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ABSTRACT
The latest generation of IoT systems incorporate machine learning
(ML) technologies on edge devices. This introduces new engineering
challenges to bring ML onto resource-constrained hardware, and
complications for ensuring system security and privacy. Existing
research prescribes iterative processes for machine learning enabled
IoT products to ease development and increase product success.
However, these processes mostly focus on existing practices used in
other generic software development areas and are not specialized
for the purpose of machine learning or IoT devices.

This research seeks to characterize engineering processes and se-
curity practices for ML-enabled IoT systems through the lens of the
engineering lifecycle. We collected data from practitioners through
a survey (N=25) and interviews (N=4). We found that security pro-
cesses and engineering methods vary by company. Respondents
emphasized the engineering cost of security analysis and threat
modeling, and trade-offs with business needs. Engineers reduce
their security investment if it is not an explicit requirement. The
threats of IP theft and reverse engineering were a consistent con-
cern among practitioners when deployingML for IoT devices. Based
on our findings, we recommend further research into understanding
engineering cost, compliance, and security trade-offs.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • General and reference → Empirical studies;
• Computing methodologies → Machine learning; • Security
and privacy;
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1 INTRODUCTION
The Internet of Things (IoT) paradigm integrates cyber and physical
components, connecting devices at the network edge (“Things”)
to one another and to more powerful resources over the network
(“Internet”) [15]. There are ∼35 billion IoT devices worldwide, pro-
jected to double by 2025 [30, 57, 58]. IoT systems can leverage
machine learning (ML) [38, 39] to make low-latency intelligent
decisions [8, 67]. The resulting intelligent IoT systems could trans-
form many sectors of the economy [42], however, the associated
risks are also substantial. To minimize the risks, engineers should
adopt ML methods on resource-constrained IoT devices in a secure,
privacy-preserving way [16].

Despite the increasing importance of intelligent IoT systems
to consumers, industry, and governments, we know relatively lit-
tle about manufacturers’ engineering practices [28, 46, 53]. Con-
cerns about engineering practices are raised by high profile fail-
ures, including cyberattacks on waterworks systems leading to poi-
soned water supply [55], aggressive data collection practices [4, 48]
and exploits leading to IoT botnets [1]. Researchers have inves-
tigated IoT software defects [46] and security flaws [12, 18, 20–
23, 25, 34, 35, 47, 61] from the software perspective using pro-
gram analysis and failure analysis. Also, researchers have proposed
generic models of the secure software development life cycle (SDLC)
for the development of ML models and the development of ML-
enabled edge devices [28, 53]. However, the challenges of real-world
adoption and current industry practices are largely unexplored.

Our goal is therefore to investigate the process of engineering
ML-enabled IoT devices in industry. Our general research questions
are:What practices does the industry follow to develop and manage
ML-based IoT devices? How is security treated in industry development
life cycles? We investigate these questions in a survey (N=25) and
interviews (N=4) with industry practitioners.

Among other findings, our survey respondents and interview
subjects emphasized tradeoffs between engineering cost and quality.
Market forces reduce the quality and security of IoT products. As
one interview subject (P2) said, “it is a question of if it [better security]
will be accepted by the market”. Larger companies benefit from
economies of scale, with in-house ML and security specialists to
support IoT products. We also learned that businesses may give up
some marketable functionality in order to reduce their risk, e.g., not
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storing user data on IoT devices. Across several industry sectors,
another common worry is the reverse engineering of proprietary
ML models.

2 BACKGROUND
This research is motivated by an industry trend towards computing
systems with intelligent components at the network edge, and the
associated security and privacy implications. Definitions of an “IoT
device” vary [56]; we consider deviceswith sensors and/or actuators,
a network connection, and limited resources in memory, power, and
computation [33, 66]. Resource-constrained IoT systems combine
sensing and communication capabilities with low cost [50, 70].

Engineering process for IoT: Engineering processes for IoT sys-
tems are complex because IoT systems are inherently distributed
and resource-constrained, and have physical components alongside
virtual ones [68]. Figure 1 depicts a generic engineering lifecycle
for ML-based IoT systems, which we used to design our study. This
lifecycle combines several existing works [2, 28, 53]. In this model,
IoT engineering is a five-step iterative process:

Specification: The purpose of the product is defined, perhaps
constraining the hardware and software components.

Design: Decisions are made about system architecture, frame-
works are selected, and evaluation techniques are chosen.

Development: Design decisions are implemented using develop-
ment frameworks. The ML model is optimized by tuning hyperpa-
rameters, reducing the computational complexity of the model (eg:
deep learning-based models), and manipulating network blocks [26,
40]. The implementation targets a hardware profile but not specific
devices, to promote portability.

Deployment: The developed solution is deployed to the target
hardware. Deployment-time optimizations such as pruning help
fit the model into the IoT device constraints [39]. Optimization
strategies are standardized, but the parameters vary based on the
available resources of the target hardware [53].

Audit: Here the software components have been deployed to the
hardware components, and engineers determine whether the sys-
tem specification is met. Concerns may be raised about performance
goals, fault tolerance [31, 59], or security vulnerabilities. Engineers
consider traditional threat models as well as those specific to the use
of ML. For example, researchers have proposed attacks involving
corrupted training data [69] or reverse engineering a model [49].
Security in IoT: Security is a cross-cutting concern for engineered
systems [51]. Security is increasingly incorporated throughout
the engineering life cycle (Figure 1) [41]. However, IoT develop-
ers find security challenging and complicated [46]. Engineering
teams feel responsible for security, but often lack a formal security
process [9, 45, 63]. Functionality and deadlines are often priori-
tized over security [14, 24, 43], and adding security to resource-
constrained devices penalizes power consumption, latency, and
throughput [11, 60].

Although this engineering process model for ML-based IoT de-
velopment is a promising start, the research community still lacks
insight into industry practices. This knowledge gap hinders our
understanding of industry-wide problems and challenges towards
building and maintaining secure ecosystems. This study is a step
towards filling that gap.

3 RESEARCH QUESTIONS
To understand the processes and challenges of engineering secure
ML-enabled IoT systems, we posed five research questions across
two themes. The first theme explores ML engineering in a resource-
constrained context, with implications for IoT system trustwor-
thiness (e.g., affecting security and privacy). The second theme
examines cybersecurity practices for these systems.

Theme 1: Applying machine learning on IoT devices
RQ1: What are the common practices for bringing ML to resource-

constrained edge devices? (Process model steps 3a-3d)
RQ2: What are the challenges and consequences developers face

due to resource limitations in developing ML software for
edge devices? (Steps 3a-3d)

Theme 2: Engineering secure IoT systems
RQ3: How do engineers incorporate security into the IoT engi-

neering process? (Steps 1-5)
RQ4: How do engineers reason about trust in ML-based IoT sys-

tems? (Step 4)
RQ5: What other factors affect security practices in IoT engineer-

ing? (Steps 1-5)

4 METHODOLOGY
Given our research questions, we chose an exploratory methodol-
ogy [54] — a mixed quantitative and qualitative approach to explore
a phenomenon and develop new research questions. We elicited
coarse data with a survey, and detailed insights using interviews.

4.1 Survey
Instrument design: We designed a ∼10-minute, 32-question sur-
vey instrument aligned with our research questions. We drew on
existing literature for seven demographic questions [10, 13], and
developed the other questions using best practices in survey de-
sign [29]. The initial set of questions were based on our own indus-
try experience working with ML on IoT devices, and then refined
through discussion with practitioners. To test validity and length,
we administered the survey to two practitioners and further refined
it based on their feedback.
Survey distribution: Given the specialized nature of the engi-
neering security practices under consideration, we distributed the
surveywidely: on the public platforms Reddit, Hacker News, and To-
wardsAI; through our personal networks via Facebook and LinkedIn;
and on our departmental mailing list. We also asked survey re-
spondents to share the link with their colleagues (snowball sam-
pling [36]). The survey was published in the last week of March
2021 and closed after 5 weeks. We incentivized survey participation
with a 1-in-50 chance of winning a $50 gift card.
Analysis method:We analyzed the data using reports generated
using the Qualtrics platform. We examined the data from each
question, aggregated across all participants. In order to have a
uniform scale of results, we have represented all the data in the
survey in terms of the percentage of total responses in the diagrams
for the purpose of visualization.
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Optimization
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Evasion Attacks

Data Poisoning Attacks
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1. Specification

Security-specific Tasks

RQs 1, 2

RQs 3, 5 RQs 3, 4, 5

ML-specific Tasks

Figure 1: An engineering lifecycle for machine learning-based IoT devices. It combines several models including the SDLC [2, 28, 53].

4.2 Interviews
Protocol design: We designed our interview protocol as an exten-
sion of the survey questions. We observed survey responses and
developed questions around areas where the survey respondents
disagreed or gave unexpected answers. The interview followed a
semi-structured interview, with 8 planned questions to permit a
30-40 minute conversation with each subject [27]. To test validity
and length, we piloted the interview protocol with one practitioner.
Participant recruitment: We recruited interviewees from the
survey respondent pool. Survey respondents had experience in ML
and IoT engineering, making them good candidates for a longer
interview. Survey respondents could indicate if they were interested
in a follow up interview, incentivized with a $25 gift card. We
contacted all interested respondents, and interviewed any who
replied and completed the interview consent form.
Participant privacy: Audio recordings of interviews were tran-
scribed by a third-party service. We anonymized participant PII
(e.g., names of people and companies) before analysis.

4.3 Collected data
Survey: We received a total of 25 survey responses, of which
14 were fully completed. Given the few full responses, we also
analyzed the available data from partial responses. The median
partial respondent completed 42% of the survey.
Interview:We interviewed 4 experts, with a range of positions and
professional experience. The interviews comprised 140 minutes of
audio recordings.

5 RESULTS AND ANALYSIS
Wepresent results corresponding to our RQs. To simplify the presen-
tation, we synthesize survey and interview data for each question.

5.1 Demographics
Survey respondents (Figure 2) hold bachelor’s degrees in computer
science, software engineering, computer engineering, or electrical
engineering; work primarily in the sectors of consumer electron-
ics (27%), IT & telecommunications (22%), automotive (20%), and
healthcare & biomedical (15%); and learned about ML techniques

Figure 2: Demographics of survey respondents.

Table 1: Interview Subjects

Identifier Role (Company type) Experience

P1 Principal System Architect (HW vendor) 20 years
P2 Senior developer (HW vendor) 20 years
P3 Chief Architect (Start-up) 30 years
P4 ML Engineer (ML services) 3 years

from university coursework (41%), self-taught (37%), and from cor-
porate training (20%). They work at a range of company sizes, from
under 50 employees (36%) to over 2,000 (32%). They have a range
of experience applying ML in software engineering, ∼30% more
than 5 years and ∼70% fewer. At their companies, they reported an
almost equal distribution of ML deployment experience: from initial
exploration/prototyping stages to “multiple projects” to extensive
multi-platform experience (Figure 4).

Interview subjects (Table 1) had a range of job roles, and expe-
rience in sectors including manufacturing, consumer electronics,
defense, and medical devices.

3
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5.2 Theme 1: Machine Learning for IoT Devices
RQ1: Common ML practices for IoT. ML modeling: ML algo-
rithms are one ingredient of next-generation IoT systems. We asked
survey respondents and interview subjects where their models
come from. Survey respondents rely on academic research, re-using
models entirely or tailoring them to their company’s needs (Fig-
ure 3). Notably, none of the survey respondents indicated that they
follow product line development (i.e., , reuse models from one prod-
uct to the next) for their ML models. P3 characterized the sources
used by his start-up:

“In the ML world, [if] you don’t read a paper every
single day, you are in trouble...IEEE papers and...we
also look at results that come out of Google, Facebook,
Amazon and Microsoft.”

Companies with deeper expertise also develop models internally;
P1 said, “[My company’s] research team does a lot of research around
machine learning, and we...use the frameworks developed by them.”

Figure 3: Source of ML models in practice.

ML development: TensorFlow/TF-Lite and PyTorch were the most
popular modeling frameworks; Python and C/C++ were the most
popular languages. To train and validate models, survey respon-
dents follow standard practices: splitting training and testing data,
applying K-fold/cross validation, etc.

Engineering processes:Our data show that the industrymovement
towards incremental development and agile methodologies [41]
includes IoT systems development. Among survey respondents,
48% report using “Agile” as their software development process,
the most popular response. Our interview subjects concurred. As
interviewee P3 said:

“We tend to follow the agile flow...2 years ago we
[were]mostly waterfall, the old-fashionedway...now...95%
of...[our] programs [are agile].”

Figure 4: Survey data on ML maturity, software updates, and data
collection.

This adoption includes the Continuous Integration/Continuous
Deployment (CI/CD) approach. Half of the survey respondents said
their teams incorporate MLmodels into the rest of their IoT systems
during CI, 25% said “Before deployment”, and only 16% said their
integration occurred at software release time. Interviewee P3 said:

“At every stage of our Agile flow...[we have a] CI/CD-
based validation flow...as part of the weekly sprints
trying to meet accuracy, latency and throughput.”

After IoT device deployment, many survey respondents report that
they improve the ML models in their products by collecting new
data and sending software updates (Figure 4).

RQ2:ML challenges and consequences for IoT.ML on resource-
constrained devices: IoT engineersworkwithin hardware constraints.
Over 90% of survey respondents said they meet constraints by
changing the software, not the hardware. To meet their resource
constraints, our survey respondents said they use neural network
pruning techniques including regularization, second-order meth-
ods, and variational dropout. As they do so, survey respondents
said they struggle with decreased model performance (38%), mem-
ory constraints (23%), and insufficient expertise (23%) (Figure 5).
Interviewee P3 went into more detail:

“From a technical perspective, one of the biggest prob-
lems that we face is the inability of standard tools
to be able to squash a model into something that fits
with a push of a button.”

Figure 5: Survey data on ML resource constraints.

Our interview participants went into detail about their strat-
egy for estimating ML model performance: back-of-the-envelope
calculations. As P2 said:

“I prefer Excel sheet because bringing emulator to
a state that you can perform simulation takes time.
And also building machine learning algorithms takes
time. So it’s better [to make a] crude estimate...using
Excel sheet...and then simply prepare ML algorithms
that simply relies on this crude estimate.”

Working with customers: P4 noted the challenges of ensuring
robustness as a customer requirement:

“[Clients] give us the validation data set, but not the
test data set...Then they used to run the inference at
their end on the same device and validate if it works
well on the test data set. Even slight changes...distortions...used
to give bad accuracy...So if your model should be ro-
bust to such kind of things, then you need to have
such kind of data in your training data set.”

Edge-Cloud collaboration: Survey respondents described differ-
ent architectures for data processing. Two-thirds follow a hybrid

4
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strategy, with lighter-weight processing on IoT devices and heavy-
weight processing using Fog or Cloud systems. Edge-only process-
ing was the second most common, and Cloud-only processing was
rare. When placing computation on Edge devices, engineers re-
ported working around the resource limitations of IoT devices.

5.3 Theme 2: Secure IoT engineering
More than half of respondents have experienced a security vulnera-
bility in their current product. One-third have dealt with 1–3 CVEs
(Common Vulnerabilities and Exposures), and one-third with 4 or
more. Understanding how they incorporate security and reason
about trust in their engineering processes may help reduce CVEs.

RQ3: Incorporating security into IoT engineering. Security
Analysis: We asked survey respondents to describe the processes
their teams follow for security analysis. Code review (42%) and
white-box analyses (21%) were the primary ways in which security
checks are realized (Figure 6). Survey respondents and interview
participants also described conducting security reviews and creat-
ing mitigation plans. Interviewee P3 discussed integrating security
into the ML development process:

“It’s not as if every member in the team is...[a security
expert, but] they are [generally] aware of the pitfalls
and needs. But...[we ensure that] a few experts are
always there in the reviews.”

For interviewees working in smaller companies, security analysis
was part of every developer’s job. In larger organizations, inter-
viewees said that security analysis was done by dedicated security
teams. However, developers are still involved and have some famil-
iarity with security analysis methods.

Figure 6: Methods for security analysis. This question was acciden-
tally single-response, so we suppose the respondents interpreted this
as primary method.

Threats and threat models: Our subjects said that security threat
analysis was a common part of the development process, but with
varying priority depending on the company size and available re-
sources. Our interviewees indicated that the major threat they
considered was the loss of intellectual property — reverse engineer-
ing of their ML models. Interviewee P1 said the biggest security
challenge they face is in-memory re-engineering: “We try to mimic
scenarios that can breach security...We are careful about snoop-out
transactions.” At P1’s organization the same threat is considered:

“One common area where you can snoop things out
in hardware is the Memory Management Unit...So if
your MMU gets compromised, then you...have physi-
cal addresses and you can do whatever you want with
it. So, secure hardware design become critical.”

By nature, IoT devices interact with humans and the physical
world. This makes privacy a concern for both developers and end-
users. Interviewee P2 said privacy was the most difficult aspect of
security analysis, and described his company’s approach like this:

“The privacy, it is the hard problem...it will be really
visible to the market...We are trying to not store any
private data that could be...used by hacker in any
way....we are simply not trying to tackle such cases.
And from my previous work...It was always an issue
because it is a really hard problem. And it is really
easy to...lose your name, lose your brand.”

RQ4: Trust in IoT systems. Our interviewees identified trust
in researchers, vendors, data, and tool chains.

As highlighted in Figure 3, survey respondents indicated trust in
researchers through the common adoption of research prototypes.
Interviewee P3 described how his company’s ML model training
process is dependent on security features provided by cloud com-
puting platforms:

“So in the fully cloud-based solutions we are largely
dependent on...the goodness of the cloud. It’s almost
impossible to see what Azure, AWS, etc., are doing
under the hood. So there’s a large level of dependence
on their security procedures.”

P3 also noted his trust in development tool chains:
“We...are not doing a whole lot of analysis on weak-
ness of...tools like TensorFlow. If TensorFlow...has a
security hole, there is not much we do about it. ...
[We] have wrappers that ensure there is some levels
of encryption, unhackability before it...goes on to the
eventual edge IoT device. But if you were to question
the IDEs and tools chains having security bugs, there
is nothing we can do about it.”

P1 pointed out his assumptions of trustworthy data:
“We have to ensure that the [training] data...is from
a trusted source, otherwise it becomes a nightmare.”

RQ5: Other factors that affect IoT engineering. Process re-
quirements and regulations:During our surveywe asked participants
about restrictions on their engineering processes and products (Ta-
ble 2). About half comply only with general quality processes (e.g.,
P3: “We are an ISO 9001:2015 company. We rigorously follow the ISO
standards.” ). Other survey respondents comply with governmental
safety and security regulations (26%), and with privacy regulations
like GDPR and HIPAA (22%). In P1’s organization, they prefer to
work with metadata instead of data because of HIPAA requirements:

“Once you start working with meta-data, then you
don’t really need...any private information...so, it be-
comes much easier.”

P1 expanded on the difficulties of regulatory compliance:
“For example, anytime I’m working with the med-
ical data, that becomes a very, very tricky situa-
tion...[you must] set up proper working environment
and...ensure that the data is not leaving your trusted
network...not just personal data, but also [its] trends”

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SERP4IoT’22, May 19, 2022, Pittsburgh, PA, USA Nikhil Krishna Gopalakrishna, Dharun Anandayuvaraj, Annan Detti, Forrest Lee Bland, Sazzadur Rahaman, and James C. Davis

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Survey data on process requirements and regulations

What regulations do you have to comply with during your software
development process?

Proportion

General engineering processes like ISO XXX 44%
Governmental privacy regulations like GDPR / HIPAA / FERPA 26%
Governmental safety / security regulations like the IoT Cybersecurity
Improvement Act (requires following NIST guidelines).

22%

Security engineering processes like OWASP SAMM. 7%

Engineering Cost: Several of our subjects pointed out a balance
between security and engineering cost. A survey respondent wrote
that the most challenging aspect is:

“Addressing vulnerabilities properly...within the project
budget...[and] supporting cryptographic functional-
ity for encryption, storage, data transmission, and
key/certificate management.”

Interviewee P2 observed that user visibility may justify engineering
costs:

“First of all you must decide if security is required. If
you push security to a level that is hard to maintain,
and it is adding significant value to the Bill Of Mate-
rials cost, then it is a question if it will be accepted
by the market. I believe, the argument about security
is if it will be visible to the user.”

Interviewee P1 observed that his company invests security re-
sources non-uniformly, with less effort in analyzing software that
they release open-source:

“When we do an open-source release, we don’t worry
much about it...any shortcomings we get notified very
quickly by the open-source community and we can
fix it. Of course, it is not a good thing to release some-
thing insecure to open-source which is not adequately
tested or verified...We mainly ensure that previous oc-
currences of security breaches are tested and we make
it part of the design process.”

6 DISCUSSION
6.1 Comparison to prior findings
Our findings overlapped with prior knowledge in many aspects.
In terms of development tools, our participants followed industry-
wide practices such as using ML frameworks like TensorFlow and
PyTorch and development toolchains based on the Visual Studio/-
Code IDEs. Our participants follow iterative development processes.
The use of hybrid Edge-Cloud architectures is widespread. Power,
memory constraints, and computational constraints are known to
be major challenges within IoT systems. Our participants are aware
of security issues such as data poisoning.

The main difference between the research literature and our
findings is the discussion of engineering cost. Our participants —
perhaps especially those in consumer electronics — reduce security
for cheaper production costs. Similarly, there are many interest-
ing methods of emulation, load-balancing, and system validation
proposed in the research literature, but most respondents’ orga-
nizations do not use these methods. Unlike researchers’ goals of
unbreakable systems, our subjects balance how much security is

possible (relative to its engineering cost) and required (relative to
market demand). The research literature generally does not con-
sider the engineering cost of proposed techniques. Lastly, the many
sources of unverified trust — open-source code, academic research,
and development toolchains — was greater than what we under-
stood in the literature.

6.2 Advice for practitioners
Our study revealed a significant gap between how the academic
community and industry perceive IoT security. This suggests po-
tential value in cybersecurity workforce development [7]. Outside
academia, government guidelines (e.g., from US-NIST [5] and EU-
ENISA [3]) describe secure development lifecycles. NIST [6] rec-
ommends a thorough study on the customers, users, expected use
cases, security risks, and goals during planning, execution, and
post-deployment. Our subjects did not describe such a process.

Given the success of automated code analysis methods such as
static analysis, black-box and grey-box fuzzing in identifying system
vulnerabilities in IT software, we were surprised by practitioners’
continued emphasis on code review and white-box analysis in their
IoT systems. We recommend practitioners integrate such methods
into their product development process [44].

6.3 Future work for researchers
Based on the challenges faced by the practitioners we studied, we
suggest three directions for future research.

First, the IoT domain is characterized by tight profit margins
and low-cost parts. Many of our research subjects were therefore
concerned about the engineering cost of securing IoT devices. It
would be helpful for researchers to offer engineering cost-aware
security processes suited to the constraints of IoT systems engineer-
ing, and practical measurements of this cost. Past research works
primarily focus on trade-offs between security and resource costs,
such as operation delay and energy [19, 65]. Our work identifies the
importance of considering engineering costs, not just the runtime
implications. Our work also complements ongoing research to help
consumers understand how security affects the cost of commodity
IoT devices [32].

Second, practitioners leverage open science and open-source
software for their ML modeling and their development toolchains.
This accelerates development, but introduces substantial risk. For
ML, we recommend that ML researchers carefully document their
research prototypes and the limitations of their work, and that they
can achieve broader impact by participating in community efforts
to develop exemplary ML models (e.g., TorchVision [52] and the
TensorFlow Model Garden [62]). Additional studies of how best to
reproduce and transfer ML knowledge will be helpful [13, 17, 37].
More broadly, given the reliance of our participants on open-source
tools, trustworthy software supply chains will improve the safety
and security of IoT systems [64].

Third, the difficulties experienced by practitioners in following
the compliance restrictions and regulations identified in Table 2
poses a potential research area. For example, researchers could
study the impact of security compliance on security outcomes of
IoT applications, and the tradeoff with engineering cost.
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7 THREATS TO VALIDITY
Construct validity:Our survey instrument and interview protocol
were intended as direct measures of the constructs of interest (i.e.,
engineering practices), and we used pilot studies as a check.

Internal validity: Our study reports on practices without infer-
ences about cause and effect, so internal validity is not a concern.

External validity: The primary limitation of our study is in
its external validity, i.e., generalizability. Our goal was to describe
current practices in IoT engineering, focused on machine learning
and cybersecurity. As is common with studies of this kind, we used
a human-subjects method with a self-report design, which assumes
the respondents were truthful. Beyond the trustworthiness of our
data, we emphasize that we had relatively few survey responses
(N=25). We cannot claim saturation; our results are likely not rep-
resentative of the entire state of practice. In addition, 40.9% of the
survey respondents identified as students for their current position,
and their responses might not reflect the practices in the industry.
As mitigating factors, our survey reached participants from several
industry sectors, and our interview subjects included experts with
a long tenure in industry and experience at several companies.

8 CONCLUSION
In this research attempted to broaden the existing understanding
of IoT engineering practices related to machine learning and cy-
bersecurity. Through our survey and interviews, we found that
the main challenge engineers face when creating an IoT product is
balancing among engineering cost, performance, trust, and security.
We found that organizations place unverified trust in open-source
and academic resources; going so far as to incorporate academic
prototypes of ML techniques into their IoT products. Cybersecurity
investment varies based on resources, engineering cost and orga-
nizational priorities; one organization even explicitly relies on the
open-source community to find vulnerabilities in their software.
Practitioners have not yet adopted academic research in engineer-
ing practices and government recommendations that might address
some of their problems. In the future, we recommend that software
engineering and cybersecurity researchers incorporate engineering
cost considerations into their work, as this was a concern raised by
many of our research subjects.
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