
A Sense of Time for JavaScript and Node.js:
First-Class Timeouts as a Cure for Event Handler Poisoning

James C. Davis
Virginia Tech

Eric R. Williamson
Virginia Tech

Dongyoon Lee
Virginia Tech

Abstract
The software development community is adopting
the Event-Driven Architecture (EDA) to provide scal-
able web services, most prominently through Node.js.
Though the EDA scales well, it comes with an inher-
ent risk: the Event Handler Poisoning (EHP) Denial of
Service attack. When an EDA-based server multiplexes
many clients onto few threads, a blocked thread (EHP)
renders the server unresponsive. EHP attacks are a se-
rious threat, with hundreds of vulnerabilities already re-
ported in the wild.

We make three contributions against EHP attacks.
First, we describe EHP attacks, and show that they are
a common form of vulnerability in the largest EDA
community, the Node.js ecosystem. Second, we de-
sign a defense against EHP attacks, first-class time-
outs, which incorporates timeouts at the EDA framework
level. Our Node.cure prototype defends Node.js appli-
cations against all known EHP attacks with overheads
between 0% and 24% on real applications. Third, we
promote EHP awareness in the Node.js community. We
analyzed Node.js for vulnerable APIs and documented or
corrected them, and our guide on avoiding EHP attacks
is available on nodejs.org.

1 Introduction
Web services are the lifeblood of the modern Internet.
To minimize costs, service providers want to maximize
the number of clients each server can handle. Over the
past decade, this goal has led the software community
to consider shifting from the One Thread Per Client Ar-
chitecture (OTPCA) used in Apache to the Event-Driven
Architecture (EDA) championed by Node.js.

Perhaps inspired by Welsh et al.’s Scalable Event-
Driven Architecture (SEDA) concept [97], server-side
EDA frameworks such as Twisted [24] have been in
use since at least the early 2000s. But the boom in
the EDA has come with Node.js. Node.js (“server-
side JavaScript”) was introduced in 2009 and is now
widely used in industry, including at IBM [36], Mi-
crosoft [32], PayPal [67], eBay [82], LinkedIn [77], and

others [1, 16, 35]. Node.js’s package ecosystem, npm,
boasts over 625,000 modules [56]. Node.js is becoming
a critical component of the modern web [18, 34].

In this paper we describe a Denial of Service (DoS)
attack, Event Handler Poisoning (EHP), that can be used
against EDA-based services such as Node.js applications
(§3). EHP attacks observe that the source of the EDA’s
scalability is a double-edged sword. While the OTPCA
gives every client its own thread at the cost of context-
switching overheads, the EDA multiplexes many clients
onto a small number of Event Handlers (threads) to re-
duce per-client overheads. Because many clients share
the same Event Handlers, an EDA-based server must cor-
rectly implement fair cooperative multitasking [89]. Oth-
erwise an EHP attack is born: an attacker’s request can
unfairly dominate the time spent by an Event Handler,
preventing the server from handling other clients. We re-
port that EHP vulnerabilities are common in npm mod-
ules (§3.4).

We analyze two approaches to EHP-safety in §4, and
propose First-Class Timeouts as a universal defense with
strong security guarantees. Since time is a precious re-
source in the EDA, built-in TimeoutErrors are a natural
mechanism to protect it. Just as OutOfBoundsErrors al-
low applications to detect and react to buffer overflow at-
tacks, so TimeoutErrors allow EDA-based applications
to detect and react to EHP attacks.

Our Node.cure prototype (§5) implements first-class
timeouts in the Node.js framework. First-class timeouts
require changes across the entire Node.js stack, from
the language runtime (V8), to the event-driven library
(libuv), and to the core libraries. Our prototype secures
real applications from all known EHP attacks with low
overhead (§6).

Our findings have been corroborated by the Node.js
community (§7). We have developed a guide for prac-
titioners on building EHP-proof systems, updated the
Node.js documentation to warn developers about the
perils of several APIs, and improved the safety of the
fs.readFile API.

In summary, here are our contributions:



1. We analyze the DoS potential inherent in the EDA.
We define Event Handler Poisoning (EHP), a DoS at-
tack against EDA-based applications (§3). We fur-
ther demonstrate that EHP attacks are common in
the largest EDA community, the Node.js ecosystem
(§3.4).

2. We propose an antidote to EHP attacks: first-class
timeouts (§4). First-class timeouts offer strong secu-
rity guarantees against all known EHP attacks.

3. We implement and evaluate Node.cure, a prototype of
first-class timeouts for Node.js (§5). Node.cure en-
ables the detection of and response to EHP attacks
with application performance overheads ranging from
0% to 24% (§6).

4. Our findings have been corroborated by the Node.js
community. Our guide on EHP-safe techniques is
available on nodejs.org, and we have documented
and improved vulnerable Node.js APIs (§7).

2 Background
In this section we review the EDA (§2.1), explain our
choice of EDA framework for study (§2.2), and describe
relevant prior work (§2.3).

2.1 Overview of the EDA
There are two paradigms for web servers, distinguished
by the ratio of clients to resources. The One Thread
Per Client Architecture (OTPCA) dedicates resources
to each client, for strong isolation but higher memory
and context-switching overheads [84]. The Event-Driven
Architecture (EDA) tries the opposite approach and re-
verses these tradeoffs, with many clients sharing execu-
tion resources: client connections are multiplexed onto
a single-threaded Event Loop, with a small Worker Pool
for expensive operations.

All mainstream server-side EDA frameworks use the
Asymmetric Multi-Process Event-Driven (AMPED) ar-
chitecture [83]. This architecture (hereafter “the EDA”)
is illustrated in Figure 1. In the EDA the OS, or a frame-
work, places events in a queue, and the callbacks of
pending events are executed sequentially by the Event
Loop. The Event Loop may offload expensive tasks such
as file I/O to the queue of a small Worker Pool, whose
workers execute tasks and generate “task done” events
for the Event Loop when they finish [60]. We refer to the
Event Loop and the Workers as Event Handlers.

Because the Event Handlers are shared by all clients,
the EDA requires a particular development paradigm.
Each callback and task is guaranteed atomicity: once
scheduled, it runs to completion on its Event Handler.
Because of the atomicity guarantee, if an Event Handler
blocks, the time it spends being blocked is wasted rather
than being preempted. Without preemptive multitasking,
developers must implement cooperative multitasking to

Figure 1: This is the (AMPED) EDA. Incoming events from clients A
and B are stored in the event queue, and the associated callbacks (CBs)
will be executed sequentially by the Event Loop. We will discuss B’s
EHP attack (CBB1), which has poisoned the Event Loop, in §3.3.

avoid starvation [89]. They do this by partitioning the
handling of each client request into multiple stages, typ-
ically at I/O boundaries. For example, with reference
to Figure 1, a callback might perform some string opera-
tions in CBA1, then offload a file I/O to the Worker Pool in
TaskA1 so that another client’s request can be handled on
the Event Loop. The result of this partitioning is a per-
request lifeline [42], a DAG describing the partitioned
steps needed to complete an operation. A lifeline can be
seen by following the arrows in Figure 1.

2.2 Node.js among other EDA frameworks

There are many EDA frameworks, including Node.js
(JavaScript) [14], libuv (C/C++) [10], Vert.x (Java) [25],
Twisted (Python1) [24], and Microsoft’s P# [57]. These
frameworks have been used to build a wide variety of in-
dustry and open-source services (e.g. [7, 82, 67, 78, 29,
28, 8, 4]).

Most prominent among these frameworks is Node.js, a
server-side EDA framework for JavaScript introduced in
2009. The popularity of Node.js comes from its promise
of “full stack JavaScript” — client- and server-side de-
velopers can speak the same language and share the same
libraries. This vision has driven the rise of the Node.js-
JavaScript package ecosystem, npm, which with over
625,000 modules is the largest of any language [56]. The
Node.js Foundation reported that the number of Node.js
developers doubled from 3.5 million to 7 million be-
tween 2016 and 2017 [30, 31].

The Node.js framework has three major parts [62],
whose interactions complicate top-to-bottom extensions
such as Node.cure. An application’s JavaScript code
is executed using Google’s V8 JavaScript engine [64],
the event-driven architecture is implemented using
libuv [10], and Node.js has core JavaScript libraries with
C++ bindings for system calls.

1In addition, Python 3.4 introduced native EDA support.



2.3 Algorithmic complexity attacks
Our work is inspired by Algorithmic Complexity (AC)
attacks ([75, 51]), which are a form of DoS attack. In an
AC attack, a malicious client crafts input that shifts the
performance of the victim service’s data structures and
algorithms from average-case to worst-case, reducing
throughput to cause denial of service. Well-known ex-
amples of AC attacks include attacks on hash tables [51]
and regular expressions (ReDoS) [50].

As will be made clear in §3, EHP attacks are not sim-
ply the application of AC attacks to the EDA. AC attacks
focus on the complexity of the algorithms a service em-
ploys, while EHP attacks are concerned with the effect
of malicious input on the software architecture used by
a service. Because EHP attacks are only concerned with
time, AC attacks are just one mechanism by which an
EHP attack can be realized; any time-consuming opera-
tion, whether computation or I/O, is a potential EHP vec-
tor. However, not all AC attacks can be used to launch
an EHP attack.

3 Event Handler Poisoning Attacks
In this section we provide our threat model (§3.1) and
define Event Handler Poisoning (EHP) attacks (§3.2).
In §3.3 we give two examples of EHP attacks, one CPU-
bound (ReDoS) and one I/O-bound (“ReadDoS”). Lastly
we show that EHP vulnerabilities are common in the
modules in the npm registry.

3.1 Threat model
The victim is an EDA-based server with an EHP vulnera-
bility. The attacker knows how to exploit this vulnerabil-
ity: they know the victim feeds user input to a vulnerable
API, and they know evil input that will cause the vulner-
able API to block the Event Handler executing it.

Not all DoS attacks are EHP attacks. An EHP attack
must cause an Event Handler to block. This blocking
could be due to computation or I/O, provided it takes
the Event Handler a long time to handle. Other ways
to trigger DoS, such as crashing the server through un-
handled exceptions or memory exhaustion, are not time
oriented and are thus out of scope. Distributed denial of
service (DDoS) attacks are also out of scope; they con-
sume a server’s resources with myriad light clients pro-
viding normal input, rather than one heavy client provid-
ing malicious input.

3.2 Definition of an EHP attack
Supporting definitions. Before we can define EHP at-
tacks, we must introduce a few definitions. First, recall
the EDA illustrated in Figure 1. As discussed in §2.1,
a client request is handled by a lifeline [42], a sequence
of operations partitioned into one or more callbacks and

tasks. A lifeline is a DAG whose vertices are callbacks
or tasks and whose edges are events or task submissions.

We define the total complexity of a lifeline as the cu-
mulative complexity of all of its vertices as a function
of their cumulative input. The synchronous complexity
of a lifeline is the greatest individual complexity among
its vertices. Two EDA-based services may have lifelines
with the same total complexity if they offer the same
functionality, but these lifelines may have different syn-
chronous complexity due to different choices of parti-
tions. While computational complexity is an appropri-
ate measure for compute-bound vertices, time may be a
more appropriate measure for vertices that perform I/O.
Consequently, we define a lifeline’s total time and syn-
chronous time analogously.

If there is a difference between a lifeline’s average and
worst-case synchronous complexity (time), then we call
this a vulnerable lifeline2. We attribute the root cause
of the difference between average and worst-case perfor-
mance to a vulnerable API invoked in the problematic
vertex.

The notion of a “vulnerable API” is a convenient ab-
straction. The trouble may of course not be an API at all
but the use of an unsafe language feature (e.g. ReDoS).
And if an API is asynchronous, it is itself partitioned and
will have its own sub-Lifeline. In this case we are con-
cerned about the costs of those vertices.

EHP attacks. An EHP attack exploits an EDA-based
service with an incorrect implementation of cooperative
multitasking. The attacker identifies a vulnerable lifeline
(server API) and poisons the Event Handler that executes
the corresponding large-complexity callback or task with
evil input. This evil input causes the Event Handler exe-
cuting it to block, starving pending requests.

An EHP attack can be carried out against either the
Event Loop or the Workers in the Worker Pool. A poi-
soned Event Loop brings the server to a halt, while the
throughput of the Worker Pool will degrade for each si-
multaneously poisoned Worker. Thus, an attacker’s aim
is to poison either the Event Loop or enough of the
Worker Pool to harm the throughput of the server. Based
on typical Worker Pool sizes, we assume the Worker Pool
is small enough that poisoning it will not attract the at-
tention of network-level defenses.

Since the EDA relies on cooperative multitasking, a
lifeline’s synchronous complexity (time) provide theoret-
ical and practical bounds on how vulnerable it is. Note
that a lifeline with large total complexity (time) is not
vulnerable so long as each vertex (callback/task) has
small synchronous complexity (time). It is for this rea-
son that not all AC attacks can be used for EHP attacks.
If an AC attack triggers large total complexity (time) but

2Differences in complexity are well defined. For differences in I/O
time we are referring to performance outliers.



1 def serveFile(name):

2 if name.match (/(\/.+)+$/): # ReDoS

3 data = await readFile(name) # ReadDoS

4 client.write(data)

Figure 2: Example code of our simple server. It is vulnerable to two
EHP attacks: ReDoS (Line 2) and ReadDoS (Line 3).

not large synchronous complexity (time) then it is not an
EHP attack. For example, an AC attack could result in
a lifeline with O(n2) callbacks each costing O(1). Al-
though many concurrent AC attacks of this form would
degrade the service’s throughput, this would comprise a
DDoS attack, which is outside our threat model (§3.1).

Speaking more broadly, EHP attacks are only possible
when clients share execution resources. In the OTPCA,
a blocked client affects only its own thread, and frame-
works such as Apache support thousands of “Event Han-
dlers” (client threads) [61]. In the EDA, all clients share
one Event Loop and a limited Worker Pool; for exam-
ple, in Node.js the Worker Pool can contain at most 128
Workers [17]. Exhausting the set of Event Handlers in
the OTPCA requires a DDoS attack, while exhausting
them in the EDA is trivial if an EHP vulnerability can be
found.

3.3 Example EHP attacks: ReDoS and ReadDoS
To illustrate EHP attacks, we developed a minimal vul-
nerable file server with EHP vulnerabilities common in
real npm modules as described in §3.4. Figure 2 shows
pseudocode, with the EHP vulnerabilities indicated: Re-
DoS on line 2, and ReadDoS on line 3.

The regular expression on Line 2 is vulnerable to Re-
DoS. A string composed of /’s followed by a newline
takes exponential time to evaluate in Node.js’s regular
expression engine, poisoning the Event Loop in a CPU-
bound EHP attack.

The second EHP vulnerability is on Line 3. Our server
has a directory traversal vulnerability, permitting clients
to read arbitrary files. In the EDA, directory traversal
vulnerabilities can be parlayed into I/O-bound EHP at-
tacks, “ReadDoS”, provided the attacker can identify a
slow file3 from which to read. Since Line 3 uses the asyn-
chronous framework API readFile, each ReadDoS at-
tack on this server will poison a Worker in an I/O-bound
EHP attack.

Figure 3 shows the impact of EHP attacks on baseline
Node.js, as well as the effectiveness of our Node.cure
prototype. The methodology is described in the cap-
tion. On baseline Node.js these attacks result in com-
plete DoS, with zero throughput. Without Node.cure the

3In addition to files exposed on network file systems,
/dev/random is a good example of a slow file: “[r]eads from
/dev/random may block” [33].

Figure 3: This figure shows the effect of evil input on the throughput
of a server based on Figure 2, with realistic vulnerabilities. Legiti-
mate requests came from 80 clients using ab [2] from another ma-
chine. The attacks are against either baseline Node.js (grey) or our
prototype, Node.cure (black). For ReDoS (triangles), evil input was
injected after three seconds, poisoning the baseline Event Loop. For
ReadDoS (circles), evil input was injected four times at one second in-
tervals beginning after three seconds, eventually poisoning the baseline
Worker Pool. The lines for Node.cure shows its effectiveness against
these EHP attacks. When attacked, Node.cure’s throughput dips un-
til a TimeoutError aborts the malicious request(s), after which its
throughput temporarily rises as it bursts through the built-up queue of
pending events or tasks.

only remedy would be to restart the server, dropping all
existing client connections. Unfortunately, restarting the
server would not solve the problem, since the attacker
could simply submit another malicious request. With
Node.cure the server can return to its steady-state per-
formance.

The architecture-level behavior of the ReDoS attack is
illustrated in Figure 1. After client A’s benign request is
sanitized (CBA1), the readFile task goes to the Worker
Pool (TaskA1), and when the read completes the callback
returns the file content to A (CBA2). Then client B’s ma-
licious request arrives and triggers ReDoS (CBB1), drop-
ping the server throughput to zero. The ReadDoS attack
has a similar effect on the Worker Pool, with the same
unhappy result.

3.4 Study of reported vulnerabilities in npm

Modern software commonly relies on open-source li-
braries [88], and Node.js applications are no exception.
Third-party npm modules are frequently used in produc-
tion [40], so EHP vulnerabilities in npm may translate
directly into EHP vulnerabilities in Node.js servers. For
example, Staicu and Pradel recently demonstrated that
many ReDoS vulnerabilities in popular npm modules can
be used for EHP attacks in hundreds of websites from the
Alexa Top Million [92].

In this section we present an EHP-oriented analysis
of the security vulnerabilities reported in npm modules.
As shown in Figure 4, we found that 35% (403/1132)



of the security vulnerabilities reported in a major npm
vulnerability database could be used as an EHP vector.

Methodology. We examined the vulnerabilities in
npm modules reported in the database of Snyk.io [22],
a security company that monitors open-source library
ecosystems for vulnerabilities. We also considered
the vulnerabilities in the CVE database and the Node
Security Platform database [13], but found that these
databases were subsets of the Snyk.io database.

We obtained a dump of Snyk.io’s npm database in June
2018. Each entry was somewhat unstructured, with in-
consistent CWE IDs and descriptions of different classes
of vulnerabilities. Based on its title and description, we
assigned each vulnerability to one of 17 main categories
based on those used by Snyk.io. We used regular expres-
sions to ensure our classification was consistent. We iter-
atively improved our regular expressions until we could
automatically classify 93% of the vulnerabilities, and
marked the remaining 7% as “Other”. A similar anal-
ysis relying solely on manual classification appeared in
our previous work [52].

Some of the reported security vulnerabilities could be
used to launch EHP attacks: Directory Traversal vulner-
abilities that permit arbitrary file reads, Denial of Service
vulnerabilities (those that are CPU-bound, e.g. ReDoS),
and Arbitrary File Write vulnerabilities. We identified
such vulnerabilities using regular expressions on the de-
scriptions of the vulnerabilities in the database, manually
verifying the results. In the few cases where the database
description was too terse, we manually categorized vul-
nerabilities based on the issue and patch description in
the module’s bug tracker and version control system.

Results. Figure 4 shows the distribution of vulnera-
bility types, absorbing categories with fewer than 20 vul-
nerabilities into the aforementioned “Other” category. A
high-level CWE number is given next to each class.

The dark bars in Figure 4 show the 403 vulnerabili-
ties (35%) that can be employed in an EHP attack under
our threat model (§3.1). The 266 EHP-relevant Directory
Traversal vulnerabilities are exploitable because they al-
low arbitrary file reads, which can poison the Event Loop
or the Worker Pool through ReadDoS (§3.3). The 121
EHP-relevant Denial of Service vulnerabilities poison
the Event Loop; 115 are ReDoS4, and the remaining 11
can trigger infinite loops or worst-case performance in
inefficient algorithms. In Other are 11 Arbitrary File
Write vulnerabilities that, similar to ReadDoS, can be
used for EHP attacks by writing to slow files.

4The number of ReDoS vulnerabilities in the Snyk.io database may
be skewed by recent studies of ReDoS incidence in the npm ecosys-
tem [92, 53].

Figure 4: Classification of the 1132 npm module vulnerabilities, by
category and by usefulness in EHP attacks. We obtained the dump of
the database from Snyk.io on 7 June 2018.

4 Defending Against EHP Attacks
EHP vulnerabilities stem from vulnerable APIs that fail
to provide fair cooperative multitasking. If a service can-
not provide a (small) bound on the synchronous time of
its APIs, then it is vulnerable to EHP attacks. Conversely,
if an application can bound the synchronous time of its
APIs, then it is EHP-safe.

An EHP attack has two faces: mechanism (vulnerable
API) and effect (poisoned Event Handler). Thus there are
two ways to defeat an EHP attack. Either the vulnerable
API can be refactored, or a poisoned Event Handler can
be detected and addressed. In this section we summarize
both of these approaches and then evaluate them.

4.1 Prevent through partitioning
An API is vulnerable if there is a difference between
its average-case and worst-case synchronous costs, pro-
vided of course that this worst-case cost is unbearable.
A service can achieve EHP safety by statically bounding
the cost of each of its APIs, both those that it invokes
and those that it defines itself. For example, a developer
could partition every API into a sequence of Constant
Worst-Case Execution Time stages. Such a partitioning
would render the service immune to EHP attacks since
it would bound the synchronous complexity and time of
each lifeline.

4.2 Detect and react through timeouts
The goal of the partitioning approach is to bound a life-
line’s synchronous complexity as a way to bound its
synchronous time. Instead of statically bounding an
API’s synchronous complexity through program refac-
toring, using timeouts we can dynamically bound its
synchronous time. Then the worst-case complexity of
each callback and task would be irrelevant, because they
would be unable to take more than the quantum provided
by the runtime. In this approach, the runtime detects
and aborts long-running callbacks and tasks by emitting
a TimeoutError, thrown from synchronous code (call-
backs) and returned from asynchronous code (tasks).



We refer to this approach as first-class timeouts and
we believe it is novel. To the best of our knowledge,
existing timeout schemes take one of two forms. Some
are per-API, e.g. the timeout option in the .NET frame-
work’s regular expression API to combat ReDoS [19].
Per-API timeouts are ad hoc by definition. The other
class of timeouts is on a per-process or per-thread ba-
sis. For example, desktop and mobile operating sys-
tems commonly use a heartbeat mechanism to detect and
restart unresponsive applications, and in the OTPCA a
client thread can easily be killed and replaced if it ex-
ceeds a timeout. This approach fails in the EDA because
clients are not isolated on separate execution resources.
Detecting and restarting a blocked Event Loop will break
all existing client connections, resulting in DoS. Because
of this, timeouts must be a first-class member of an EDA
framework, non-destructively guaranteeing that no Event
Handler can block.

4.3 Analysis
Soundness. The partitioning approach can prevent EHP
attacks that exploit high-complexity operations. How-
ever, soundly preventing EHP attacks by this means is
difficult since it requires case-by-case changes. In ad-
dition, it is not clear how to apply the partitioning ap-
proach to I/O. At the application level, I/O can be parti-
tioned at the byte granularity, but an I/O may be just as
slow for 1 byte as for 1 MB. If an OS offers truly asyn-
chronous I/O interfaces then these provide an avenue to
more fine-grained partitioning, but unfortunately Linux’s
asynchronous I/O mechanisms are incomplete for both
file I/O and DNS resolution.

If timeouts are applied systematically across the soft-
ware stack (application, framework, language), then they
offer a strong guarantee against EHP attacks. When a
timeout is detected, the application can respond appro-
priately to it. The difficulty with timeouts is choosing a
threshold [85], since a too-generous threshold still per-
mits an attacker to disrupt legitimate requests. As a re-
sult, if the timeout threshold cannot be tightly defined,
then it ought to be used in combination with a black-
list; after observing a client request time out, the server
should drop subsequent connections from that client.

Refactoring cost. Both of these approaches incur
a refactoring cost. For partitioning the cost is pro-
hibitive. Any APIs invoked by an EHP-safe service must
have (small) bounded synchronous time. To guarantee
this bound, developers would need to re-implement any
third-party APIs with undesirable performance. This
task would be particularly problematic in a module-
dominated ecosystem similar to Node.js. As the com-
position of safe APIs may be vulnerable5, application

5For example, consider while(1){}, which makes an infinite se-
quence of constant-time language “API calls”.

APIs might also need to be refactored. The partition-
ing approach is by definition case-by-case, so future de-
velopment and maintenance would need to preserve the
bounds required by the service.

For timeouts, we perceive a lower refactoring cost.
The timeout must be handled by application develop-
ers, but they can do so using existing exception handling
mechanisms. Adding a new try-catch block should be
easier than re-implementing functionality in a partitioned
manner.

Position. We believe that relying on developers to
implement fair cooperative multitasking via partitioning
is unsafe. Just as modern languages offer null pointer
exceptions and buffer overflow exceptions to protect
against common security vulnerabilities, so too should
modern EDA frameworks offer timeout exceptions to
protect against EHP attacks.

In the remainder of the paper we describe our design,
implementation, and evaluation of first-class timeouts in
Node.js. We devote a large portion of our discussion (§8)
to the choice of timeout and the refactoring implications
of first-class timeouts.

5 Node.cure: First-Class Timeouts for
Node.js

Though first-class timeouts are conceptually simple, re-
alizing them in a real-world framework such as Node.js
is difficult. For soundness, every aspect of the Node.js
framework must be able to emit TimeoutErrors without
compromising the system state, from the language to the
libraries to the application logic, and in both synchronous
and asynchronous aspects. For practicality, monitoring
for timeouts must be lightweight, lest they cost more than
they are worth.

Here is the desired behavior of first-class timeouts.
We want to bound the synchronous time of every call-
back and task and deliver a TimeoutError if this bound
is exceeded. A long-running callback poisons the Event
Loop; with first-class timeouts a TimeoutError should
be thrown within such a callback. A long-running task
poisons its Worker; such a task should be aborted and
fulfilled with a TimeoutError.

To ensure soundness, we begin with a taxonomy of the
places where vulnerable APIs can be found in a Node.js
application (§5.1). The subsequent subsections describe
how we provide TimeoutErrors across this taxonomy for
the Worker Pool (§5.2) and the Event Loop (§5.3). We
discuss performance optimizations in §5.5, and summa-
rize our prototype in §5.6.

5.1 Taxonomy of vulnerable APIs
Table 1 classifies vulnerable APIs along three axes.
Along the first two axes, a vulnerable API affects either
the Event Loop or a Worker, and it might be CPU-bound



Vuln. APIs Event Loop (§5.3) Worker Pool (§5.2)
CPU-bound I/O-bound CPU-bound I/O-bound

Language Regexp, JSON N/A N/A N/A
Framework Crypto, zlib FS Crypto, zlib FS, DNS
Application while(1) DB query Regexp [12] DB query

Table 1: Taxonomy of vulnerable APIs in Node.js, with examples.
An EHP attack through a vulnerable API poisons the Event Loop or
a Worker, and its synchronous time is due to CPU-bound or I/O-bound
activity. A vulnerable API might be part of the language, framework, or
application, and might be synchronous (Event Loop) or asynchronous
(Worker Pool). zlib is the Node.js compression library. N/A: JavaScript
has no native Worker Pool nor any I/O APIs. We do not consider mem-
ory access as I/O.

or I/O-bound. Along the third axis, a vulnerable API can
be found in the language, the framework, or the applica-
tion. In our evaluation we provide an exhaustive list of
vulnerable APIs for Node.js (§6.1). Although the exam-
ples in Table 1 are specific to Node.js, the same general
classification can be applied to other EDA frameworks.

5.2 Timeout-aware tasks
EHP attacks targeting the Worker Pool use vulnerable
APIs to submit long-running tasks that poison a Worker.
Node.cure defends against such attacks by bounding
the synchronous time of tasks. Node.cure short-circuits
long-running tasks with a TimeoutError.

Timeout-aware Worker Pool. Node.js’s Worker Pool
is implemented in libuv. As illustrated in Figure 1, the
Workers pop tasks from a shared queue, handle them,
and return the results to the Event Loop. Each Worker
handles its tasks synchronously.

We modified the libuv Worker Pool to be timeout-
aware, replacing libuv’s Workers with Executors that
combine a permanent Manager with a disposable
Worker. Every time a Worker picks up a task, it noti-
fies its Manager. If the task takes the Worker too long,
the Manager kills it with a Hangman and creates a new
Worker. The long-running task is returned to the Event
Loop with a TimeoutError for processing, while the new
Worker resumes handling tasks. These roles are illus-
trated in Figure 5.

This design required several changes to the libuv
Worker Pool API. The libuv library exposes a task
submission API uv queue work, which we extended as
shown in Table 2. Workers invoke work, which is a func-
tion pointer describing the task. On completion the Event
Loop invokes done. This is also the typical behavior of
our timeout-aware Workers. When a task takes too long,
however, the potentially-poisoned Worker’s Manager in-
vokes the new timed out callback. If the submitter does
not request an extension, the Manager creates a replace-
ment Worker so that it can continue to process subse-
quent tasks, creates a Hangman thread for the poisoned
Worker, and notifies the Event Loop that the task timed

Figure 5: This figure illustrates Node.cure’s timeout-aware Worker
Pool, including the roles of Event Loop, executors (both worker pool
and priority), and Hangman. Grey entities were present in the original
Worker Pool, and black are new. The Event Loop can synchronously
access the Priority Executor, or asynchronously offload tasks to the
Worker Pool. If an Executor’s manager sees its worker time out, it cre-
ates a replacement worker and passes the dangling worker to a Hang-
man.

Callback Description
void work Perform task.

int timed out* When task has timed out. Can request extension.
void done When task is done. Special error code for timeout.

void killed* When a timed out task’s thread has been killed.

Table 2: Summary of the Worker Pool API. work is invoked on the
Worker. done is invoked on the Event Loop. The new callbacks,
timed out and killed, are invoked on the Manager and the Hang-
man, respectively. On a timeout, work, timed out, and done are
invoked, in that order; there is no ordering between the done and
killed callbacks, which sometimes requires reference counting for
safe memory cleanup. *New callbacks.

out. The Event Loop then invokes its done callback with
a TimeoutError, permitting a rapid response to evil in-
put. Concurrently, once the Hangman successfully kills
the Worker thread, it invokes the task’s killed callback
for resource cleanup, and returns. We used synchroniza-
tion primitives to prevent races when a task completes
just after it is declared timed out.

Differentiating between timed out and killed per-
mits more flexible error handling, but introduces tech-
nical challenges. If a rapid response to a timeout is un-
necessary, then it is simple to defer done until killed

finishes, since they run on separate threads. If a rapid re-
sponse is necessary, then done must be able to run before
killed finishes, resulting in a dangling worker problem:
an API’s work implementation may access externally-
visible state after the Event Loop receives the associated
TimeoutError. We addressed the dangling worker prob-
lem in Node.js’s Worker Pool customers using a mix of
killed-waiting, message passing, and blacklisting.

Affected APIs. The Node.js APIs affected by this
change (viz. those that create tasks) are in the encryp-
tion, compression, DNS, and file system modules. In all
cases we allowed timeouts to proceed, killing the long-
running Worker. Handling encryption and compression
was straightforward, while the DNS and file system APIs
were more complex.



Node.js’s asynchronous encryption and compression
APIs are implemented in Node.js C++ bindings by in-
voking APIs from openssl and zlib, respectively. If the
Worker Pool notifies these APIs of a timeout, they wait
for the Worker to be killed before returning, to ensure it
no longer modifies state in these libraries nor accesses
memory that might be released after done is invoked.
Since openssl and zlib are purely computational, the
dangling worker is killed immediately.

Node.js implements its file system and DNS APIs by
relying on libuv’s file system and DNS support, which
on Linux make the appropriate calls to libc. Because the
libuv file system and DNS implementations share mem-
ory between the Worker and the submitter, we modified
them to use message passing for memory safety of dan-
gling workers — wherever the original implementation’s
work accessed memory owned by the submitter, e.g. for
read and write, we introduced a private buffer for work
and added copyin/copyout steps. In addition, we used
pthread setcancelstate to ensure that Workers will not
be killed while in a non-cancelable libc API [6]. DNS
queries are read-only so there is no risk of the dan-
gling worker modifying external state. In the file system,
write modifies external state, but we avoid any dangling
worker state pollution via blacklisting. Our blacklisting-
based Slow Resource policy is discussed in more detail
in §5.5.

At the top of the Node.js stack, when the Event Loop
sees that a task timed out, it invokes the application’s
callback with a TimeoutError.

5.3 Timeouts for callbacks
Node.cure defends against EHP attacks that target the
Event Loop by bounding the synchronous time of call-
backs. To make callbacks timeout-aware, we introduce
a TimeoutWatchdog that monitors the start and end of
each callback and ensures that no callback exceeds the
timeout threshold. We time out JavaScript instructions
using V8’s interrupt mechanism (§5.3.1), and we mod-
ify Node.js’s C++ bindings to ensure that callbacks that
enter these bindings will also be timed out (§5.3.2).

5.3.1 Timeouts for JavaScript
TimeoutWatchdog. Our TimeoutWatchdog instru-
ments every callback using the experimental Node.js
async-hooks module [15], which allows an application
to register special callbacks before and after a callback is
invoked.

Before a callback begins, our TimeoutWatchdog starts
a timer. If the callback completes before the timer ex-
pires, we erase the timer. If the timer expires, the
watchdog signals V8 to interrupt JavaScript execution
by throwing a TimeoutError. The watchdog then starts
another timer, ensuring that recursive timeouts while
handling the previous TimeoutError are also detected.

While an infinite sequence of TimeoutErrors is possible
with this approach, this concern seems more academic
than practical6.

V8 interrupts. To handle the TimeoutWatchdog’s re-
quest for a TimeoutError, Node.cure extends the inter-
rupt infrastructure of Node.js’s V8 JavaScript engine to
support timeouts. In V8, low priority interrupts such as
a pending garbage collection are checked regularly (e.g.
each loop iteration, function call, etc.), but no earlier
than after the current JavaScript instruction finishes. In
contrast, high priority interrupts take effect immediately,
interrupting long-running JavaScript instructions. Time-
outs require the use of a high priority interrupt because
they must be able to interrupt long-running individual
JavaScript instructions such as str.match(regexp) (pos-
sible ReDoS).

To support a TimeoutError, we modified V8 as fol-
lows: (1) We added the definition of a TimeoutError

into the Error class hierarchy; (2) We added a
TimeoutInterrupt into the list of high-priority in-
terrupts; and (3) We added a V8 API to raise a
TimeoutInterrupt. The TimeoutWatchdog calls this
API, which interrupts the current JavaScript stack by
throwing a TimeoutError.

The only JavaScript instructions that V8 instruments
to be interruptible are regular expression matching and
JSON parsing; these are the language-level vulnerable
APIs. Other JavaScript instructions are viewed as effec-
tively constant-time, so these interrupts may be slightly
deferred, e.g. to the end of the nearest basic block. We
agreed with the V8 developers in this7, and did not in-
strument other JavaScript instructions to poll for pending
interrupts.

5.3.2 Timeouts for the Node.js C++ bindings
The TimeoutWatchdog described in §5.3.1 will interrupt
any vulnerable APIs implemented in JavaScript, includ-
ing language-level APIs such as regular expressions and
application-level APIs that contain blocking code such
as while(1){}. It remains to give a sense of time to the
Node.js C++ bindings that allow the JavaScript code in
Node.js applications to interface with the broader world.
A separate effort is required here because a pending
TimeoutError triggered by the TimeoutWatchdog will
not be delivered until control returns from a C++ bind-
ing to JavaScript.

Node.js has asynchronous and synchronous C++ bind-
ings. The asynchronous bindings are safe in general be-
cause they do a fixed amount of synchronous work to
submit a task and then return; the tasks are protected as

6To obtain an infinite sequence of TimeoutErrors in a first-class
timeouts system, place a try-catch block containing an infinite loop
inside another infinite loop.

7For example, we found that string operations complete in millisec-
onds even when a string is hundreds of MBs long.



discussed earlier. However, the synchronous C++ bind-
ings complete the entire operation on the Event Loop
before returning, and therefore must be given a sense
of time. The relevant vulnerable synchronous APIs are
those in the file system, cryptography, and compression
modules. Both synchronous and asynchronous APIs in
the child process module are also vulnerable, but these
are intended for scripting purposes rather than the server
context with which we are concerned.

Because the Event Loop holds the state of all pend-
ing clients, we cannot pthread cancel it as we do poi-
soned Workers, since this would result in the DoS the at-
tacker desired. We could build off of our timeout-aware
Worker Pool by offloading the request to the Worker Pool
and awaiting its completion, but this would incur high
request latencies when the Worker Pool’s queue is not
empty. We opted to combine these approaches by of-
floading the work in vulnerable synchronous framework
APIs to a dedicated Worker, which can be safely killed
and whose queue never has more than one item.

In our implementation, we extended the Worker
Pool paradigm with a Priority Executor whose queue
is exposed via a new API: uv queue work prio (Fig-
ure 5). This Executor follows the same Manager-Worker-
Hangman paradigm as the Executors in Node.cure’s
Worker Pool. To make these vulnerable synchronous
APIs timeout-aware, we offload them to the Priority Ex-
ecutor using the existing asynchronous implementation
of the API, and had the Event Loop await the result.
Because these synchronous APIs are performed on the
Event Loop as part of a callback, we propagate the call-
back’s remaining time to this Executor’s Manager to en-
sure that the TimeoutWatchdog’s timer is honored.

5.4 Timeouts for application-level vulnerable APIs
As described above, Node.cure makes tasks (§5.2) and
callbacks (§5.3) timeout-aware to defeat EHP attacks
against language and framework APIs. An application
composed of calls to these APIs will be EHP-safe.

However, an application could still escape the reach of
these timeouts by defining its own C++ bindings. These
bindings would need to be made timeout-aware, follow-
ing the example we set while making Node.js’s vulnera-
ble C++ bindings timeout-aware (file system, DNS, en-
cryption, and compression). Without refactoring, appli-
cations with their own C++ bindings may not be EHP-
safe. In our evaluation we found that application-defined
C++ bindings are rare (§6.3).

5.5 Performance optimizations
Since first-class timeouts are an always-on mechanism, it
is important that their performance impact be negligible.
Here we describe two optimizations.

Lazy TimeoutWatchdog. Promptly detecting
TimeoutErrors with a precise TimeoutWatchdog can

be expensive, because the Event Loop must synchro-
nize with the TimeoutWatchdog every time a callback
is entered and exited. If the application workload con-
tains many small callbacks, whose cost is comparable to
this synchronization cost, then the overhead of a precise
TimeoutWatchdog may be considerable.

If the timeout threshold is soft, then the overhead
from a TimeoutWatchdog can be reduced by making
the Event Loop-TimeoutWatchdog communication asyn-
chronous. When entering and exiting a callback the
Event Loop can simply increment a shared counter. A
lazy TimeoutWatchdog wakes up at intervals and checks
whether the callback it last observed has been execut-
ing for more than the timeout threshold; if so, it emits
a TimeoutError. A lazy TimeoutWatchdog reduces the
overhead of making a callback, but decreases the pre-
cision of the TimeoutError threshold based on the fre-
quency of its wake-up interval.

Slow resource policies. Our Node.cure runtime de-
tects and aborts long-running callbacks and tasks execut-
ing on Node.js’s Event Handlers. For unique evil input
this is the best we can do at runtime, because accurately
predicting whether a not-yet-seen input will time out is
difficult. If an attacker might re-use the same evil in-
put multiple times, however, we can track whether or not
an input led to a timeout and short-circuit subsequent re-
quests that use this input with an early timeout.

While evil input memoization could in principle be ap-
plied to any API, the size of the input space to track is a
limiting factor. The evil inputs that trigger CPU-bound
EHP attacks such as ReDoS exploit properties of the vul-
nerable algorithm and are thus usually not unique. In
contrast, the evil inputs that trigger I/O-bound EHP at-
tacks such as ReadDoS must name a particularly slow
resource, presenting an opportunity to short-circuit re-
quests on this slow resource.

In Node.cure we implemented a slow resource man-
agement policy for libuv’s file system APIs, targeting
those that reference a single resource (e.g. open, read,
write). When one of the APIs we manage times out, we
mark the file descriptor and the associated inode num-
ber as slow. We took the simple approach of perma-
nently blacklisting these aliases by aborting subsequent
accesses8, with the happy side effect of solving the dan-
gling worker problem for write. This policy is appropri-
ate for the file system, where access times are not likely
to change9. We did not implement a policy for DNS
queries. In the context of DNS, timeouts might be due
to a network hiccup, and a temporary blacklist might be
more appropriate.

8To avoid leaking file descriptors, we do not eagerly abort close.
9Of course, if the slow resource is in a networked file system such as

NFS or GPFS, slowness might be due to a network hiccup, and incorpo-
rating temporary device-level blacklisting might be more appropriate.



5.6 Implementation

Node.cure is built on top of Node.js LTS v8.8.1, a re-
cent long-term support version of Node.js10. Our proto-
type is for Linux, and we added 4,000 lines of C, C++,
and JavaScript code across 50 files spanning V8, libuv,
the Node.js C++ bindings, and the Node.js JavaScript li-
braries.

Node.cure passes the core Node.js test suite, with a
handful of failures due to bad interactions with experi-
mental or deprecated features. In addition, several cases
fail when they invoke rarely-used file system APIs we
did not make timeout-aware. Real applications run on
Node.cure without difficulty (Table 3).

In Node.cure, timeouts for callbacks and tasks are con-
trolled by environment variables. Our implementation
would readily accommodate a fine-grained assignment
of timeouts for individual callbacks and tasks.

6 Evaluating Node.cure

We evaluated Node.cure in terms of its effectiveness
(§6.1), runtime overhead (§6.2), and security guaran-
tees (§6.3). In summary: with a lazy TimeoutWatchdog,
Node.cure detects all known EHP attacks with overhead
ranging from 1.3x-7.9x on micro-benchmarks but mani-
festing at 1.0x-1.24x using real applications. Node.cure
guarantees EHP-safety to all Node.js applications that do
not define their own C++ bindings.

All measurements provided in this section were ob-
tained on an otherwise-idle desktop running Ubuntu
16.04.1 (Linux 4.8.0-56-generic), 16GB RAM, Intel i7
@3.60GHz, 4 physical cores with 2 threads per core.
For a baseline we used Node.js LTS v8.8.1 from which
Node.cure was derived, compiled with the same flags.
We used a default Worker Pool (4 Workers).

6.1 Effectiveness

To evaluate the effectiveness of Node.cure, we devel-
oped an EHP test suite that makes every type of EHP
attack, as enumerated in Table 1. Our suite is com-
prehensive and conducts EHP attacks using every vul-
nerable API we identified, including the language level
(regular expressions, JSON), framework level (all vul-
nerable APIs from the file system, DNS, cryptography,
and compression modules), and application level (infi-
nite loops, long string operations, array sorting, etc.).
This test suite includes each type of real EHP attack
from our study of EHP vulnerabilities in npm mod-
ules (§3.4). Node.cure detects all 92 EHP attacks in
this suite: each synchronous vulnerable API throws a
TimeoutError, and each asynchronous vulnerable API

10Specifically, we built Node.cure on Node.js v8.8.1 commit
dc6bbb44da from Oct. 25, 2017.

returns a TimeoutError. Our suite could be used to eval-
uate alternative defenses against EHP attacks.

To evaluate any difficulties in porting real-world
Node.js software to Node.cure, we ported the
node-oniguruma [12] npm module. This module
offloads worst-case exponential regular expression
queries from the Event Loop to the Worker Pool using
a C++ add-on. We ported it using the API described
in Table 2 without difficulty, as we did for the core
modules, and Node.cure then successfully detected
ReDoS attacks against this module’s vulnerable APIs.

6.2 Runtime overhead
We evaluated the runtime overhead using micro-
benchmarks and macro-benchmarks. We address other
costs in the Discussion.

Overhead: Micro-benchmarks. Whether or not they
time out, Node.cure introduces several sources of over-
heads to monitor callbacks and tasks. We evaluated the
most likely candidates for performance overheads using
micro-benchmarks:
1. Every time V8 checks for interrupts, it now tests for a

pending timeout as well.
2. Both the precise and lazy versions of the Timeout-

Watchdog require instrumenting every asynchronous
callback using async-hooks, with relative overhead
dependent on the complexity of the callback.

3. To ensure memory safety for dangling workers,
Workers operate on buffered data that must be allo-
cated when the task is submitted. For example, Work-
ers must copy the I/O buffers supplied to read and
write twice.
New V8 interrupt. We found that the overhead of our

V8 Timeout interrupt was negligible, simply a test for
one more interrupt in V8’s interrupt infrastructure.

TimeoutWatchdog’s async hooks. We measured the
additional cost of invoking a callback due to Timeout-
Watchdog’s async hooks. A precise TimeoutWatchdog
increases the cost of invoking a callback by 7.9x due
to the synchronous communication between Event Loop
and TimeoutWatchdog, while a lazy TimeoutWatchdog
increases the cost by 2.4x due to the reduced cost of
asynchronous communication. While these overheads
are large, note that they are for an empty callback. As
the number of instructions in a callback increases, the
cost of executing the callback will begin to dominate the
cost of issuing the callback. For example, if the callback
executes 500 empty loop iterations, the precise overhead
drops to 2.7x and the lazy overhead drops to 1.3x. At
10,000 empty loop iterations, the precise and lazy over-
heads are 1.15x and 1.01x, respectively.

Worker buffering. Our timeout-aware Worker Pool re-
quires buffering data to accommodate dangling workers,
affecting DNS queries and file system I/O. Our micro-



Benchmark Description Overheads
LokiJS [11] Server, Key-value store 1.00, 1.00

Node Acme-Air [3] Server, Airline simulation 1.03, 1.02
webtorrent [26] Server, P2P torrenting 1.02, 1.02

ws [27] Utility, websockets 1.00, 1.00*
Three.js [23] Utility, graphics library 1.09, 1.08
Express [5] Middleware 1.24, 1.06
Sails [21] Middleware 1.23, 1.14*

Restify [20] Middleware 1.63, 1.14*
Koa [9] Middleware 1.60, 1.24

Table 3: Results of our macro-benchmark evaluation of Node.cure’s
overhead. Where available, we used the benchmarks defined by the
project itself. Otherwise, we ran its test suite. Overheads are reported
as “precise, lazy”, and are the ratio of Node.cure’s performance to that
of the baseline Node.js, averaged over several steady-state runs. We
report the average overhead because we observed no more than 3%
standard deviation in all but LokiJS, which averaged 8% standard de-
viation across our samples of its sub-benchmarks. *: Median of sub-
benchmark overheads.

benchmark indicated a 1.3x overhead using read and
write calls with a 64KB buffer. This overhead will vary
from API to API.

Overhead: Macro-benchmarks. Our micro-
benchmarks suggested that the overhead introduced by
Node.cure may vary widely depending on what an appli-
cation is doing. Applications that make little use of the
Worker Pool will pay the overhead of the additional V8
interrupt check (minimal) and the TimeoutWatchdog’s
async hooks, whose cost is strongly dependent on the
number of instructions executed in the callbacks. Appli-
cations that use the Worker Pool will pay these as well
as the overhead of Worker buffering (variable, perhaps
1.3x).

We chose macro-benchmarks using a GitHub pot-
pourri technique: we searched GitHub for “lan-
guage:JavaScript”, sorted by “Most starred”, and iden-
tified server-side projects from the first 50 results. To
add additional complete servers, we also included Lok-
iJS [11], a popular key-value store, and IBM’s Acme-
Air airline simulation [3], which is used in the Node.js
benchmark suite.

Table 3 lists the macro-benchmarks we used and the
performance overhead for each type of TimeoutWatch-
dog. These results show that Node.cure introduces min-
imal overhead on real server applications, and they con-
firm the value of a lazy TimeoutWatchdog. Matching
our micro-benchmark assessment of the TimeoutWatch-
dog’s overhead, the overhead from Node.cure increased
as the complexity of the callbacks used in the macro-
benchmarks decreased — the middleware benchmarks
sometimes used empty callbacks to handle client re-
quests. In non-empty callbacks similar to those of the
real servers, this overhead is amortized.

6.3 Security guarantees
As described in §5, our Node.cure prototype imple-
ments first-class timeouts for Node.js. Node.cure en-
forces timeouts for all vulnerable JavaScript and frame-
work APIs identified by both us and the Node.js develop-
ers as long-running: regular expressions, JSON, file sys-
tem, DNS, cryptography, and compression. Application-
level APIs composed of these timeout-aware language
and framework APIs are also timeout-aware.

However, Node.js also permits applications to add
their own C++ bindings, and these may not be timeout-
aware without refactoring. To evaluate the extent of this
limitation, we measured the number of npm modules that
define C++ bindings. These modules typically depend on
the node-gyp and/or nan modules [37, 38]. We obtained
the dependency list for each of the 628,863 npm modules
from skimdb.npmjs.com and found that 4,384 modules
(0.7%) had these dependencies11.

As only 0.7% of npm modules define C++ bindings,
we conclude that C++ bindings are not widely used and
that they thus do not represent a serious limitation of our
approach. In addition, we found the refactoring process
for C++ bindings straightforward when we performed it
on the Node.js framework and the node-oniguruma mod-
ule as described earlier.

7 Practitioner Community Impact
In conjunction with the development of our Node.cure
prototype, we took a two-pronged approach to reach
out to the EDA practitioner community. First, we pub-
lished a guide on safe service architecture for Node.js on
nodejs.org. Second, we studied unnecessarily vulnera-
ble Node.js APIs and added documentation or increased
the security of these APIs.

7.1 Guide on safe service architecture
Without first-class timeouts, developers in the EDA com-
munity must resort to partitioning as a preventive mea-
sure. Do new Node.js developers know this? We expect
they would learn from the Node.js community’s guides
for new developers, hosted on the nodejs.org website.
However, these guides skip directly from “Hello world”
to deep dives on HTTP and profiling. They do not ad-
vise developers on the design of Node.js applications,
which as we have discussed must fit the EDA paradigm
and avoid EHP vulnerabilities.

We prepared a guide to building EHP-safe EDA-
based applications, including discussions about appro-
priate work patterns and the risks of high-complexity
operations. The pull request with the guide was
merged after discussion with the community. It can

11We counted those that matched the regexp "nan"|"node-gyp"
on 11 May 2018.

skimdb.npmjs.com


be found at https://nodejs.org/en/docs/guides/
dont-block-the-event-loop/. We believe that it
will give developers insights into secure Node.js pro-
gramming practices, and should reduce the incidence of
EHP vulnerabilities in practice.

7.2 Changes to API and documentation
We studied the Node.js implementation and identi-
fied several unnecessarily vulnerable APIs in Node.js
v8. Each of fs.readFile, crypto.randomFill, and
crypto.randomBytes submits a single unpartitioned task
to the Worker Pool, and in each of these cases a large task
could be expensive in terms of I/O or computation. Were
a careless developer to submit a large request to one of
these APIs, it could cause one of the Workers to block.
This risk was not mentioned in the API documentation.
These APIs could instead be automatically partitioned by
the framework to avoid their use as an EHP vector.

We took two steps to address this state of affairs. First,
we proposed documentation patches warning develop-
ers against submitting large requests to these APIs, e.g.
“The asynchronous version of crypto.randomBytes()

is carried out in a single threadpool request. To min-
imize threadpool task length variation, partition large
randomBytes requests when doing so as part of fulfill-
ing a client request” [39]. These patches were merged
without much comment. Second, we submitted a patch
improving the simplest of these APIs, fs.readFile. This
API previously read the entire file in a single read re-
quest. Our patch partitions it into a series of 64KB reads.
As discussed earlier, partitioning I/O is an imperfect so-
lution, but it is better than none. This patch was merged
after several months of discussion on the performance-
security tradeoff involved.

8 Discussion
Other examples of EHP attacks. Two other EHP at-
tacks are worth mentioning. First, if the EDA framework
uses a garbage collected language for the Event Loop (as
do Node.js, Vert.x, Twisted, etc.), then triggering many
memory allocations could lead to unpredictable block-
age of the Event Loop. We are not aware of any reported
attacks of this form, but such an attack would defeat first-
class timeouts unless the GC were partitioned. Second,
Linux lacks kernel support for asynchronous DNS re-
quests, so they are typically implemented in EDA frame-
works in the Worker Pool. If an attacker controls a DNS
nameserver configured as a tarpit [73] and can convince
an EDA-based victim to resolve name requests using this
server, then each such request will poison one of the
Workers in the Worker Pool. First-class timeouts will
protect against this class of attacks as it does ReadDoS.

Programming with first-class timeouts. What would
it be like to develop software for an EDA framework with

first-class timeouts? First-class timeouts change the lan-
guage and framework specifications. First, developers
must choose a timeout threshold. Then, exception han-
dling code will be required for both asynchronous APIs,
which may be fulfilled with a TimeoutError, and syn-
chronous APIs, which may throw a TimeoutError.

The choice of a timeout is a Goldilocks problem. Too
short, and legitimate requests will result in an erroneous
TimeoutError (false positive). Too long, and malicious
requests will waste a lot of service time before being de-
tected (false negative). Timeouts in other contexts have
been shown to be selected without much apparent con-
sideration [85], but for first-class timeouts we suggest
that a good choice is relatively easy. Consider that a
typical web server can handle hundreds or thousands of
clients per second. Since each of these clients requires
the invocation of at least one callback on the Event Loop,
simple arithmetic tells us that in an EDA-based server,
individual callbacks and tasks must take no longer than
milliseconds to complete. Thus, a universal callback-
task timeout on the order of 1 second should not result in
erroneous timeouts during the normal execution of call-
backs and tasks, but would permit relatively rapid detec-
tion of and response to an EHP attack12. By definition,
first-class timeouts preclude the possibility of undetected
EHP attacks (false negatives) with a reasonable choice of
timeout, and our Node.cure prototype demonstrates that
this guarantee can be provided in practice.

Developers can assign tighter timeout thresholds to
reduce the impact of an EHP attack. If a tight time-
out can be assigned, then a malicious request trying to
trigger EHP will get about the same amount of server
time as a legitimate request will, before the malicious
request is detected and aborted with a TimeoutError.
The lower the variance in callback and task times, the
more tightly the timeout thresholds can be set with-
out false positives. Though our implementation uses
coarse-grained timeouts for callbacks and tasks, more
fine-grained timeouts are possible. Such an API might
be called process.runWithTimeout(func). Appropriate
coarse or fine-grained timeout thresholds could also be
suggested automatically or tuned over the process life-
time of the server.

If a tight timeout cannot be assigned, perhaps be-
cause there is significant natural variation in the cost of
handling legitimate requests, then we recommend that
the TimeoutError exception handling logic incorporate
a blacklist. With a blacklist, the total time wasted by
EHP attacks is equal to the number of attacks multiplied
by the timeout threshold. Since DDoS is outside of our

12If a service is unusually structured so as to run operations on be-
half of many clients in a single callback, then when this service is over-
loaded such a callback might throw a TimeoutError. We recom-
mend that such a callback be partitioned.

https://nodejs.org/en/docs/guides/dont-block-the-event-loop/
https://nodejs.org/en/docs/guides/dont-block-the-event-loop/


threat model, this value should be small and EHP attacks
should not prove overly disruptive.

After choosing a timeout, developers would need to
modify their code to handle TimeoutErrors. For asyn-
chronous APIs that submit tasks to the Worker Pool, a
TimeoutError will be delivered just like any other er-
ror, and error handling logic should already be present.
This logic could be extended, for example to blacklist
the client. For synchronous APIs or synchronous links
in an asynchronous sequence of callbacks, we acknowl-
edge that it is a bit strange that an unexceptional-looking
sequence of code such as a loop can now throw an er-
ror, and wrapping every function with a try-catch block
seems inelegant. Happily, recent trends in asynchronous
programming techniques have made it easy for develop-
ers to handle these errors. The ECMAScript 6 specifi-
cation made Promises a native JavaScript feature, sim-
plifying data-flow programming (explicit encoding of a
lifeline) [44]. Promise chains permit catch-all handling
of exceptions thrown from any link in the chain, so ex-
isting catch-all handlers can be extended to handle a
TimeoutError.

Detecting EHP attacks without first-class timeouts.
Without first-class timeouts, a service that is not per-
fectly partitioned may have EHP vulnerabilities. In exist-
ing EDA frameworks there is no way to elegantly detect
and recover from an EHP attack. Introducing a heart-
beat mechanism into the service would enable the detec-
tion of an EHP attack, but what then? If more than one
client is connected, as is inevitable given the multiplex-
ing philosophy of the EDA, it is not feasible to interrupt
the hung request without disrupting the other clients, nor
it does seem straightforward to identify which client was
responsible. In contrast, first-class timeouts will produce
a TimeoutError at some point during the handling of the
malicious request, permitting exception handling logic
to easily respond by dropping the client and, perhaps,
adding them to a blacklist.

Other avenues toward EHP-safety. In §4 we de-
scribed two ways to achieve EHP-safety within the ex-
isting EDA paradigm. Other approaches are also viable
but they depart from the EDA paradigm. Significantly
increasing the size of the Worker Pool, performing spec-
ulative concurrent execution [48], or switching to pre-
emptable callbacks and tasks could each prevent or re-
duce the impact of EHP attacks. However, each of these
is a variation on the same theme: dedicating isolated ex-
ecution resources to each client, a road that leads to the
One Thread Per Client Architecture. The recent develop-
ment of serverless architectures [70] is yet another form
of the OTPCA, with the load balancing role played by
a vendor rather than the service provider. If the server
community wishes to use the EDA, which offers high
responsiveness and scalability through the use of coop-

erative multitasking, we believe first-class timeouts are a
good path to EHP-safety.

Generalizability. Our first-class timeouts technique
can be applied to any EDA framework. Callbacks must
be made interruptible, and tasks must be made abortable.
While these properties are more readily obtained in an
interpreted language, they could in principle be enforced
in compiled or VM-based languages as well.

9 Related Work
JavaScript and Node.js. Ojamaa and Duuna assessed
the security risks in Node.js applications [79]. Their
analysis included ReDoS and other expensive computa-
tion as a means of blocking the event loop, though they
overlooked the risks of I/O and the fact that the small
Worker Pool makes its poisoning possible. Two recent
studies have explored the incidence and impact of Re-
DoS in the Node.js ecosystem [92, 53].

Our preliminary work [52] sketched EHP attacks and
advocated Constant Worst-Case Execution Time parti-
tioning as a solution. However, analysis in the present
work reports that this approach imposes significant refac-
toring costs and is an ad hoc security mechanism (§4.3).

Other works have identified the use of untrusted third-
party modules as a common liability in Node.js appli-
cations. DeGroef et al. proposed a reference monitor
approach to securely integrate third-party modules from
npm [55]. Vasilakis et al. went a step further in their
BreakApp system, providing strong isolation guarantees
at module boundaries with dynamic policy enforcement
at runtime [95]. The BreakApp approach is complete
enough that it can be used to defeat EHP attacks, through
what might be called Second-Class Timeouts. Our work
mistrusts particular instructions and permits the delivery
of TimeoutErrors at arbitrary points in sequential code,
while these reference monitor approaches mistrust mod-
ules and thus only permit the delivery of TimeoutErrors
at module boundaries. In addition, moving modules to
separate processes in order to handle EHP attacks incurs
significant performance overheads at start-up and larger
performance overheads than Node.cure at run-time, and
places more responsibility on developers to understand
implementation details in their dependencies.

Static analysis can be used to identify a number of
vulnerabilities in JavaScript and Node.js applications.
Guarnieri and Livshits demonstrated static analyses to
eliminate the use of vulnerable language features or pro-
gram behaviors in the client-side context [65]. Staicu
et al. offered static analyses and dynamic policy en-
forcement to prevent command injection vulnerabilities
in Node.js applications [93]. Static taint analysis for
JavaScript, as proposed by Tripp et al., enables the de-
tection of other injection attacks as well [94]. The tech-
niques in these works can detect the possibility of EHP



attacks that exploit known-vulnerable APIs (e.g. I/O such
as fs.readFile), but not those exploiting arbitrary com-
putation. Our first-class timeouts approach is instead
a dynamic detect-and-respond defense against EHP at-
tacks.

More broadly, other research on the EDA has studied
client-side JavaScript/Web [71, 69, 54, 76] and Java/An-
droid [59, 58, 43, 68, 72] applications. These have often
focused on platform-specific issues such as DOM issues in
web browsers [71].

Embedded systems. Time is precious in embed-
ded systems as well. Lyons et al. proposed the use
of TimeoutErrors in mixed-criticality systems to per-
mit higher-priority tasks to interrupt lower-priority tasks
[74]. Their approach incorporates timeouts as a notifi-
cation mechanism for processes that have overrun their
time slices, toying with preemption in a non-preemptive
operating system. Our work is similar in principle but
differs significantly in execution.

Denial of Service attacks. Research on DoS can be
broadly divided into network-level attacks (e.g. DDoS
attacks) and application-level attacks [41]. Since EHP
attacks exploit the semantics of the application, they are
application-level attacks, not easily defeated by network-
level defenses.

DoS attacks seek to exhaust the resources critical to
the proper operation of a server, and various kinds of ex-
haustion have been considered. The brunt of the litera-
ture has focused on exhausting the CPU, e.g. via worst-
case performance [75, 51, 50, 90, 80], infinite recur-
sion [49], and infinite loops [91, 45]. We are not aware
of prior research work that incurs DoS using the file sys-
tem, as do our ReadDoS attacks, though we have found
a handful of CVE reports to this effect13.

Our work identifies and shows how to exploit and pro-
tect the most limited resource of the EDA: Event Han-
dlers. Although we prove our point using previously-
reported attacks such as ReDoS, the underlying resource
we are exhausting is not the CPU but the small, fixed-size
set of Event Handlers deployed in EDA-based services.

Practitioner awareness. The server-side EDA prac-
titioner community is aware of the risk of DoS due to
EHP on the Event Loop. A common rule of thumb is
“Don’t block the Event Loop”, advised by many tuto-
rials as well as recent books about EDA programming
for Node.js [96, 47]. Wandschneider suggests worst-case
linear-time partitioning on the Event Loop [96], while
Casciaro advises developers to partition any computation
on the Event Loop, and to offload computationally ex-
pensive tasks to the Worker Pool [47]. Our work offers a

13For DoS by reading the slow file /dev/random, see CVE-2012-
1987 and CVE-2016-6896. For a related DOS by reading large files,
CVE-2001-0834, CVE-2008-1353, CVE-2011-1521, and CVE-2015-
5295 mention DoS by memory exhaustion using /dev/zero.

more complete evaluation of EHP attacks, and in partic-
ular we extend the rule of “Don’t block the Event Loop”
to the Worker Pool.

Future work. Automatically identifying modules
with computationally expensive paths would permit de-
tecting EHP vulnerabilities in advance. As future work,
we believe that research into computational complexity
estimation ([81, 66, 86]) and measurement ([87, 63, 46])
might be adapted to the Node.js context for EHP vulner-
ability detection.

10 Reproducibility

Everything needed to reproduce our results is avail-
able at https://github.com/VTLeeLab/node-cure
— scripts for our analysis of the Snyk.io vulnerability
database, links to our contributions to the Node.js com-
munity, and the source code for the Node.cure prototype.

11 Conclusion

The Event-Driven Architecture (EDA) holds great
promise for scalable web services, and it is increasingly
popular in the software development community. In this
paper we defined Event Handler Poisoning (EHP) at-
tacks, which exploit the cooperative multitasking at the
heart of the EDA. We showed that EHP attacks occur
in practice already, and as the EDA rises in popularity
we believe that EHP attacks will become an increasingly
critical DoS vector. The Node.js community has en-
dorsed our expression of this problem, hosting our guide
to avoiding EHP attacks on nodejs.org.

We proposed two defenses against EHP attacks, and
prototyped the more promising: first-class timeouts. Our
prototype, Node.cure, enables the detection and defeat of
all known EHP attacks, with low overhead. Our find-
ings can be directly applied by the EDA community, and
we hope they influence the design of existing and future
EDA frameworks.

Acknowledgments

We thank the reviewers for their helpful feedback, as well
as Adam Doupé for his shepherding. Snyk.io was kind
enough to provide a dump of their vulnerability database
for npm, which C. Coghlan helped us analyze. J.D.
Greef of Ronomon suggested the EHP attacks listed in
the discussion. A. Kazerouni, S. Rahaman, and the Vir-
ginia Tech Systems Reading Group were helpful sound-
ing boards for our ideas and manuscripts, as were M.
Hicks, G. Wang, and D. Yao.

https://github.com/VTLeeLab/node-cure


References
[1] 2017 User Survey Executive Summary. The Linux Foundation.

[2] ab – apache http server benchmarking tool. https://httpd.

apache.org/docs/2.4/programs/ab.html.

[3] acmeair-node. https://github.com/acmeair/

acmeair-nodejs.

[4] Cylon.js. https://cylonjs.com/.

[5] express. https://github.com/expressjs/express.

[6] Gnu libc – posix safety concepts. https://www.

gnu.org/software/libc/manual/html_node/

POSIX-Safety-Concepts.html.

[7] Ibm node-red. https://nodered.org/.

[8] iot-nodejs. https://github.com/ibm-watson-iot/

iot-nodejs.

[9] Koa. https://github.com/koajs/koa.

[10] libuv. https://github.com/libuv/libuv.

[11] Lokijs. https://github.com/techfort/LokiJS.

[12] Node-oniguruma regexp library. https://github.com/atom/
node-oniguruma.

[13] Node security platform. https://nodesecurity.io/

advisories.

[14] Node.js. http://nodejs.org/.

[15] Nodejs async hooks. https://nodejs.org/api/async_

hooks.html.

[16] Node.js foundation members. https://foundation.nodejs.
org/about/members.

[17] Node.js thread pool documentation. http://docs.libuv.

org/en/v1.x/threadpool.html.

[18] Node.js usage: Statistics for websites using node.js technologies.
https://trends.builtwith.com/framework/node.js.

[19] Regex.matchtimeout property. https://msdn.

microsoft.com/en-us/library/system.text.

regularexpressions.regex.matchtimeout.

[20] restify. https://github.com/restify/node-restify.

[21] sails. https://github.com/balderdashy/sails.

[22] Snyk.io. https://snyk.io/vuln/.

[23] three.js. https://github.com/mrdoob/three.js.

[24] Twisted. https://twistedmatrix.com/trac/.

[25] Vert.x. http://vertx.io/.

[26] webtorrent. https://github.com/webtorrent/

webtorrent.

[27] ws: a node.js websocket library. https://github.com/

websockets/ws.

[28] The Calendar and Contacts Server. https://github.com/

Apple/Ccs-calendarserver, 2007.

[29] Ubuntu One: Technical Details. https://wiki.ubuntu.com/
UbuntuOne/TechnicalDetails, 2012.

[30] New node.js foundation survey reports new “full stack” in
demand among enterprise developers. https://nodejs.org/

en/blog/announcements/nodejs-foundation-survey/,
2016.

[31] The linux foundation: Case study: Node.js. https:

//www.linuxfoundation.org/wp-content/uploads/

2017/06/LF_CaseStudy_NodeJS_20170613.pdf, 2017.

[32] Microsoft’s Node.js Guidelines. https://github.com/

Microsoft/nodejs-guidelines, 2017.

[33] Random(4). http://man7.org/linux/man-pages/man4/

random.4.html, 2017.

[34] This is what node.js is used for in 2017 – sur-
vey results. https://blog.risingstack.com/

what-is-node-js-used-for-2017-survey/, 2017.

[35] Digital Transformation with the Node.js De-
vOps Stack. https://pages.nodesource.com/

digital-transformation-devops-stack-tw.html,
2018.

[36] Node.js at IBM. https://developer.ibm.com/node/, 2018.

[37] Node.js v10.1.0: C++ Addons. https://nodejs.org/api/

addons.html, 2018.

[38] Node.js v10.1.0: N-API. https://nodejs.org/api/n-api.

html, 2018.

[39] Node.js v10.3.0 Documentation: crypto.randomBytes.
https://nodejs.org/api/crypto.html#crypto_

crypto_randombytes_size_callback, 2018.

[40] ABDALKAREEM, R., NOURRY, O., WEHAIBI, S., MUJAHID,
S., AND SHIHAB, E. Why Do Developers Use Trivial Packages?
An Empirical Case Study on npm. In Foundations of Software
Engineering (FSE) (2017).

[41] ABLIZ, M. Internet Denial of Service Attacks and Defense
Mechanisms. Tech. rep., 2011.

[42] ALIMADADI, S., MESBAH, A., AND PATTABIRAMAN, K. Un-
derstanding Asynchronous Interactions in Full-Stack JavaScript.
In International Conference on Software Engineering (ICSE)
(2016).

[43] BARRERA, D., KAYACIK, H. G., VAN OORSCHOT, P. C.,
AND SOMAYAJI, A. A methodology for empirical analysis of
permission-based security models and its application to android.
In Computer and Communications Security (CCS) (2010).

[44] BRODU, E., FRÉNOT, S., AND OBLÉ, F. Toward automatic up-
date from callbacks to Promises. In Workshop on All-Web Real-
Time Systems (AWeS) (2015).

[45] BURNIM, J., JALBERT, N., STERGIOU, C., AND SEN, K.
Looper: Lightweight detection of infinite loops at runtime. In
International Conference on Automated Software Engineering
(ASE) (2009).

[46] BURNIM, J., JUVEKAR, S., AND SEN, K. WISE: Automated
Test Generation for Worst-Case Complexity. In International
Conference on Software Engineering (ICSE) (2009).

[47] CASCIARO, M. Node.js Design Patterns, 1 ed. 2014.

[48] CHADHA, G., MAHLKE, S., AND NARAYANASAMY, S. Ac-
celerating Asynchronous Programs Through Event Sneak Peek.
In International Symposium on Computer Architecture (ISCA)
(2015).

[49] CHANG, R., JIANG, G., IVANČIĆ, F., SANKARANARAYANAN,
S., AND SHMATIKOV, V. Inputs of coma: Static detection of
denial-of-service vulnerabilities. In IEEE Computer Security
Foundations Symposium (CSF) (2009).

[50] CROSBY, S. Denial of service through regular expressions.
USENIX Security work in progress report (2003).

[51] CROSBY, S. A., AND WALLACH, D. S. Denial of Service via
Algorithmic Complexity Attacks. In USENIX Security (2003).

[52] DAVIS, J., KILDOW, G., AND LEE, D. The Case of the Poisoned
Event Handler: Weaknesses in the Node.js Event-Driven Archi-
tecture. In European Workshop on Systems Security (EuroSec)
(2017).

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/acmeair/acmeair-nodejs
https://github.com/acmeair/acmeair-nodejs
https://cylonjs.com/
https://github.com/expressjs/express
https://www.gnu.org/software/libc/manual/html_node/POSIX-Safety-Concepts.html
https://www.gnu.org/software/libc/manual/html_node/POSIX-Safety-Concepts.html
https://www.gnu.org/software/libc/manual/html_node/POSIX-Safety-Concepts.html
https://nodered.org/
https://github.com/ibm-watson-iot/iot-nodejs
https://github.com/ibm-watson-iot/iot-nodejs
https://github.com/koajs/koa
https://github.com/libuv/libuv
https://github.com/techfort/LokiJS
https://github.com/atom/node-oniguruma
https://github.com/atom/node-oniguruma
https://nodesecurity.io/advisories
https://nodesecurity.io/advisories
http://nodejs.org/
https://nodejs.org/api/async_hooks.html
https://nodejs.org/api/async_hooks.html
https://foundation.nodejs.org/about/members
https://foundation.nodejs.org/about/members
http://docs.libuv.org/en/v1.x/threadpool.html
http://docs.libuv.org/en/v1.x/threadpool.html
https://trends.builtwith.com/framework/node.js
https://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex.matchtimeout
https://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex.matchtimeout
https://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex.matchtimeout
https://github.com/restify/node-restify
https://github.com/balderdashy/sails
https://snyk.io/vuln/
https://github.com/mrdoob/three.js
https://twistedmatrix.com/trac/
http://vertx.io/
https://github.com/webtorrent/webtorrent
https://github.com/webtorrent/webtorrent
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/Apple/Ccs-calendarserver
https://github.com/Apple/Ccs-calendarserver
https://wiki.ubuntu.com/UbuntuOne/ TechnicalDetails
https://wiki.ubuntu.com/UbuntuOne/ TechnicalDetails
https://nodejs.org/en/blog/announcements/nodejs-foundation-survey/
https://nodejs.org/en/blog/announcements/nodejs-foundation-survey/
https://www.linuxfoundation.org/wp-content/uploads/2017/06/LF_CaseStudy_NodeJS_20170613.pdf
https://www.linuxfoundation.org/wp-content/uploads/2017/06/LF_CaseStudy_NodeJS_20170613.pdf
https://www.linuxfoundation.org/wp-content/uploads/2017/06/LF_CaseStudy_NodeJS_20170613.pdf
https://github.com/Microsoft/nodejs-guidelines
https://github.com/Microsoft/nodejs-guidelines
http://man7.org/linux/man-pages/man4/random.4.html
http://man7.org/linux/man-pages/man4/random.4.html
https://blog.risingstack.com/what-is-node-js-used-for-2017-survey/
https://blog.risingstack.com/what-is-node-js-used-for-2017-survey/
https://pages.nodesource.com/digital-transformation-devops-stack-tw.html
https://pages.nodesource.com/digital-transformation-devops-stack-tw.html
https://developer.ibm.com/node/
https://nodejs.org/api/addons.html
https://nodejs.org/api/addons.html
https://nodejs.org/api/n-api.html
https://nodejs.org/api/n-api.html
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback


[53] DAVIS, J. C., COGHLAN, C. A., SERVANT, F., AND LEE, D.
The Impact of Regular Expression Denial of Service (ReDoS)
in Practice: an Empirical Study at the Ecosystem Scale. In The
ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE)
(2018).

[54] DE GROEF, W., DEVRIESE, D., NIKIFORAKIS, N., AND
PIESSENS, F. Flowfox: A web browser with flexible and pre-
cise information flow control. Computer and Communications
Security (CCS).

[55] DE GROEF, W., MASSACCI, F., AND PIESSENS, F. NodeSen-
try: Least-privilege library integration for server-side JavaScript.
In Annual Computer Security Applications Conference (ACSAC)
(2014).

[56] DEBILL, E. Module counts. http://www.modulecounts.

com/.

[57] DESAI, A., GUPTA, V., JACKSON, E., QADEER, S., RAJA-
MANI, S., AND ZUFFEREY, D. P: Safe asynchronous event-
driven programming. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI) (2013).

[58] ENCK, W., OCTEAU, D., MCDANIEL, P., AND CHAUDHURI,
S. A study of android application security. In USENIX Security
(2011).

[59] ENCK, W., ONGTANG, M., AND MCDANIEL, P. Understanding
android security. IEEE Security and Privacy (2009).

[60] FERG, S. Event-driven programming: introduction, tutorial, his-
tory. 2006.

[61] FOUNDATION, A. S. The Apache web server.

[62] FREES, S. C++ and Node.js Integration. 2016.

[63] GOLDSMITH, S. F., AIKEN, A. S., AND WILKERSON, D. S.
Measuring Empirical Computational Complexity. In Foundations
of Software Engineering (FSE) (2007).

[64] GOOGLE. Chrome v8: Google’s high performance, open source,
javascript engine. https://developers.google.com/v8/.

[65] GUARNIERI, S., AND LIVSHITS, V. B. GATEKEEPER:
Mostly Static Enforcement of Security and Reliability Policies
for JavaScript Code. USENIX Security (2009).

[66] GULWANI, S., MEHRA, K. K., AND CHILIMBI, T. SPEED:
Precise and Efficient Static Estimation of Program Computational
Complexity. In Principles of Programming Languages (POPL)
(2009).

[67] HARRELL, J. Node.js at PayPal. https:

//www.paypal-engineering.com/2013/11/22/

node-js-at-paypal/, 2013.

[68] HEUSER, S., NADKARNI, A., ENCK, W., AND SADEGHI, A.-
R. Asm: A programmable interface for extending android secu-
rity. In USENIX Security (2014).

[69] JIN, X., HU, X., YING, K., DU, W., YIN, H., AND PERI, G. N.
Code injection attacks on html5-based mobile apps: Characteri-
zation, detection and mitigation. In Computer and Communica-
tions Security (CCS) (2014).

[70] KOLLER, R., AND WILLIAMS, D. Will Serverless End the Dom-
inance of Linux in the Cloud? In Hot Topics in Operating Systems
(HotOS) (2017), pp. 169–173.

[71] LEKIES, S., STOCK, B., AND JOHNS, M. 25 million flows later:
Large-scale detection of dom-based xss. In Computer and Com-
munications Security (CCS) (2013).

[72] LIN, Y., RADOI, C., AND DIG, D. Retrofitting Concurrency
for Android Applications through Refactoring. In ACM Interna-
tional Symposium on Foundations of Software Engineering (FSE)
(2014).

[73] LISTON, T. Welcome To My Tarpit: The Tactical and Strate-
gic Use of LaBrea. http://www.threenorth.com/LaBrea/

LaBrea.txt, 2001.

[74] LYONS, A., MCLEOD, K., ALMATARY, H., AND HEISER,
G. Scheduling-Context Capabilities: A Principled, Light-Weight
Operating-System Mechanism for Managing Time. In European
Conference on Computer Systems (EuroSys) (2018).

[75] MCILROY, M. D. Killer adversary for quicksort. Software -
Practice and Experience 29, 4 (1999), 341–344.

[76] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A.,
VAN ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F.,
AND VIGNA, G. You are what you include: Large-scale evalua-
tion of remote javascript inclusions. In Computer and Communi-
cations Security (CCS) (2012).

[77] O’DELL, J. Exclusive: How LinkedIn used Node.js and HTML5
to build a better, faster app. http://venturebeat.com/2011/
08/16/linkedin-node/, 2011.

[78] O’DELL, J. Exclusive: How LinkedIn used Node.js and HTML5
to build a better, faster app, 2011.

[79] OJAMAA, A., AND DUUNA, K. Assessing the security of
Node.js platform. In 7th International Conference for Internet
Technology and Secured Transactions (ICITST) (2012).

[80] OLIVO, O., DILLIG, I., AND LIN, C. Detecting and Exploit-
ing Second Order Denial-of-Service Vulnerabilities in Web Ap-
plications. ACM Conference on Computer and Communications
Security (CCS) (2015).

[81] OLIVO, O., DILLIG, I., AND LIN, C. Static Detection of Asymp-
totic Performance Bugs in Collection Traversals. In Program-
ming Language Design and Implementation (PLDI) (2015).

[82] PADMANABHAN, S. How We Built eBay’s First Node.js Appli-
cation. https://www.ebayinc.com/stories/blogs/tech/
how-we-built-ebays-first-node-js-application/,
2013.

[83] PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. Flash: An
Efficient and Portable Web Server. In USENIX Annual Technical
Conference (ATC) (1999).

[84] PARIAG, D., BRECHT, T., HARJI, A., BUHR, P., SHUKLA, A.,
AND CHERITON, D. R. Comparing the performance of web
server architectures. In European Conference on Computer Sys-
tems (EuroSys) (2007), ACM.

[85] PETER, S., BAUMANN, A., ROSCOE, T., BARHAM, P., AND
ISAACS, R. 30 seconds is not enough! In European Conference
on Computer Systems (EuroSys) (2008).

[86] PETSIOS, T., ZHAO, J., KEROMYTIS, A. D., AND JANA, S.
SlowFuzz: Automated Domain-Independent Detection of Algo-
rithmic Complexity Vulnerabilities. In Computer and Communi-
cations Security (CCS) (2017).

[87] PUSCHNER, P. P., AND KOZA, C. Calculating the Maximum
Execution Time of Real-Time Programs. Real-Time Systems 1, 2
(1989), 159–176.

[88] RAYMOND, E. S. The Cathedral and the Bazaar. No. July 1997.
2000.

[89] SILBERSCHATZ, A., GALVIN, P. B., AND GAGNE, G. Operat-
ing System Concepts, 9th ed. Wiley Publishing, 2012.

[90] SMITH, R., ESTAN, C., AND JHA, S. Backtracking Algorith-
mic Complexity Attacks Against a NIDS. In Annual Computer
Security Applications Conference (ACSAC) (2006), pp. 89–98.

[91] SON, S., AND SHMATIKOV, V. SAFERPHP Finding Semantic
Vulnerabilities in PHP Applications. In Workshop on Program-
ming Languages and Analysis for Security (PLAS) (2011), pp. 1–
13.

http://www.modulecounts.com/
http://www.modulecounts.com/
https://developers.google.com/v8/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
http://www.threenorth.com/LaBrea/LaBrea.txt
http://www.threenorth.com/LaBrea/LaBrea.txt
http://venturebeat.com/2011/08/16/linkedin-node/
http://venturebeat.com/2011/08/16/linkedin-node/
https://www.ebayinc.com/stories/blogs/tech/how-we-built-ebays-first-node-js-application/
https://www.ebayinc.com/stories/blogs/tech/how-we-built-ebays-first-node-js-application/


[92] STAICU, C.-A., AND PRADEL, M. Freezing the web: A study
of redos vulnerabilities in javascript-based web servers. In 27th
USENIX Security Symposium (USENIX Security 18) (Baltimore,
MD, 2018), USENIX Association.

[93] STAICU, C.-A., PRADEL, M., AND LIVSHITS, B. Synode: Un-
derstanding and Automatically Preventing Injection Attacks on
Node.js. In Network and Distributed System Security (NDSS)
(2018).

[94] TRIPP, O., PISTOIA, M., COUSOT, P., COUSOT, R., AND
GUARNIERI, S. Andromeda : Accurate and Scalable Secu-
rity Analysis of Web Applications. In International Conference
on Fundamental Approaches to Software Engineering (FASE)
(2013), pp. 210–225.

[95] VASILAKIS, N., KAREL, B., ROESSLER, N., DAUTENHAN,
N., DEHON, A., AND SMITH, J. M. BreakApp: Automated,
Flexible Application Compartmentalization. In Network and Dis-
tributed System Security (NDSS) (2018).

[96] WANDSCHNEIDER, M. Learning Node.js: A Hands-on Guide
to Building Web Applications in JavaScript. Pearson Education,
2013.

[97] WELSH, M., CULLER, D., AND BREWER, E. SEDA : An Ar-
chitecture for Well-Conditioned, Scalable Internet Services. In
Symposium on Operating Systems Principles (SOSP) (2001).


	Introduction
	Background
	Overview of the EDA
	Node.js among other EDA frameworks
	Algorithmic complexity attacks

	Event Handler Poisoning Attacks
	Threat model
	Definition of an EHP attack
	Example EHP attacks: ReDoS and ReadDoS
	Study of reported vulnerabilities in npm

	Defending Against EHP Attacks
	Prevent through partitioning
	Detect and react through timeouts
	Analysis

	Node.cure: First-Class Timeouts for Node.js
	Taxonomy of vulnerable APIs
	Timeout-aware tasks
	Timeouts for callbacks
	Timeouts for JavaScript
	Timeouts for the Node.js C++ bindings

	Timeouts for application-level vulnerable APIs
	Performance optimizations
	Implementation

	Evaluating Node.cure
	Effectiveness
	Runtime overhead
	Security guarantees

	Practitioner Community Impact
	Guide on safe service architecture
	Changes to API and documentation

	Discussion
	Related Work
	Reproducibility
	Conclusion

