009), 272–285.

[7] Capers Jones. 2006. The Economics of Software Maintenance in the Twenty First
Century.

[8] Charles W Krueger. 1992. Software Reuse. ACM Computing Surveys (CSUR) 24, 2
(1992), 131–183.

[9] Mike Loukides. 2021. Thinking About Glue – O’Reilly. https://www.oreilly.com/
radar/thinking-about-glue/

[10] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for Engineered Software Projects. Empirical Software Engineer-
ing (EMSE) 22, 6 (2017). https://doi.org/10.1007/s10664-017-9512-6

[11] James Parker, Michael Hicks, Andrew Ruef, Michelle L. Mazurek, Dave Levin,
Daniel Votipka, Piotr Mardziel, and Kelsey R. Fulton. 2020. Build It, Break It, Fix
It: Contesting Secure Development. ACM Transactions on Privacy and Security
23, 2 (2020), 1–36. https://doi.org/10.1145/3383773

[12] J Reason, E Hollnagel, and J Paries. 2006. Revisiting the Swiss Cheese Model of
Accidents. Journal of Clinical Engineering 27, 4 (2006), 110–115.

[13] Clifford A. Shaffer and Ayaan M. Kazerouni. 2021. The Impact of Programming
Project Milestones on Procrastination, Project Outcomes, and Course Outcomes:
A Quasi-Experimental Study in a Third-Year Data Structures Course. In Pro-
ceedings of the 52nd ACM Technical Symposium on Computer Science Education
(Virtual Event USA). ACM, 907–913. https://doi.org/10.1145/3408877.3432356

[14] Jennifer Turns, Brook Sattler, Ken Yasuhara, Jim Borgford-Parnell, and Cynthia
Atman. 2014. Integrating Reflection into Engineering Education. In 2014 ASEE
Annual Conference & Exposition Proceedings. 24.776.1–24.776.16. https://doi.org/
10.18260/1-2--20668

https://info.catme.org/features/overview/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://doi.org/10.1145/2635868.2635891
https://doi.org/10.1145/2635868.2635891
https://www.oreilly.com/radar/thinking-about-glue/
https://www.oreilly.com/radar/thinking-about-glue/
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/3383773
https://doi.org/10.1145/3408877.3432356
https://doi.org/10.18260/1-2--20668
https://doi.org/10.18260/1-2--20668

	Abstract
	1 Introduction
	1.1 Course Context
	1.2 Syllabus and Structure
	1.3 Infrastructure

	2 The Project
	2.1 Timeline
	2.2 General constraints
	2.3 General Structure of Each Part
	2.4 Project Part 1
	2.5 Project Part 2
	2.6 Connection to Learning Objectives

	3 Assessment
	3.1 Assessing the Process
	3.2 Assessing the Product
	3.3 Assessing Learning from Mistakes

	4 Experiences and Lessons Learned
	4.1 Are Weekly Milestones Helpful?
	4.2 The Project Swap
	4.3 GCP Token Theft and Bitcoin Mining
	4.4 Assessing Teamwork
	4.5 Cost-Effectiveness and Sustainability
	4.6 Transferability

	References

