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Abstract—Regular expressions (regexes) are a denial of service
vector in most mainstream programming languages. Recent
empirical work has demonstrated that up to 10% of regexes
have super-linear worst-case behavior in typical regex engines. It
is therefore not surprising that many web services are reportedly
vulnerable to regex denial of service (ReDoS).

If the time complexity of a regex engine can be reduced
transparently, ReDoS vulnerabilities can be eliminated at no cost
to application developers. Unfortunately, existing ReDoS defenses
— replacing the regex engine, optimizing it, or replacing regexes
piecemeal — struggle with soundness and compatibility. Full
memoization is sound and compatible, but its space costs are too
high. No effective ReDoS defense has been adopted in practice.

‘We present techniques to provably eliminate super-linear regex
behavior with low space costs for typical regexes. We propose
selective memoization schemes with varying space/time tradeoffs.
We then describe an encoding scheme that leverages insights
about regex engine semantics to further reduce the space cost of
memoization. We also consider how to safely handle extended
regex features. We implemented our proposals and evaluated
them on a corpus of real-world regexes. We found that selective
memoization lowers the space cost of memoization by an order
of magnitude for the median regex, and that run-length encoding
further lowers the space cost to constant for 90% of regexes.

“Those who cannot remember the past are condemned to repeat it.”
—George Santayana

Index Terms—Regular expressions, denial of service, ReDoS,
algorithmic complexity attacks, memoization, legacy systems

I. INTRODUCTION

Regular expressions (regexes) are a fundamental building
block of computing systems [1]. It is unfortunate that such
a widely used tool is a denial of service vector. For the
sake of expressiveness and flexibility [2], most regex engines
follow a backtracking framework with worst-case super-linear
behavior in the length of the input string w (e.g., O(Jwl|?)
or O(2!®)) [3]. Meanwhile, 30-40% of software projects
use regexes to solve string matching problems [4], [5], and
up to 10% of those regexes exhibit super-linear worst-case
behavior [6], [7]. These trends expose regex-reliant services to
an algorithmic complexity attack [8] known as Regex-based
Denial of Service (ReDoS) [9]-[11].

The threat of ReDoS is well understood. Empiricists have
demonstrated that software engineers commonly compose
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ReDoS-vulnerable regexes [5], [6] and that thousands of web
services are exploitable [12]. For example, root cause analysis
implicated super-linear regex evaluation in outages at Stack
Overflow [13] and Cloudflare [14]. We know the risks — now
we need a ReDoS defense.

ReDoS attacks require three ingredients: a slow (i.e., back-
tracking) regex engine, a slow regex, and reachability by
user input. Assuming reachability, ReDoS defenses thus speed
up the regex engine or change the regex. A proper ReDoS
defense should be (1) sound (works for all regexes), (2)
backwards-compatible (regex engines are “legacy systems”
whose stability is critical), and (3) low-cost. Existing ReDoS
defenses suffer from unsoundness or incompatibility. For ex-
ample, moving regexes to a faster regex engine [3], [15] risks
semantic differences [7], while refactoring slow regexes is an
error-prone and piecemeal solution [6].

In light of these design goals, we propose memoization
to speed up backtracking regex engines, addressing ReDoS
soundly in a backwards-compatible manner with small runtime
costs for typical regexes. For soundness, we prove theorems
guaranteeing worst-case time complexity that is linear in |w|.
For compatibility, our approach can be introduced within
existing backtracking frameworks, just like other common
regex optimizations (e.g., [16]-[18]). We employ two tech-
niques to make our approach low-cost. Selective memoization
asymptotically reduces the size of the memo table. An efficient
data representation lets us compress the memo table.

We measured the practicality of our approach on the largest
available corpus of super-linear regexes [7]. Our prototype
achieves linear-in-|w| time costs for all of these regexes.
Through selective memoization, the median storage cost
(copies of |w]|) for a super-linear regex decreases by an order
of magnitude compared to a standard memo table. Adding an
efficient representation, that space cost falls to constant for
90% of super-linear regexes.

Our contributions are:

« We propose a novel memoized NFA to enable the analysis
of memoization schemes (§VI).

o We present two selective memoization schemes that reduce
the space complexity of memoization (§VII).

o To further reduce space costs, we compress the memo table
with a space-efficient memo function representation (§VIII).

« We extend these techniques from regular expressions to
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Fig. 1: Regexes across the system stack. ReDoS may occur when
a slow regex meets unsanitized input on a slow regex engine. We
discuss ReDoS outages at Cloudflare and Stack Overflow (§II).

two commonly-used extended regex features: zero-width
assertions and backreferences (§1X).
« We evaluate our proposals on a large-scale corpus and report
substantial benefits for a wide range of regexes (§X).
We have demonstrated techniques by which ReDoS can be
defeated — soundly, for all commonly-used regex features,
and with minimal changes to legacy regex engines.

Outline: We begin with background material on ReDoS and
regexes. Next we show the limitations of existing ReDoS de-
fenses. Then we present our approach, evaluate, and conclude.

II. REGEX DENIAL OF SERVICE (REDOS)

Regexes are used in latency-sensitive contexts on the critical
path. They validate untrusted input throughout the system
stack (Figure 1), e.g., to process HTML headers [12], [19] or
detect cross-site scripting (XSS) attacks [20], [21]. Ironically,
regexes used as a defensive filter may themselves be exploited.

A. ReDoS attacks

Crosby and Wallach observed that super-linear (i.e., poly-
nomial or exponential in |w|) regex engine behavior could be
exploited in an algorithmic complexity attack [8], [9]. ReDoS
attacks require three ReDoS Conditions:

1) The victim uses a regex engine with super-linear matching
behavior in |w| (i.e., a backtracking implementation).!

2) The victim uses a super-linear regex (§11I-B).

3) The regex is reachable by untrusted input.

If these conditions are met, then an attacker can submit
input designed to trigger the super-linear regex behavior. The
costly regex evaluation will divert computational resources
(e.g., CPUs, threads) and reduce or deny service to legitimate
clients. Such attacks are applicable to most web services;
Davis et al. have demonstrated super-linear regex behavior
in every major programming language but Rust and Go [7].
ReDoS exploits are particularly problematic for services that
use multiplexed architectures like Node.js [12], [23], [24].

B. Threat model

We suppose a realistic threat model: the attacker can specify
the string w to which the victim’s regex is applied (ReDoS
Condition 3). This is in keeping with a primary use of regexes,
namely to sanitize and process untrusted input [4], [25], [26].

'Some authors restrict ReDoS to exponential in w [22]. However, real-
world outages have involved polynomial worst-case behavior [13], [14].

C. ReDoS in the wild: Two case studies

Thousands of ReDoS vulnerabilities have recently been
identified [6], [12]. We illustrate these vulnerabilities through
two case studies. These studies show the diverse usage of
regexes and the implications of super-linear behavior.

The Q&A forum Stack Overflow had a 34-minute ReDoS
outage in July 2016 [13]. They used the quadratic regex
.+\s+ (simplified) to trim trailing whitespace from each
post as part of response generation, to improve rendering
and reduce network traffic. A post with 20,507 tab characters
reached the front page, triggering the worst-case quadratic
behavior of the regex on page load. Stack Overflow’s load
balancer interpreted slow page load times as instability and
marked their servers as offline. The resulting capacity loss
brought down their service.

ReDoS outages also occur due to dependencies on other
services. The web infrastructure company Cloudflare had a
27-minute ReDoS outage in July 2019 [14], affecting the avail-
ability of thousands of their customers [27]. As part of an XSS
detector, Cloudflare used the quartic regex axb?c?axaxax
(simplified) to detect JavaScript tokens within web traffic.
Some typical traffic triggered the worst-case behavior of this
regex, exhausting Cloudflare’s computational resources and
affecting their customers’ web services.

III. BACKGROUND ON REGULAR EXPRESSIONS
A. Regular expressions (K-regexes)

Kleene introduced regular expressions
describe strings constructed using a finite number of
concatenations, repetitions, and disjunctions [28], [29].
Rabin and Miller showed that they were equivalent in
expressive power to non-deterministic finite automata
(NFAs) [30]. We will denote NFAs using the standard 5-tuple
(states Q, start qo, accepting F, alphabet 3, transitions &) [31].2
The typical regular expression notation is given in Figure 2,
with equivalent NFAs according to the Thompson-
McNaughton-Yamada construction [32], [33].
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Fig. 2: K-regex operators and NFA equivalents for character, concate-
nation, repetition, and disjunction. NFAs for K-regexes have in-degree
and out-degree < 2, although this is higher under e-closure. The final
figure shows an exponentially ambiguous K-regex.

(K-regexes) to

(ala)+

B. Regex languages and ambiguity

Regexes describe a language, a set of strings that meets the
criteria embodied in the expression [31]. As with other pattern
languages like context-free grammars [34], [35], regexes can
be ambiguous: there may be multiple ways for a string to be in
the language of the regex [36]. For example, the last expression

2Readers unfamiliar with this notation should refer to Table II.



TABLE I: Worst-case time and space complexities for typical regex
recognition algorithms. Candidate string w is tested on K-regex
R represented as an NFA with @ states. Although Thompson’s
algorithm has better theoretical guarantees, Spencer’s algorithm is
widely used (e.g., JavaScript-V8, Java, PHP, Python, Ruby, Perl,
.NET). The last row gives representative complexity of our approach.

Algorithm Q] Time cxty. Space cxty.

Spencer O(R])  O(IQPH*Ix|w])  O(Q|xw])
Thompson O(IR) O(lQ*x |wl) oy

Memo-Spencer  O(|R|) O(|QI? x|wl) O(1QIx |w|)

in Figure 2 is ambiguous, because it can parse the string ‘a’ in
two different ways. If there is a maximum number of distinct
parses for any string in the language, a regular expression
or NFA is called finitely ambiguous, otherwise it is infinitely
ambiguous. Finite ambiguity results from disjunctions, e.g., the
2-ambiguous a | a. Infinite ambiguity requires a quantifier, e.g.,
(ala) *. Infinite ambiguity is one of the necessary conditions
for typical super-linear regex behavior [25], [37].

C. String problems and regex engines

Software engineers use regular expressions to answer two
string problems [31]. The recognition problem tests whether
or not a candidate string w is in the language of a regular
expression R (i.e., the regex matches the string). This permits
engineers to determine appropriate control flow in a software
application. The parse problem returns the matching substring
and any sub-captures (“‘capture groups”). This supports activ-
ities like scraping web pages or log files.

Programming languages use a regex engine to solve these
problems. These engines follow two general algorithms that
can be modeled as NFA simulation (with extensions for
parsing [38] and irregular features [39], [40]). Under this
model, the algorithms search for a path to an accept state,
either depth-first (Spencer’s) or breadth-first (Thompson’s).
The semantics of regular expression membership follow the
NFA membership problem, with extensions and deviations
discussed by Campeanu [41], [42] and Berglund [43]-[46].

Table I summarizes these algorithms and our approach.

1) The Spencer algorithm: This resolves non-determinism
using a backtracking [47] NFA simulation (Listing 1). Given
a choice of edges, it tries one and saves the others for later.
Its state consists of its current simulation position T = {(q €
Q,i € N'“") (an automaton state and an index ¢ into the
string w), and a backtracking stack that records the un-tested
alternative branches, for O(|Q|x|w|) space complexity.

Spencer’s search policy can exhibit exponential time com-
plexity [22], [25], [37]. To see this, examine the last illustration
of Figure 2. Consider a backtracking simulation of this NFA
on the string w = a®b, and count the number of paths to the
accept state for the prefix a* = a .%. a. There are two paths to
the accept state on the first a; twice that many for a?; and twice
again for a®. The geometric recurrence yields 2* paths for the
prefix a*. When the simulation encounters the suffix b, each
of these paths results in failure. Note that many of these paths

Listing 1 Spencer-style backtracking K-regex recognition.
Regex engines often use an explicit stack, not recursion.

0)

# Invoke a ize (NFA,

# Returns I
def recognize (NFA, w, currQ, i)
if i == len(w): # Max recursion depth

return True if currQ in NFA.F else False
for nextQ in NFA.delta(currQ, w[i], 1i):
if recognize (NFA, w, nextQ, i+l): #
return True # 1

I R T S

are redundant. Nevertheless, the backtracking algorithm may
attempt exponentially many paths before returning a mismatch,
with time complexity O(]Q|*>1"Ix|w]).

2) The Thompson algorithm: This resolves non-
determinism using a lockstep NFA simulation. When
there is a choice of edges, it simulates taking all of them
together. Its state tracks the current offset ¢ and the vertex-set
of the currently activated NFA states: (i,® C @), for
space complexity O(|Q|). As for time complexity, for
each character in the input string the algorithm queries the
transition function § for each of the current NFA states .
Thus the time complexity is O(|Q|*x |w]).

D. The persistence of ReDoS: Regexes in practice

In principle, applying Thompson’s algorithm is a straight-
forward remedy for ReDoS. There are obstacles in practice.
Dialects: Perl introduced regexes as a first-class programming
language construct based on Spencer’s library [48]. All subse-
quent programming languages support regexes and generally
follow Perl-Compatible Regular Expressions (PCRE) notation
and semantics [1], [49]. However, they also maintain inde-
pendent (and inconsistent) regex engines, leading to multiple
regex specifications [49], [50] and many dialects [1], [7], [51].

Extended features: PCRE’s extended regexes (E-regexes) are
more expressive and more powerful than Kleene’s K-regexes.
They offer “syntax sugar” regular operators (K-compatible)
including character classes ([a-z]), cuts (?>a) [1], and
limited repetition (a{ 3, 5}), as well as irregular operators like
zero-width assertions (?=a) and backreferences ( (a) \1) [52].

Engine implementations: In practice, form may follow
function — regex features dictate regex engine algorithms.
Spencer’s backtracking algorithm is used by all “PCRE” regex
engines, including Java, JavaScript-V8, PHP, Python, Ruby,
Perl, and .NET [1], [7]. This was an engineering decision;
Spencer was aware of Thompson’s approach but chose back-
tracking for its greater flexibility (E-regexes) and simplicity
of implementation [2]. Thompson’s algorithm is used only by
Rust [53] and Go [54], as well as Google’s standalone RE2
regex engine [15]. These engines do not support E-regexes.

Maintainer priorities: The maintainers of backtracking regex
engines are aware of the threat of ReDoS. Several engines
have longstanding bug reports describing problematic time
costs [55], [56]. Historically, maintainers may have viewed
super-linear regexes as aberrant usage to be addressed at the



application level. New research has demonstrated the extent
of the ReDoS problem [6], [12], perhaps motivating recent
optimizations [57].

IV. LIMITATIONS OF EXISTING REDOS DEFENSES

Our threat model assumes that developers will use regexes
to handle user input (ReDoS Condition 3). Defenders must
address Condition 1 (slow engine) or 2 (slow regex). Let us
consider existing ReDoS defenses.

A. Slow engines: Remove super-linear matching behavior

Addressing Condition 1 would be a fundamental solution.
If a regex engine guaranteed linear-in-|w| match times, then
ReDoS would be addressed once-for-all.

1) Use another algorithmic framework: This comes via
application-level substitution or engine-level overhaul.

Applications can adopt a third-party linear-time regex en-
gine. For example, after their outage Cloudflare moved from
Lua’s backtracking regex engine to RE2 [14]. Unfortunately,
substituting one regex engine for another is fraught. E-regexes
cannot be ported, because the current generation of linear-
time regex engines only support K-regexes. Most K- and K-
compatible regexes can be ported, but this is complicated by
the abundance of regex dialects. Regexes are under-tested [58]
so finding portability problems may be difficult [7].

At the regex engine level, the engine maintainers could
overhaul their regex engine to use a faster algorithm. Although
regex engine maintainers know about ReDoS [55], [56], the
engineering cost of leaving the backtracking framework may
be unpalatable. Maintainers regularly improve common-case
performance (e.g., V8 [59], [60] and .NET [57]), but have
not undertaken an algorithmic overhaul to address ReDoS.
Some newer regex engines are designed around Thompson’s
algorithm (RE2, Rust, Go), but legacy engines may have too
much technical inertia to follow suit.

2) Backtracking optimizations: Although no regex engine
has changed its algorithmic framework to address ReDoS,
maintainers have incorporated “inline” optimizations that fit
into the backtracking framework. Some optimizations find
good starting points for an NFA simulation [16]-[18], and are
orthogonal to our approach. More apropos to our approach,
other optimizations remove some of the redundant paths in
the backtracking search. For example, .NET [57] and Perl use
prefix factoring to unite overlapping paths, while caching is
used to accelerate backtracking in Perl and a rare path in RE2.
Our approach is also of this kind; we improve on previous
approaches by guaranteeing soundness (see §X).

3) Capping super-linear behavior: Three backtracking
regex engines defend against ReDoS by limiting the resources
consumed by a regex match. The .NET regex engine offers
a wall clock time-based cap on matches [61]. The PHP and
Perl regex engines use counter-based caps [62], [63], throwing
an exception if a match exceeds their cost measures. Re-
source caps certainly protect web services, but are a perennial
“Goldilocks” problem [24], [64]: too tight and they reject
valid input, too loose and they permit moderate ReDoS. Our

approach does not require tuning. It guarantees that users
always get a regex answer, not an exception.

B. Slow regexes: Remove super-linear regexes

If a super-linear regex engine must be used, application
developers may instead refactor their use of super-linear
regexes. This defense is problematic in two ways. First, it
is ad hoc. The maintainers of individual computing systems
must determine that they are vulnerable, choose a refactoring
strategy, and apply it correctly. This process is error prone [6].3
Second, it is indirect, putting the burden for a solution on
application developers rather than addressing the root cause.
Developers might prefer a regex with super-linear structure,
e.g., to facilitate maintainability or comprehension [67]. Our
approach accommodates such preferences in linear time.

V. OUR APPROACH: CONTEXT AND OVERVIEW

We propose a memoization approach to guarantee linear-
time matching within the backtracking algorithmic framework.
Our approach improves on the state of practice (Spencer’s al-
gorithm). We emphasize that we do not attempt to improve on
the theoretical state of the art for regex matching (Thompson’s
algorithm). But in the 60 years since Thompson proposed his
algorithm, practitioners have shown no inclination to abandon
the backtracking framework in their legacy regex engines
(§8IV). Therefore, we propose an approach that can be adopted
within a backtracking framework with minimal changes.

Our approach builds on Michie’s general function memoiza-
tion technique [68], an optimization that spends space to save
on time. Memoization records a function’s known input-output
pairs to avoid evaluating it more than once per input. Many
algorithms benefit from the time savings [69]-[71]. Space
costs depend on the input-output domain.

Memoization techniques have previously been applied to
parsing problems, notably “Packrat Parsers” for context-
free grammars (CFGs) and parsing expression grammars
(PEGs) [47], [72]-[75]. Memoization can also be used for
regex matching. If the input-output pairs in Spencer’s algo-
rithm were recorded, then redundancy can be eliminated. As
an example, consider Listing 1 when applied to the final
illustration from Figure 2. The many paths to the accepting
NFA vertex correspond to many (redundant) recursive queries
to recognize for the same simulation positions. Memoizing
the results of recognize would eliminate this redundancy.

Full memoization, i.e., recording every input-output pair
for recognize, has never been applied for practical regex
matching due to its space complexity [3], [43], [76], [77].
Large regexes are used on long input and so the O(|Q|x|w])
space complexity of full memoization is too costly. To em-
ploy memoization for regex matching in practice, its space
complexity must be reduced. Some regex engines have done
so with unsound heuristics (§X). Our memoization techniques
offer linear-time K-regex matching soundly and with low space

3The regex refactoring process might be automated. Existing techniques are
unsound [57], [65] or entail exponential space complexity [66].



costs. For E-regexes, we obtain linear-time matching for zero-
width assertions and parameterized costs for backreferences.
Here are the key ingredients of our approach. First, we
prove that full memoization records more data than necessary
for linear-in-|w| K-regex time complexity. This goal can be
achieved by selectively memoizing visits to only a subset of
the automaton vertices (decreasing space complexity). Then,
we consider the embodiment of the memo function M, and
observe that for many regexes its state will be low-entropy and
compressible via run-length encoding (decreasing space cost).
Finally, we extend these techniques to two E-regex features.
We divide our presentation into four parts: a formalization
of Memoized Non-Deterministic Finite Automata (M-NFA)
to reason about our approach (§VI); analyses of the behavior
of M-NFA for K-regex recognition under three memoization
schemes (§VII); a space-efficient representation of the memo
function (§VIII); and extensions for E-regexes (§IX).

VI. MEMOIZED NON-DETERMINISTIC FINITE AUTOMATA

Using memoization, a regex engine can record the areas
of the search space that it has explored. If it revisits those
regions, it can short-circuit a redundant exploration. Although
a full memoization approach is a standard technique from
Packrat Parsing, we introduce two novel selective memoization
schemes in §VII whose properties are more subtle.

To provide a framework for the analysis of our selective
memoization schemes, we introduce a novel extension of
Rabin-Miller NFAs. We define this entity as a Memoized Non-
Deterministic Finite Automaton (M-NFA), with components
described in Table I1.* This model enables us to reason about
the behavior of an NFA simulation algorithm when applied to
an M-NFA. The additional components are:

M The memo function M of an M-NFA is updated during the
backtracking simulation. It initially returns O to all queries.
After a simulation position 7 is marked, the memo function
returns 1 for subsequent queries to that position.

dp An M-NFA’s memoized transition function dp; accepts
the typical arguments to 4, plus a candidate string index i:

Oorm(g,000) ={reQ|redlqgo) \NM(r,i+1)=0}

In other words, d); uses the memo function M to dynami-
cally eliminate redundant transitions during the simulation.

Simulation: An M-NFA can be simulated on a string w
beginning from gy, by repeated application of the memoized
transition function §; (see Listing 2). If the simulation ends
in a state ¢ € F, the M-NFA accepts the candidate string.
Note that for K-regexes, the outcome of a match starting from
a given position 7 is determined solely by the current position,
and not on previous decisions. Thus, the memo function tracks
at most the |Q|x|w| possible positions.

Memoization scheme: During M-NFA simulation, the choice
of which simulation positions 7 to memoize is determined by

4Strictly speaking, an M-NFA is not finite because it uses memory based on
w. The components M and dj; can be viewed as maintained by a memoized
simulation of the NFA. We feel the M-NFA conceit is simpler.

TABLE II: Components of a Memoized Non-Deterministic Finite
Automaton (M-NFA) derived from an NFA A = (Q,q0 € Q, F C
Q,%,6). The components of A are listed above the mid-rule
(cf. §III-A). The components of the M-NFA for A include those,
plus the additional components below the mid-rule: M and .

Component Meaning
Q Automaton states
q € Q Initial state
FCQ Accepting states
b String alphabet: w € X

§:Q XX —PQ) Transition function

M:QxN*l - f0,1}
Sa i Q x I x N P(Q)

Memo function (“memo table™)

Memoized transition function

Listing 2 Memoized backtracking K-regex recognition. Dif-
ferences from Listing 1 are highlighted.

# Invoke as memoRecognize (MNFA, w,
def memoRecognize (MNFA, w, currQ,
if i == len(w): # Max recursion

MNFA.q0, 0)
i):
depth

return True if currQ in MNFA.F else False
for nextQ in MNFA.deltaM(currQ, wl[i], 1) :
i+1)

if memoRecognize (MNFA,
return True # Bubble
MNFA.M.mark (currQ, 1)
return False # Backtrack

w, nextQ,

R T I SR IRC R

a memoization scheme. Our schemes memoize all simulation
positions associated with a selected subset ;. of the au-
tomaton vertices, ie., all T = (¢ € Q1,7 € NI®I). When
Qse1. = ), the M-NFA is equivalent to an NFA.

Ambiguity: We define an ambiguous M-NFA analogous to an
ambiguous NFA (§III-A). An M-NFA is ambiguous if there
exists a string w such that when it is simulated from gqq,
there are multiple paths to an accepting state. The degree of
ambiguity of an M-NFA can be tuned by the memoization
scheme. For example, with Q,.;. = () the M-NFA has the same
ambiguity as the NFA, while with Q. = @ (i.e., Packrat
Parsing [73]) the M-NFA is unambiguous.

Space complexity: Based on our M-NFA model, a
memoization scheme incurs additional space complexity
O(|Qser.| % |w|) to store the memo function.

Time complexity: Based on our M-NFA model, the time cost
of an M-NFA simulation can be calculated as:

(# sim. pos.)x (max visits per pos.)X(cost per visit). (1)

For K-regexes there are |Q|x|w| simulation positions. We
assume that visits cost O(|@Q]) per the loop in Listing 2, with
O(1) updates to M and queries to s [78]. If each position is
visited once (Table III), the time complexity is O(|Q|?x |w]).

VII. SELECTIVE MEMOIZATION FOR K-REGEX
RECOGNITION

In this section we present three selective memoization
schemes for backtracking M-NFA simulations that follow List-
ing 2. Table III summarizes their properties. For each scheme



TABLE III: Time and space complexity of K-regex matching using
the selective memoization schemes. Each scheme adds space com-
plexity |Qser.|x|w|, and they are ordered from largest to smallest
vertex set size. The time complexity for Qancestor has a factor f(Q)
indicating the NFA’s maximal bounded ambiguity (see appendix).

Memo scheme Visits per pos. Time cxty. Add’l. space cxty.

None (Spencer) o(Q|™h O(IQI2T ™I x |wl) -
Qan = Q <1 o(|QI* x|wl) |QIx|w]
Qinfdeg>1 S 1 O(|Q|2X|“)D IQin—deg‘Xlwl
Qancestor < f(Q) O(1QI*x|w|x £(Q)) [Qane.|x|w]|

we bound the number of visits per simulation position. We
sketch intuition here using Figure 3. See appendix for proofs.

(@) Qin—deg: M-NFA for (ala)  (b) Qanc.: M-NFA for (a|a)+

Fig. 3: Memoized automata used to illustrate the selective mem-
oization schemes. Shading indicates the vertices associated with
memoized simulation positions for (a) Qin—deg>1 and (b) Qancestor-

A. Select all vertices: Qg

In this scheme, we record the outcome of the simulation
positions associated with every vertex of the M-NFA, Q. =
Q. From the definition of §,;, each simulation position can be
reached at most once. Theorem 1 follows directly.

Theorem 1. Let the memo function track simulation po-
sitions involving all M-NFA vertices Q). Then the M-NFA
is unambiguous — every simulation position T = {(q, 1)
is visited at most once.

B. Select vertices with in-degree > 1: Qin—_deg>1

This scheme memoizes only the vertices Qip—geg>1 With
in-degree greater than one. Like ()4, memoizing Qin—deg>1
eliminates redundant visits; the M-NFA is unambiguous.

Theorem 2. Let the memo function track simulation posi-
tions involving the M-NFA vertices with in-degree greater
than one, Qin—deg>1. Then the M-NFA is unambiguous
— every simulation position m is visited at most once.

Proof sketch: Figure 3 (a) illustrates this scheme. The shaded
vertex g3 has in-degree 2. By memoizing it, on the string
a it can only be visited from ¢; and not gs. Intuitively, in
order for there to be redundancy (ambiguity) in the M-NFA
simulation, we must reach the same simulation position 7
along two different paths. To reach this position twice: (1)
There must have been a choice; and (2) Both branches must

have led to 7 along edges with the same labels. At the fork,
the two paths diverged; later, they converged. For two paths
to converge, they must share some vertex with in-degree > 1.
Memoizing visits to this vertex prevents multiple visits to .

Observations: This scheme eliminates non-determinism (out-
going edges with the same label) that results in ambiguity
(branches converge). Per Figure 2, these conditions may arise
in the Thompson-Glushkov construction from the use of dis-
junctions or Kleene stars (e.g., a|a or a*xax). The Qin—deg>1
scheme memoizes visits to the convergence points.

C. Select cycle ancestors: Qgncestor

This scheme memoizes the vertices Qgncestor that are cycle
ancestors according to a topological sort from ¢o. This mem-
oization scheme prevents the compounding of ambiguity; it
eliminates infinite ambiguity, but still permits f(Q) redundant
visits based on a notion of bounded ambiguity.’ The M-NFA
is thus finitely ambiguous.

Theorem 3. Let the memo function track simulation
positions involving the M-NFA vertices that are “cycle
ancestors”, Qancestor, I-€., automaton vertices to which
back-edges are directed in a topological sort from qq.
Then the M-NFA is f-ambiguous. Every simulation posi-
tion will be visited at most a finite number of times £(Q).

Proof sketch: Figure 3 (b) illustrates this scheme. The shaded
vertex go is an ancestral node that can compound the two
ambiguous paths to g3. By memoizing ¢qg, only one of the
two simple paths to g3 can form a cycle with ¢y, and the
M-NFA is 2-ambiguous just as a|a is. Intuitively, infinite
ambiguity arises when finite ambiguity is compounded by the
presence of cycles in an NFA. For example, a?a? and a | a are
finitely ambiguous, while axa and (a|a) = are infinitely so.
These infinitely ambiguous variations add cycles to the NFA.
Memoizing the cycle ancestors permits ambiguity, but this
ambiguity is bounded because all but one of the possible cycles
are eliminated by ;. This yields the result in Theorem 3.

Observations: This memoization scheme permits redundant
visits that result from finite ambiguity. Although Cox observes
that a regex can be constructed with arbitrarily large finite
ambiguity [3], we lack analysis tools to determine whether
such regexes are practical or pathological. Regardless, the
degree of redundancy permitted by this memoization scheme is
not super-linear — it is limited as a function of the automaton,
not of the length of w. Beyond a certain point, increasing |w]|
will not increase the worst-case behavior.

In terms of K-regex features, Figure 2 shows that ances-
tral back-edges only occur from the use of Kleene stars.
The Quncestor Memoization scheme memoizes the vertices
to which these back-edges are directed. If there is finite
ambiguity in the sub-pattern to which the Kleene star is
applied, that ambiguity remains after @y cestor-memoization.

3See Appendix for the refined theorem with a precise definition of f(Q).



This memoization scheme has lower space complexity than
the preceding one because Quncestor & Qin—deg>1. Under
standard regex-to-NFA constructions, all vertices in an NFA
graph are reachable from g and thus have in-degree > 1. The
vertices in Qgncestor have an additional in-degree due to the
back-edge, and hence are also in Qin—_deg>1-

D. Time and space complexity guarantees

Time: In §VI we stated that the time complexity of an M-NFA
simulation depends on the maximum number of visits to each
simulation position. Our theorems provide upper bounds on
visits, resulting in the time complexities given in Table III.

Space: Memoization schemes incur additional space complex-
ity O(|Qser.|x|w]). This space complexity decreases mono-
tonically as: Q = Qall 2 Qin—deg>1 2 Qancestar 2 0.

E. Discussion

1) Semantics: The use of memoization eliminates redun-
dant path exploration, but does not otherwise affect the behav-
ior of the regex engine. Recall that paths are pruned when re-
encountered while backtracking; their original exploration was
unsuccessful. The regex engine’s semantics remain unchanged.

2) Parsing with memoization: These selective memoization
schemes improve the worst-case performance of the K-regex
recognition problem (regex match) for backtracking regex
engines. They similarly improve the worst-case performance
of the other regular string problem, parsing (capture groups).
For K-regexes, capture group contents do not affect the match,
so memoization is orthogonal. Matters change for E-regexes
(cf. backreferences in §1X).

3) Processing costs: The automaton vertices Q.. selected
by our selective memoization schemes can be identified during
a parsing pass. These vertices are associated with disjunction
and Kleene star operators in a 1-to-1 manner.

4) Unnecessary memoization: Our formal selection ap-
proaches will eliminate all super-linear behavior. It is instruc-
tive to consider unsound variations, cf. §X-A.

Our selective memoization schemes may involve unneces-
sary memoization. Our schemes select vertices according to
analysis on an “unlabeled skeleton” of the NFA. Only vertices
that meet a stronger condition actually need be memoized,
namely that they be reachable along multiple ambiguous
paths. For example, the regex a|b is unambiguous, so the
vertex with in-degree 2 need not be memoized. However, our
approximations have the advantage that the vertices involved
can be identified in O(]|Q)|) steps during the NFA construction.
For example, the vertices in Qupncestor are a superset of the
“pivot nodes” necessary for infinitely ambiguous behavior;
identifying those pivot nodes requires O(|Q[%) to O(2!%))
time complexity [25], [37], [79]. In our evaluation we find
that Qin—deg>1 and Quncestor are typically small, so further
refinement may not be worthwhile. Faster ambiguity analyses
for typical regexes would enable further space reduction.

TABLE IV: Properties of the memo function representations, ordered
by best-case space complexity. The first two are standard techniques.
Based on regex engine semantics, we propose the application of run-
length encoding to the memo function. k denotes the number of runs.

Representation Access time Space complexity
Memo table O(1) O(|Qser.| X |w|)
Positive entries O(1) QJw]) 5 O(|Qser.| x|w|)
Run-length encoding ~ O(logk) — Q(|Qser]) : O(|Qser.| x|wl)

VIII. REPRESENTATIONS OF THE MEMO FUNCTION

Implementing an M-NFA requires an embodiment of the
memo function indicated in Table II (the implementation of
mark in Listing 2). Our selective memoization schemes will
decrease the amount of state tracked by this memo function.
If this state can be efficiently represented, the total space cost
of memoization can be made lower still. We discuss three
implementations of the memo function, two conventional and
one novel. Their properties are summarized in Table IV.

A. Memo table

One implementation of the memo function is a memo
table, an array with a cell indicating each input-output pair.
For K-regex memoization, this memo table would be a two-
dimensional array whose cells are 0-1 valued. This array offers
optimal access times and requires |Qse;. | X |w]| space.

B. Positive entries

Because the entries in the memo table can contain only two
values, only the cells with one of the values need be tracked.
In our context, we might track only the visited positions. A
missing entry means no Visit.

A data structure with efficient random access and update
times (e.g., a hash table) can be used to store only the
visited cells, as is common for memoization in functional
programming [70], [71], [80], This approach offers the same
asymptotic access times as an array, although with larger
constants. However, its space complexity is input-dependent
and may be superior to an array. On some pathological inputs,
the space cost is Q(|w]|), when only one of the memoized
vertices is visited along w. For example, this would occur
if the input exploits only some of the potential ambiguity in
the regular expression. In the worst case, all of the memoized
vertices are visited repeatedly, for cost O(|Qser.|x|w]).

C. Run-length encoding

We propose to further decrease the space cost by compress-
ing the information in the memo table. We interpret the memo
table as an array of |Qse;.| Vvisit vectors, one per memoized
NFA vertex, each of length |w|. In the context of regular
expressions these visit vectors may be compressible because
the engine’s search regime is ordered.

The ordered search regimes necessitated by regex en-
gine match semantics (e.g., PCRE’s leftmost-greedy behavior)
cause the memo function to be updated in an orderly manner.
Updates will tend to accrete to adjacent indices as characters



TABLE V: Time complexity for E-regexes in a backtracking (BT)
framework. Analysis is based on our engine model.

Time: BT w/ memo

O(IQI*x |w])

O(IQP x|w|* 219G s rl)

Time: BT w/o memo

O(IQP 21 xw|?)
O(|QIP I x|wl?)

E-regex feature

REWZWA
REWBR

are processed. Because the alphabet of the memo table is
small, this property results in visit vectors with consistently
low entropy, and hence a high compression ratio. This observa-
tion has been described as the locality of NFA traversals [81].

As a result, it is reasonable to expect that the memo tables
in the K-regex context will be compressible. Many states
may be visited at only a few distinct indices of the input
string, resulting in intervening compressible runs of 0’s due to
unvisited states. Other states, e.g., quantifier destinations, may
be visited at many indices. Some of these visits will be espe-
cially compressible. Consider, for example, the behavior of a
regex engine on a catch-all expression like /.« /. The NFA
vertex corresponding to the quantifier would be memoized
under all of our selective memoization schemes. Once an NFA
simulation reaches this structure, it will recursively check for
regex matches after consuming each of the adjacent characters
in an ordered manner, accreting a compressible sequence of
memo table entries.® Such quantifiers are common. In Davis
et al’s regex corpus [7], we found that among the 253,216
regexes that use an unbounded quantifier, fully 103,664 (41%)
include the catch-all expression /.*/ or /.+/.

As a compression strategy, we propose to use run-length
encoding (RLE) [82] because it supports in-place updates.
When a visit vector is implemented as a binary tree, with
elements the runs keyed by their offsets [83], this scheme
offers O(log k) access time for a vertex with k runs. If the
encoding scheme is effective, k will be small and the time
cost will be competitive with the two other memo function
representations we have discussed. If it is ineffective, k£ may
be as large as |w|, substantially increasing the time cost of
this scheme relative to the others. By the same token, if the
encoding scheme is effective, the space cost of this scheme is
constant for each visit vector. It remains O(Jw|) per vector in
the worst case.

IX. MEMOIZATION FOR E-REGEXES
A. E-regex background: REWZWA and REWBR

Most regex engines support extensions beyond K-regexes.
Up to 5% of general-purpose regexes use E-regex operators,
most commonly involving zero-width assertions and backref-
erences [4], [5]. We denote regexes with zero-width assertions
as REWZWA, and use REWBR for backreferences.

1) REWZWA: A zero-width assertion tests a condition on w
without changing the simulation position. Fixed-width asser-
tions examine a constant number of characters from the current
position, e.g., the word boundary \b. More general assertions,

6Non-greedy quantifiers do not change this locality, but merely reverse the
order in which the indices are explored. The exploration entropy remains low.

called lookaround assertions, may examine the entire string w.
For example, the regex (?=a+) \w+ (?<=z+) uses assertions
to find words that begin with a’s and end with 2’s.

Programming languages vary in assertion expressiveness.
Rust and Go support fixed-width but not lookaround asser-
tions. For lookahead, i.e., (?=...), JavaScript, Java, Python,
PHP, and Ruby support K-regexes and some E-regex fea-
tures (e.g., backreferences). For lookbehind, i.e., (?<=...),
JavaScript and Java support K-regexes, while Perl, PHP, Ruby,
and Python support only fixed-width assertions. In our analysis
we suppose a semantic descriptive of typical REWZWA usage:
that REWZWA can assert K-regexes.

2) REWBR: A backreference permits an intra-pattern ref-
erence to the substring of w matched by an earlier capture
group (labeled sub-pattern). For example, the regex (a|b)\1
matches “aa” and “bb” but not “ab” or “ba”. There are dialectal
variations on REWBR semantics [41], [44], [52], [84], but the
details are unimportant for our purposes.

Contribution: We study the worst-case performance of
REWZWA and REWBR in typical backtracking implemen-
tations. We describe current implementations and show time
and space bounds with memoization. Table V gives time
complexity improvements.

B. Regexes with zero-width assertions (REWZWA)

In typical implementations, REWZWA have exponential
time complexity. Memoization lowers the cost to linear in |w|.

1) Implementations: REWZWA implementations have not
previously been described in the literature. We examined the
approaches of Perl, PHP, Python, and JavaScript-V8. They
are recursive: they compile the asserted sub-pattern, save
the simulation position when they reach it, and evaluate the
sub-pattern using their K-regex machinery. If the sub-pattern
matches, the simulation position is reset (zero-width), else they
backtrack. In terms of standard NFA representations, this type
of implementation can be modeled as introducing «-edges
that describe a regular string pattern via sub-automata. Like
e-edges, these a-edges consume no characters.

2) Complexity analysis: The space complexity of
REWZWA in these implementations is the same as for
K-regexes. The time complexity is worse. For REWZWA
with K-regex assertions, because the assertions do not
consume characters, each step of the simulation may traverse
a-edges at an exponential cost. Following Eqt. (1), we
again have |Q|x|w| simulation positions, up to |Q[I*! visits
per position, and any «-edges may bear the full cost of
a backtracking sub-simulation over w. The expressiveness
of the assertions bounds the cost of these a-edges. In a
backtracking framework, fixed-width assertions cost constant
time, K-regexes cost exponential, and backreferences or
nested assertions still further. Table V assumes K-regex
a-edges, hence a cost of O(|Q|I*!) per visit.

3) Memoization: Memoization reduces the time complexity
for REWZWA to linear in |w|. This reduction in time com-
plexity follows from a simple observation: for each a-edge,
the simulations of the corresponding sub-automaton will all



operate on the same sub-automaton and on some substring of
w. Rather than treating these simulations independently, we
retain what we learn in one for use in the next.

Extension of M-NFA: We can operationalize this observation
with two changes to the REWZWA model. First, convert
the top-level automaton and each sub-automaton (a-edges) to
M-NFAs. Second, preserve the memo functions of the sub-
automata throughout the simulation of the top-level M-NFA,
remembering the results from sub-simulations that begin at
different indices ¢ of w.

Time complexity: Because REWZWA implementations use a
single large tagged automaton (flat, with no levels), in practice
this modeling requires minimal modification to an existing
memoized implementation. The time complexity analysis is
easy to follow when expressed in terms of this single au-
tomaton. By counting the sub-automaton vertices in ) and
memoizing (), we obtain the familiar:

O((IQIx[wl) x 1 x |Q| ) = O(IQI*x|w])

This result can also be obtained in our hierarchical o model
by dividing the cost across the hierarchy of automata. The top-
level automaton simulation has time complexity O(|Q|?x |w|)
ignoring the a-edges. The cost of evaluating an a-edge varies
based on the simulation position. However, because the memo
function is saved from one sub-simulation to the next, redun-
dancy is eliminated and the cost amortizes to O(]Qa|?x |w]).

Space complexity: Counting the sub-automaton vertices in
Q,” the space complexity is the standard O(|Q|x|w]|).

Selective memoization: Our proposal for REWZWA is essen-
tially recursive. Selective memoization remains applicable.

C. Regexes with backreferences (REWBR)

The general REWBR matching problem is NP-
complete [52]. REWBR algorithms are exponential in
some combination of |@Q| and |w].

1) Implementations: Backtracking regex engines support
parsing by tracking the substring of w matched by each capture
group using a capture group vector CG of index pairs (j, k).
To evaluate a backreference with index pair (7, k) at offset ¢,
they compare w/i:i+(k-j)] to w(j:k], i.e., the current contents
of the appropriate group. This can be modeled in a tagged
NFA by introducing (-edges that perform string comparison.

2) Complexity analysis: REWBR are context-sensitive: the
path through the automaton determines the capture group
contents, and so evaluating a REWBR may require exploring
the exponentially many automaton paths [44], [52], [85].
Of course, in the worst case, existing backtracking engines
already explore all these paths (hence ReDoS). But note that
it is more expensive to test a [-edge than a regular one,
because it entails an O(|w|) string comparison. The worst-case

TThis is similar to replacing the zero-width assertions with the correspond-
ing sub-patterns, e.g., a (?=bx) — abx.

time complexity for a REWBR match within an un-memoized
backtracking framework is thus:

O( (1QIxJwl) x Q" x (IQ] + |wl ))
~~
B-edge cost is |w|, not 1
= 0(|QP " x|w|?)

The simplified form uses the property |Q| + |w| < |Q|x|w].

3) Memoization: Compared to typical backtracking imple-
mentations, memoization reduces the time complexity from
exponential in |w| to exponential in |Q| — roughly speak-
ing, from O(|Q|!) to O(Jw|I?!). Since we typically expect
|w| > |Q|, the reduction is substantial.

Extension of M-NFA: Because the contents of a capture
group depend on the path taken through the automaton,
REWBR disrupts our path-independent memoization scheme.
To identify redundancy, we need to track the capture groups
as well. If we reach the same simulation position (g,%) but
with a different capture group vector, the simulation outcome
may differ.
For example, the regex <[a-z]+)>(ala)+</\1> uses
a backreference to match HTML tags. It contains the ex-
ponential K-sub-regex (a|a) +. This sub-pattern may result
in exponentially many visits to the [-edge for \1, all of
which share the same capture group vector CG and vary
only in their simulation positions. Incorporating CG into the
memo functions can safely eliminate these redundant paths. To
accomplish this, we extend the M-NFA described in Table II:
Capture groups The simulation must track the capture group
vector CG, where C'G; denotes the i™ capture group.
Memo functions The domains of the REWBR memo function
M’ and transition function 0%, must consider the simulation
position 7 as well as the capture group vector CG.

Time complexity: Using Eqt. (1), the change in memo func-
tions inflates the first term but is offset by the decrease in the
second term. In the first term, each CG; can take on |w]|?
distinct values. If we select Q,;, the time complexity is:

O( (@Il x () S1) x 1 x (1Q| + u]) )
= O(Qx |uw[+1°!)

Note that the exponents have changed places when compared
to the un-memoized version: from O(|Q|™!) by counting
(potentially-overlapping) paths, to O(|w|??l) by counting
distinct path configurations. This bound remains problematic
if more than a few backreferences are used.

Space complexity: There are |()|x|w| simulation positions,
and |CG| capture groups. The memo function’s domain is
thus

O(@lxwlx(fwl?) %) = O(j@Ixwl ).

Selective memoization: Selective memoization can be ap-

plied to reduce the cost of REWBR. First, only the indices of
the backreferenced capture groups affect the simulation result,
so we need only memoize the sub-vector CGgr C CG.
This reduces the corresponding exponent for both time and



space complexity. Second, as with REWZWA, the Qin—deg>1
and Quncestor can be applied to REWBR to reduce the space
complexity’s vertex factor |Q)|.

D. Other extended features

Our approach can be applied to other extended features. To
memoize features that depend on additional state (e.g., general
conditional expressions), that state must be tracked by the
memo function. Features with side effects should be treated
more carefully. For example, some regex engines support
semantic actions through callouts (embedded code), which can
change the candidate string w. If so, memoized state would
need to be updated.

X. EVALUATION

The memoization schemes described in § VII provably elim-
inate ReDoS by guaranteeing K-regex matching times that are
linear in |w|. We extended this guarantee to REWZWA within
the backtracking framework, and parameterized the super-
linearity for REWBR. Our selective memoization schemes
incur varying additional space complexity, which may be offset
by efficient representations of the memo function (§VIII).

Here we analyze comparable defenses, experimentally con-
firm our security guarantees (time complexity), and assess the
practicality for typical regexes (space complexity and costs).

A. Security analysis: Existing memoization-like defenses

We surveyed regex engine implementations and behav-
ior described in the literature [3], [7], [15], and identified
memoization-like ReDoS defenses in Perl and RE2. These de-
fenses unsoundly target only exponential worst-case behavior.
To avoid the |Q|x |w]| cost of full memoization, Perl unsoundly
and incompletely memoizes certain vertices. while RE2 un-
soundly caches a constant number of simulation results. Both
schemes may exhibit exponential and polynomial behavior.

Perl: Since 1999, the Perl regex engine has employed an un-
sound semi-selective memoization scheme called the “super-
linear cache”. It is undocumented and its workings have not
previously been described in the scientific literature.® Perl
memoizes visits to the first k=16 NFA vertices associated with
repetitions A+ if the language of A has strings of varying
lengths, e.g., (alaa) . Perl omits other repetitious states,
e.g., bounded repetition (a{3}) or repetition with a fixed-
length pattern (.« .x). The memo table is erased when a
backreference [-edge is tested.

Perl’s approach is similar in spirit to our Qupcestor SCheme,
but it is restricted to k=16 cycle ancestors and only considers
those whose cycles can be of varying lengths. This scheme is
not sound — e.g., it protects (ax) » (otherwise exponential),
but not (a|a) = (exponential) nor a»a~* (quadratic). We con-
jecture that this scheme was designed to eliminate exponential
worst-case K-regex behavior due to nested quantifiers [6],
but did not consider other forms of exponential behavior nor

8We describe it as of February 2020. See https:/github.com/Perl/perl5
commit 34667d08d.

weaker polynomial behavior. Davis er al. described many
regexes unprotected by this defense [7].

RE2: Although the RE2 regex engine generally uses Thomp-
son’s lockstep algorithm, in rare cases it uses backtrack-
ing [15]. An unsound memoization cache records visits to
(C=32 KB’s worth of simulation positions (full memoization).
This scheme is effective if |Q|x|w| < C, e.g., for small
regexes and small inputs. It is not useful for large regexes
or large inputs, the common case for polynomial worst-case
behavior (e.g., Stack Overflow’s outage). Our space-efficient
memoization proposal is more suited for those cases.

B. Dataset and measurement instruments for our approach

Regex corpus: Researchers have collected several regex cor-
puses [4], [6], [7], [58]. We use Davis et al.’s regex corpus [7],
which is the largest and most representative of typical regex
practices [5]. It contains 537,806 regexes from 193,524 soft-
ware projects. This corpus includes 51,224 super-linear K-
regexes and inputs to trigger worst-case behavior.

Prototype: We implemented the selective memoization and
encoding schemes within a backtracking regex engine pub-
lished by Cox [86]. This regex engine supports K-regexes,
plus capture groups, the optional (?) and non-greedy («?)
quantifiers, and the catch-all character class (.). Unmodified,
it could evaluate approximately 17% of the regex corpus and
15% of the super-linear K-regexes.

To enable measurement on a wider variety of regexes, we
added feature support following popularity measurements by
Chapman & Stolee and Davis et al. [4], [5]. Our prototype
supports K-regexes as well as K-compatible features: anchors,
escape sequences, character classes, and bounded repetition.
We also implemented two E-regex features: REWZWA (looka-
head) and REWBR (< 9 groups) using the algorithms de-
scribed in §IX. Our prototype supports 454,060 (84%) of the
corpus regexes. We will refer to these as the supported regexes.
Among these are 48,505 (95%) of the super-linear K-regexes.

For bounded repetition, we follow the standard expansion
strategy: A{m,n} — A...A(A(A(...)?)?)? [15]. What
is the impact of this approach on memoization? Flat repetitions
like a{m,n} increase |@Q| by |m — n|, while rare nested
repetitions like (a{m, n}) {m',n"'} have a geometric effect.
However, the “tail recursive” nature of the expansion means
that the optional groups for a given repetition all point to the
same final vertex. Thus |Qin—deg>1| grows more slowly than
|Q|: by 1 for flat repetitions, by |rn—n/| for one level of nesting,
etc. These structures are loop-free, so |Qancestor| does not
change — redundancy is possible but bounded (Theorem 3).

Discounting vendored files, our non-whitespace changes
comprised: 2,000 lines for extended feature support; 900 lines
for memoization; 850 lines for tests. We implemented the
memo table representation using a bitmap; the positive entry
representation using uthash [87]; and the RLE-based repre-
sentation using Biggers’s avl_tree balanced binary tree [88].
We parameterized RLE with runs of length 1 for the common
case of catch-all expressions. Our prototype is available at
http://github.com/PurdueDualityLab/memoized-regex-engine/.
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Fig. 4: Case studies of applying our techniques to K-regexes and E-
regexes. The regexes are: (a) Exponential Microsoft username regex
(responsibly disclosed); (b) Cloudflare regex (§1I); (c,d) Hand-crafted
examples. All K-regexes and REWZWA can be handled in linear-in-
|w|. For REWBR, memoization reduces the degree of the exponent.

C. Security analysis: Time complexity

This experiment is to confirm our theoretical guarantees.

1) Methodology: Our theorems predict the maximum num-
ber of visits to each simulation position, with the effect that the
worst-case behavior grows linearly with |w|. As shown in §VII
(Table III), the selection schemes vary in the bound they offer
on the number of visits to each simulation position. For each
selection scheme we measured the fotal number of simulation
position visits as we increased |w|. For a fixed regex, this
quantity should grow linearly proportional to |w|.

We tested each supported super-linear (K-)regex with prob-
lematic inputs of varying lengths. Each regex has an input
signature consisting of a constant prefix, a list of consecutive
“pump strings”, and a constant suffix. The more times each
pump string is repeated, the more times certain simulation
positions will be visited by an un-memoized backtracking
search. We varied the length of each input, from 10,000 pumps
to 100,000 pumps at intervals of 10,000.

2) Results: Our prototype achieved the linear-in-|w| match
complexity we predicted. The total number of simulation
position visits grew linearly with |w| in every case. Reductions
in matching time are illustrated in Figure 4.

D. Practicality analysis: Space complexity and costs

This experiment assesses the practicality of our approach.
We measure the typical space complexities of the supported
regexes (i.e., values for |Qs.;.|) and the actual space costs of
memoization under different configurations.
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Fig. 5: Sizes of the vertex sets for the selective memoization schemes.
Whiskers indicate the (1, 99)™ percentiles. Outliers are not shown.

1) Methodology: The space complexity of a selective
memoization scheme depends on the size of the selected vertex
set Qsei. We measured the sizes of Qui, Qin—deg>1, and
Qancestor for the supported regexes (Thompson construction).

The space costs of a scheme depend on the regex, the input,
and the memo function representation. For each supported
super-linear regex, we used the “most evil” (highest growth
rate) of the inputs from the detectors. We measured the space
used under each combination of selection scheme and memo
function representation. For this experiment we used strings of
length 20 KB to simulate the Stack Overflow scenario (§1I-C).

2) Results: Space complexity: The distribution of Q.
sizes under various selection schemes is shown in Figure 5.
We note two aspects of the data. First, our data show that
full memoization would be costly. The 75" percentile of
|Q| = |Qaul is 33. On long inputs, the cost of full memoiza-
tion would be significant for many regexes. Second, our data
show that |Q| > |Qin—deg>1| = |Qancestor|- Our selective
memoization schemes may exhibit space complexities an order
of magnitude lower than the full memoization scheme.

Space costs: The observed space costs for each regex-input
pair over the nine configurations are shown in in Figure 6. The
memo table representation cost (blue boxes) can be predicted
from Figure 5, at one bit per vertex/offset pair. Surprisingly,
the positive representation (orange) exhibits higher costs. We
found that 30-50% of the possible simulation positions are
explored, and the overheads of the hash table outweigh the
savings in unfilled entries. Lastly, the RLE representation
(green) achieves constant space costs for most regexes. It has
a 95t percentile of 16 runs for (in—deg>1 and 10 runs for
Qancestor- This scheme breaks down when run length and visit
sequence are mis-aligned. Determining the limitations of RLE
is a task we leave for future work.

E. Extensions: Complexity of E-regexes

§IX presented novel algorithms for evaluating two E-regex
features (REWZWA and REWBR) within a backtracking
framework. In Figure 4 we illustrated the effect of memoiza-
tion on these features. Unfortunately, we cannot systematically
evaluate our approach. The state-of-the-art super-linear regex
analyses [22], [25], [37], [89] cannot identify super-linear
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Encoding scheme
' I No encoding (memo table)

9 1.GB =S Positive (hash) ©
10 T RLE .
108 ' ;
i i
i i
107 ! ! ' '
0 i
s ! H 1
& ¢ 1MmB
g 10 :
o ) )
1) .
8 :
»'10° l '
S Bea =
. ' 1
i
103 1KB : ; ;
— =
102 '
0 Oin- deg>1 Quancestor

Fig. 6: Space costs to evaluate super-linear K-regexes with “Stack
Overflow”-sized input strings (20 KB). Whiskers indicate the (5, 90)™®
percentiles. Some low outliers are omitted for space.

behavior arising from extended features (§IX).° A new regex
analysis for E-regexes lies beyond the scope of this work.

However, we can provide measurements to indicate typical
parameter values for REWBR. Although several authors have
parameterized the worst-case time complexity of REWBR in
general [40], [90], no regex corpus has been analyzed to
understand typical REWBR use. Per our analysis in §IX-C,
we are interested in |CG gr| and |@Qpg|. To characterize these
costs, we present novel measurements of the use of REWBR.

In the regex corpus, most regexes contain few distinct back-
referenced capture groups and few backreference uses. Among
the ~ 3, 500 REWBR in the corpus, 98% contain at most three
backreferences (|[BR| < 3), and 98% contain backreferences
to at most two distinct capture groups (|CGpgr| < 2). For
typical regexes the worst-case time and space complexity of
REWBR is a (relatively) small polynomial of |w].

Following Namjoshi et al. [40], we may further characterize
the costs of typical REWBR. If a backreferenced capture group
has unbounded width (i.e., contains a *), it contributes a factor
of |w|? to time and space complexities. With limited width, it
can take on only |w| distinct indices, reducing the exponent. In
the corpus, 78% of the REWBR regexes use only fixed-width
capture groups, most commonly to find a matching quote, e.g.,

(" 1"™)\w+\1. Thus it is possible to address ReDoS due to
REWBR in practice, as typical usage entails low-polynomial
time and space complexity.

9ReScue supports E-regexes [89], but does not find E-regex problems [6].

F. Limitations

The corpus of Davis et al. covers regexes as used in general-
purpose programming [7]. It may not be representative of
domain-specific regexes, e.g., intrusion detection systems.

Our prototype does not support all K-compatible nor E-
regex features. Within the full corpus, the causes for lack of
support are: 8% features (e.g., lookbehind assertions, named
capture groups); plus an additional 3% that use non-ASCII
characters (e.g., \x5z); plus an additional 5% that our parser
mis-handled (e.g., an unmatched { is treated as a literal
in some regex engines). If the supported and unsupported
regexes have different characteristics, then our findings are
not completely representative.

XI. DISCUSSION
A. How much space overhead is too much?

Super-linear regex behavior anywhere in the software stack
can result in ReDoS. Memoization can eliminate ReDoS, but
entails space overhead. If too much space is required, this
overhead can convert ReDoS from a time-based attack to a
space-based one. Regexes are a programming primitive used
in myriad ways, so there is no definitive answer to the question
“How much space overhead is too much?” As one data point,
Cox proposed 32 KB as a reasonable memory footprint for
memoization overheads [15]. In virtualized contexts, embed-
ded devices, or web servers with many clients, even this
memory footprint may be problematic. Selective memoization
and efficient encoding are key to reducing the cost.

A study of the memory constraints across all ReDoS-
vulnerable deployments is beyond the scope of this paper.
Our theoretical bounds on space complexity can be used
by practitioners to analyze and choose appropriate memory
configurations. Our techniques accommodate a wide range of
usage in a general-purpose regex engine, with small constant
costs for a large fraction of regexes.

B. Incorporating into real-world backtracking regex engines

We believe our techniques can be applied to real-world
backtracking regex engines with minimal disruption to the
codebase. Conceptually, memoization is an “inline” change
for these regex engines. For example, the memoization mod-
ifications for our prototype involve a single if-condition
within the backtracking framework (Listing 2). In real-world
regex engines the scope of changes could be slightly more
involved. For example, Perl’s unsound memoization scheme
is updated at three points instead of one to accommodate
local optimizations. However, in the many backtracking regex
engines we have examined there is a search loop comparable
to Listing 1 with clear points where memoization could be
introduced. The difficulty has always lain not in introducing
memoization, but rather in determining how little can be
memoized while ensuring soundness, and in measuring the
cost of memoization for typical regexes.

Based on our evaluation, we recommend that the maintain-
ers of backtracking regex engines incorporate a |Qin—deg>1|-
based memoization scheme for K-regexes. Compared to



Qancestors the Qin—_deg>1 selection scheme has a stronger time
complexity guarantee (Table III) and similar space costs for
typical regexes. However, the outlier values of Qin—degree>1
are an order of magnitude larger than those of Qgncestor, SO
Qancestor Might be used as a back-up option in some cases.
In either case, an RLE-based memo function representation
is quite effective for the common case of the visit vectors
associated with catch-all expressions. A memo table may be
more useful for other visit vectors.

To understand feasibility, we corresponded with maintainers
of four backtracking regex engines. All indicated interest
in our technique. None had explored sound selective mem-
oization schemes nor efficient representations. As barriers
to adoption, they cited many of the obstacles from §III-D:
variations in dialects; the value of backtracking for main-
tainability and extended feature support; and whether ReDoS
defenses should be prioritized. Interestingly, some maintainers
also stated that an optimized backtracking engine outperforms
Thompson implementations for common-case queries. The
maintainers’ primary questions surrounded the common-case
impact, the worst-case guarantees, and the memory footprint.
However, most lacked confidence in their benchmark suites to
assess performance impacts. This gap shows the value of our
corpus approach and suggests avenues for further research.

XII. OTHER RELATED WORK

We treated many works earlier, but some remain.

A. Other applications of memoization

Beyond Packrat Parsers, memoization has been widely
applied, e.g., in functional programming [70], logic program-
ming [71], [91], [92], and dynamic programming [69], [93].

Any algorithm that relies on memoization must address the
accompanying space cost. Researchers have explored strate-
gies including caching [15], [80], [94], partial memoization
to avoid part (but not all) of the repeated computation [95],
[96], and selective memoization to record some (but not all)
of the input-output pairs [97]. Selective memoization has been
applied heuristically to string parsing [98], but context matters
— when CFGs are used to parse software projects (not a
latency-critical task), the input is trusted, and the code being
parsed is typically short [73]. When researchers have con-
sidered security-sensitive parsing contexts, e.g.,, XML [99]-
[101] and JSON [102], they have focused on time rather than
space. For regexes both time and space must be considered.
Large regexes are deployed on latency-critical paths on long
untrusted input. Time costs must be lowered to avoid ReDoS,
but this should be done while minimizing space overheads.

B. Domain-specific regex engines

We have described optimization techniques for the general-
purpose regex engines provided with programming languages,
and evaluated them on measurements of regex usage in a large
sample of software modules. Other researchers have tailored
regex engine optimizations for specific application domains.
Most notably, when regexes are used in intrusion detection

systems, they should run at line speed [103]. Researchers
have focused on how to make these evaluations efficient
and predictable for K-regexes [39], [104]-[107]. Smith et al.
examined the use of non-selective memoization to suppress
redundancy in a more general backtracking predicate search
in Snort [108]. Our techniques support general-purpose K-
regexes and E-regexes, without requiring substantial changes
to existing algorithmic frameworks.

Lastly, while promising, algebraic regex engines a la Brzo-
zowski [75], [109]-[111] remain uncommon in practice.

C. Other treatments of E-regexes

§IX presents the first analysis of the problematic current
behavior of REWZWA, and the potential REWZWA perfor-
mance within the backtracking framework. The time complex-
ity we have achieved for REWZWA using memoization is un-
surprising from an automata-theoretic perspective. REWZWA
semantics are a form of intersection [112], [113], under which
regular languages are closed [30]. Our approach obtains linear
time complexity without pre-computing the intersection.

Other researchers have shown that REWBR problems are
NP-hard. The best known algorithms have exponential worst-
case time complexity [44], [52], [85], parameterized in terms
of the number of backreferences [39], [40], [90]. Our approach
shows how to obtain the same time complexity in legacy regex
engines, without leaving the backtracking framework.

XIII. CONCLUDING REMARKS

Regular expressions are used for string processing in every
layer of the software stack. Most programming languages use
a backtracking algorithm in their regex engines. Backtracking
simplifies engine implementations and gives users expressive-
ness. But it also introduces exponential worst-case behavior
that can lead to regex-based denial of service (ReDoS).

The ReDoS problem has thus far defied a practical solution.
There are alternative algorithms with better time complexity
guarantees, but they complicate implementations and limit
extensibility. Meanwhile, a memoization-based optimization
would fit nicely within a backtracking framework, but these
have been rejected for their high space complexity.

In this paper we revisited this problem from a data-
driven perspective. Inspired by a new large-scale regex corpus,
we proposed two selective memoization schemes that offer
comparable time complexity guarantees with lower space
complexity. For typical regexes these schemes offer an order
of magnitude reduction in memoization space costs. Then,
leveraging a memo function representation based on regex
semantics, memoization space costs can be further reduced
to constant for typical regexes. In experiments, our ReDoS
defense offers linear-time behavior with constant space costs
for 90% of super-linear regexes.
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APPENDIX
PROOFS OF THE SELECTIVE MEMOIZATION THEOREMS

Here we present proofs of Theorems 1 to 3.

A. Definitions
These definitions are used in Theorems 2 and 3.

Definition 1 (Simulation position). For a regex engine follow-
ing the backtracking algorithm given in Listing 1, we define
a simulation position 7 = (¢ € Q,i € NI*l) as one of the
possible simulation positions on which the recurse function
is called. Two simulation positions are different if they differ
in the automaton vertex q or the candidate string index i.
If a simulation position is subscripted m;, we may denote its
automaton vertex as ;.

Definition 2 (Simulation path). We define a simulation path
of simulation positions, denoted 11 = gy ... 7y. This repre-
sents a valid sequence of positions visited by the backtracking
algorithm. In a simulation path, 7 is the position {qo,0), and
each m; is in 6(m;—1). Two simulation paths are different if
they are of different lengths, or if at some index i they contain
different simulation positions, i.e., are at different automaton
vertices.

We introduce the following concept to refine the statement
of Theorem 3 from that given in §VII.

Definition 3 (Bounded ambiguity). Let A be an e-free NFA.
We define its bounded ambiguity as:

( max (

bounded Ambiguity(A) = max SEEQ

0<i<|Q|

# distinct simulation paths s ~~ t of length i

))

Note that bounded Ambiguity(A) differs from the am-
biguity of A. An automaton can be infinitely ambiguous,
i.e., increasingly-long candidate strings can be defined whose
ambiguity is larger than any finite bound. In contrast, our
definition of bounded Ambiguity(A) captures the maximum
possible ambiguity for strings of length no more than |Q)|.

B. Assumptions (M-NFA pre-processing steps)

In our theorems and proofs, we assume that the M-NFAs
involved have two additional properties: having one accepting
state, and being e-free. These properties are standard proof
tactics for automata [31], [114].

First, we assume that the M-NFAs are modified to have
a single accepting state gr. This ensures that if a candidate
string is ambiguous, then the ambiguous paths all terminate
at the same vertex gr. Any M-NFA can be converted with no
change in its language: introduce ¢r, direct e-edges to it from
the vertices in F, and update F' to F' = {qr}.

Second, we assume that the M-NFAs are e-free. This has
the convenience of ensuring that the string index 7 increases
for consecutive simulation positions in a simulation path,
i.e., every step consumes a character from w. Any M-NFA
can be converted with no change in its language: ¢ must

be defined as §., computing the e-closure such that every
transition consumes a character from w. However, for the
standard Thompson NFA construction, our proofs hold with
minor modifications.

C. Theorems and proofs

Theorem 1. Let the memo function track simulation positions
involving all M-NFA vertices, Qq = Q. Then the M-NFA is
unambiguous — every simulation position ™ = (q,1) will be
visited at most once.

Proof. This result follows trivially from the definition of d,/,
the memoized transition function. See §VII-A. O

Theorem 2. Let the memo function track simulation positions
involving the M-NFA vertices with in-degree greater than
one, Qin—deg>1. Then the M-NFA is unambiguous — every
simulation position m = (q, 1) will be visited at most once.

Put simply, this theorem states that all ambiguity is the result
of joining paths. Without splits, only one path is possible;
without joins, different paths cannot lead to ambiguity because
of the gr assumption.

qv, b,

Fig. 7: lllustration for the proof of Theorem 2. Vertex ga; = qv,
must have in-degree > 1 because it is the first point of convergence
after the split at vertex ga, , = s, ;-

Proof. The proof proceeds by contradiction. Suppose the
Qin—deg>1 memoization scheme is employed but some sim-
ulation position 7 is visited twice. This means an M-NFA
simulation traverses different simulation paths II, and II,

I, =7,
Hb:ﬂ'boujrbv---

0

Ta; - Tay -+, 0 <k < |wl

Tay -+ Ta
Ty 20 <k < Jul,

i

0"

7Tbj~--

such that (Figure 7):
1) The paths diverge. At some i < k, m,, # mp,, e.g., at a
point of non-determinism.
2) The paths converge. There is some smallest j, i < j < k,
such that m,, = mp,, and $0 qq; = qp;.
The paths must diverge, else they would not be different
and 7, would be visited only once. They must converge, else
Ta, 7 Tb,. Now, because the paths converge, the vertex in
Ta; = Tp; must have in-degree > 1. In more detail, since j
was the earliest point of convergence after 7+ — 1 on the two
paths, it must be that g,; € §(qa;_,,w;—1) and likewise g, €
O(qv,_,,wj_1). Since g, , # mp,_,, we have qq,_, # qp;_,,
and so the in-degree of q,, > 1.
But if q,; € Qin—deg>1, the M-NFA simulation will
not traverse both II, and II,. We are memoizing all visits



to automaton vertices with in-degree > 1. Without loss of
generality, suppose we first visit q,; via the simulation path
I1,, thus marking 7,; in the memo function M. When we
backtracked to m,, , and evaluated the alternative path II;,
at mp;_, we would have found the path eliminated by the
memo function: q,; & 6 M(ij,“qu)- So we cannot reach
the simulation position 7,; = 7, more than once along these
paths, because II;, would terminate at T+

L]

Next we re-state Theorem 3, refined using the definition of
bounded Ambiguity(A).

Theorem 3 (Refined). Let the memo function track simula-
tion positions involving the M-NFA vertices that are “cycle
ancestors”, Qauncestor» i-€., the automaton vertices to which
any back-edges in a topological sort from qy are directed.
Then the M-NFA is finitely ambiguous. A simulation position
involving a vertex t will be visited at most N = f(Q) times,
where:

1) N=1 lft S Qancestor;

2) N = boundedAmbiguity(A) if t is not reachable from a
cycle ancestor;

3) N = |Qancestor]| X |Q|xbounded Ambiguity(A) other-

wise.

Put simply, this theorem states that when back-edges can
be taken at most once from any simulation position, then
ambiguity in the simulation cannot compound. The simulation
will retain any ambiguity in its “cycle-free” analog (i.e., a
variant that has the back-edges removed). The ambiguity may
increase as the result of back-edges taken at different offsets,
but it remains bounded. Recall the illustration in Figure 3 (b):
ambiguity remains possible but is limited. An example of the
theorem calculations is given in Figure 8.

a
&0
Qg ¢ q1

Fig. 8: Illustration of the calculations for Theorem 3. This is
an e-free M-NFA for the regex (alaa)+. Here, |Q| = 2 and
|Qancestor| = 1. There are two distinct go ~» ¢o paths of length
two, so bounded Ambiguity(A) = 2. The theorem gives a bound
of 1 %2 %2 = 4 visits to any simulation position, although this
bound is not realized in this automaton because the two paths share
a memoized vertex qo.

Proof. Choose a target simulation position ©# = (¢t € Q,1).
We will show the visit bound for each case.

Case t € Quncestor: If t € Quncestor, then the memo function
ensures that 7 is visited at most once.

Case ¢ € Qancestor ¥~ t: If there is no path from a cycle
ancestor to ¢, then every simulation path reaching 7= must be
cycle-free and thus contain < |@| positions. The bound then
follows from the definition of bounded Ambiguity(A). This
result also covers the case when Quncestor = 0.

Case g € Quncestor ~ t: We partition the space on 1.

Clearly, if ¢ < |Q| then 7 can be visited at most
bounded Ambiguity(A) times. So suppose ¢ > |Q|. Consider
two observations. First, any simulation path containing more
than |Q| positions must include a cycle. Second, for the
same reason, after a simulation path makes its final visit to
a simulation position involving some ¢ € Quncestor, that
simulation path must terminate within |Q| steps. This is
because the back-edges to Quncestor are the only means of
introducing a cycle, and without further cycles a simulation
path must come to an end.

Now then, what if ¢ > |Q|? Then the distinct simulation
paths to 7 must all include some “cycle” simulation position
7' = {q € Qancestor,j) at most |Q| steps beforehand. Recall
that the memo function assumed in this theorem will prevent
more than one simulation path through each such x’. There
are |Qancestor| X |@Q| possible cycle positions 7/, so all of the
distinct simulation paths to 7 must share at most |Qancestor| X
|Q| distinct simulation path prefixes. From these 7/, each
simulation prefix may diverge up to bounded Ambiguity(A)
times to reach . Multiplying, we obtain an upper bound of
|Qancestor| X |Q|xbounded Ambiguity(A) distinct simulation
paths that can reach .

O
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