
Introducing Systems Thinking as a Framework for Teaching and Assessing

Threat Modeling Competency

Abstract

Computing systems face diverse and substantial cybersecurity threats. To mitigate these

cybersecurity threats while developing software, engineers need to be competent in the skill of

threat modeling. In industry and academia, there are many frameworks for teaching threat

modeling, but our analysis of these frameworks suggests that (1) these approaches tend to be

focused on component-level analysis rather than educating students to reason holistically about a

system’s cybersecurity, and (2) there is no rubric for assessing a student’s threat modeling

competency. To address these concerns, we propose using systems thinking in conjunction with

popular and industry-standard threat modeling frameworks like STRIDE for teaching and

assessing threat modeling competency. Prior studies suggest a holistic approach like systems

thinking can be suitable for understanding and mitigating cybersecurity threats. Therefore, the

purpose of this study is to develop and pilot two novel rubrics – one for assessing STRIDE threat

modeling performance and the other for assessing systems thinking performance while

conducting STRIDE.

To conduct this study, we piloted the two rubrics mentioned above to assess threat model

artifacts of students enrolled in an upper-level software engineering course at Purdue University

in Fall 2021, Spring 2023, and Fall 2023. Our results reveal that students who had both systems

thinking and STRIDE instruction identified and attempted to mitigate component-level as well as

systems-level threats. On the other hand, students with only STRIDE instruction tended to focus

on identifying and mitigating component-level threats and discounted system-level threats. Our

work contributes to the engineering education community by: (1) describing a new rubric for

assessing threat modeling based on systems thinking; (2) identifying trends and blindspots in

students' threat modeling approach; and (3) envisioning the benefits of integrating systems

thinking in threat modeling teaching and assessment.

Introduction

With rapid developments in computer science and growing dependence on information

technology, cybersecurity threats are evolving at a rapid rate [1], [2]. Cybersecurity is defined as

the combination of technologies, resources, structure, and culture that is utilized to protect data

in cyberspace and cyberspace-enabled systems from vulnerabilities, threats, exposure, and

damages to ensure stability and sustenance [2, p. 2]. Further, as these cyber threats become more

sophisticated, the industry needs to protect its systems against cybercriminals capable of

penetrating their security systems [3]. For instance, the Siemens report [4] suggests that

digitization has led to multiple cybersecurity challenges which if not addressed can lead to huge

Siddhant S. Joshi1, Preeti Mukherjee2, Kirsten A. Davis1, and James C. Davis2

School of Engineering Education, Purdue University1

School of Electrical and Computer Engineering, Purdue University2

financial losses for the industry and society. Given the importance and potential damage that can

be caused by cybersecurity threats, the responsibility to address these challenges relies on

competent cybersecurity engineers.

The current state of the cybersecurity workforce suggests that engineers have a shortage of

cybersecurity skills to address the security challenges that lie ahead [5]. For example, a survey

by CSIS and McAfee in 2016 of IT decision-makers from eight countries indicates that 82% of

employers felt that their workforce did not have the necessary cybersecurity skills and 71%

believed that the skill gap caused measurable and direct damage to the security of their

organizations [6]. Additionally, although the number of cybersecurity jobs has been increasing,

almost 28% of these jobs nationally are still vacant as of 2023 [7]; mainly due to a lack of

training on cybersecurity fundamentals and hands-on experience [3]. As a result, there is a

demand for universities to educate students with fundamental competencies that help prepare

them for addressing cybersecurity challenges. One such fundamental cybersecurity skill is threat

modeling [8].

This paper presents the first step in our work and introduces a novel approach to teaching and

assessing threat modeling based on principles of systems thinking. We begin this paper with the

background and related work section where we identify the current gap in threat modeling

teaching and assessment and highlight how system thinking can help with system-level threat

modeling. Next, in the context section, we provide details of the software engineering course in

which we situated our study and describe the changes we made to its current iteration by

including a module on systems thinking and updating the course’s threat modeling deliverable.

After the context section, we discuss the methods of our study and introduce the two rubrics (one

on systems thinking and the other on STRIDE) we developed for assessing threat modeling

deliverables. Finally, we present the results of piloting our rubric on the course’s threat modeling

deliverable and discuss how systems thinking can be useful for threat modeling teaching and

assessment.

Background and Related Work

Software engineering and secure software development have gathered attention because many of

the cybersecurity threats arise due to defects in software [9]. Many industries still rely on fixing

security flaws in software when a security situation arises [10]. Fixing security flaws in the

software after a cyberattack often can be detrimental as losses might have already taken place.

Additionally, as the attacks by malicious attackers continue and increase rapidly, knowledge and

competencies associated with cybersecurity are essential during software development [11]. As a

result, a security mindset should be developed when one learns the software development

lifecycle [12]. Threat modeling is a crucial cybersecurity and secure software development skill

[13] that helps analyze the risks associated with the software architectures and identify strengths

and risks early on [14], [15]. Therefore, teaching threat modeling is important in a software

engineering course to develop secure software.

What is threat modeling?

Threat modeling is a security analysis approach that involves assessing the applicability and

relevance of threat scenarios that a system can face once it is deployed in the real-world

environment [16]. It is a systematic approach to identifying, mapping, and mitigating design-

level security problems (Soares Cruzes et al., 2018). It helps identify and describe security flaws,

access points, and appropriate security requirements during the software development process to

ensure that the software can be made capable of mitigating possible threats [17]. Threat modeling

usually takes place during the early stages of the software development lifecycle [18], [19] as it

helps fix issues during the development rather than rework the design after it has been deployed.

Fundamentally, threat modeling involves identifying and understanding the architectural model

of the system, identifying threats associated with each component of the system, and developing

mitigation strategies to address the component-level threats [19]. Essentially, the process of

threat modeling provides a structured way to develop secure software by allowing the developers

to estimate the capabilities of the attackers based on the known threats faced by the system [20].

As threat modeling is a crucial skill for developing secure software, it is frequently taught to

engineers during their undergraduate software engineering education.

Frameworks Used for Threat Modeling

There are various frameworks in place to practice and teach threat modeling. One of the most

popular frameworks used for threat modeling is STRIDE. STRIDE is a threat modeling

methodology where the engineer classifies the vulnerabilities of the system into six categories

- Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of

Privilege [21]. Additionally, this approach also involves creating an architecture overview using

data flow diagrams (DFD), decomposing the architecture into components, identifying threats

affecting each component, and documenting and ranking the threats [13]. Approaches like

DREAD (Damage, Reproducibility, Exploitability, Affected Users, Discoverability) are used in

tandem with the STRIDE framework to rate, compare, and prioritize the severity of risk

presented by each threat. In the end, the STRIDE framework results in the formulation of

mitigation strategies targeted to address the identified threats.

Process for Attack Simulation & Threat Analysis (PASTA) threat modeling methodology [22] is

also another popular framework for threat modeling. The advantage of the PASTA framework is

that it combines business and technical objectives together [23] whereas STRIDE is focused only

on the technical objectives. PASTA is a risk-centric framework where the engineer conducts

threat modeling at a strategic level by involving key decision-makers in the organization. The

PASTA framework requires the engineer to think from the perspective of the attacker similar to

the STRIDE framework. The end result of the PASTA framework is that it produces an asset-

oriented output where the organization can derive the impact of threats using simulated attacks

[24].

Along with STRIDE and PASTA, other popular methods for threat modeling include OCTAVE

(Operationally Critical Threat, Asset, and Vulnerability Evaluation) and Attack Tree techniques

[22]. The OCTAVE method is used to assess mission-level threats from an organizational

standpoint and does not focus on technological risks. The Attack Tree method is more suitable

for architecture risk analysis, especially in complex situations, and may be an overkill for simple,

familiar, or fully understood attacks [25]. The Attack Tree method is also used in combination

with popular techniques such as STRIDE [26] and PASTA [23], [24]. LINDDUN, another threat

modeling method uses a threat tree catalog that encompasses a wide variety of known and

common attack paths or access points for each threat category such as Linkability, Identifiability,

Non-repudiation, Detectability, Information Disclosure, Content Unawareness, and Non-

compliance. It is often used early in the software development phase and employed to mitigate

privacy threats associated with the software [27].

Although multiple threat modeling frameworks are available, STRIDE is often preferred over

other methods in software development because it is considered the most mature threat modeling

framework [23]. Further, STRIDE is frequently used in the industry [28] and is preferred in the

leading secure software development processes [14]. In summary, STRIDE is the most popular

and mature framework available to practice and thereby teach threat modeling to software

engineering students.

Drawbacks of Current Threat Modeling Approaches

Though the above threat modeling frameworks are useful for engineers to build secure software,

they have their set of drawbacks. In many of the above threat modeling frameworks, there is a

lack of emphasis on relationship-based threat modeling [29]. This is because the majority of

threat modeling techniques consider only the component-level threats faced by the system which

hampers identifying scenarios related to the emergent threats which may arise due to interaction

between different components of a system. [29], [30]. For instance, the STRIDE, the most

popular threat modeling framework, does not account for the interaction between components as

it aims to individually immune components susceptible to known threats. As a result, it fails to

account for threats that may materialize when components of a system are connected with each

other [21]. Furthermore, prior research in systems engineering shows that decomposing a system

into components and analyzing each component separately (as done in STRIDE and other threat

modeling frameworks) limits the solution designers’ ability to understand how the overall system

behaves [31], [32]. Hence, along with component-level analysis, threat modeling frameworks

need to incorporate system-level threat analysis as well. Currently, to the best of our knowledge,

none of the approaches used in threat modeling address threats that arise due to relationships

between components or system-level threats.

Another drawback of the current threat modeling approaches is that they can lead to threat

explosion upon software deployment. Threat explosion is a result of the growing complexity of

threats that arise when a new component is added and the number of threats drastically increases

[33]. As a result, new system-level threats may arise as new components or services are added to

the software. This further necessitates a need for a framework for system-level threat modeling.

Additionally, changes in the system during software development may require revaluating all

threats because relationships between components may change [29]. This may lead to a lot of

rework in the early stages of the software development cycle.

Due to the above reasons, there is an opportunity for educators to teach and assess threat

modeling that emphasizes not only the component-level threats but also prioritizes system-level

threats arising from relationships between components. Systems thinking is one such thinking

approach that aims to understand the dynamic nature of a system, its interconnections, synergy

due to interconnections, and observe and predict the behavior of the system as a whole instead of

just focusing on its parts [34], [35]. Therefore, in the next subsection, we propose systems

thinking as a framework for teaching and assessing the threat modeling competency of software

engineering students.

Using systems thinking to supplement existing threat modeling frameworks

As discussed earlier, in cybersecurity threat modeling, the software engineer needs to ensure that

not only the component-level threats are addressed but so are the system-level threats that arise

due to interconnections between different components of the system. Systems thinking is a skill

that focuses on understanding the systemic properties of a system while also accounting for

emergent trends arising from the combination of the connected parts [36]. There are multiple

definitions and frameworks available for systems thinking from a variety of disciplines like

engineering [34], [35], management [37], cognitive sciences [38], etc. However, we chose the

definition and framework developed by Cabrera and Cabrera [39] because their framework helps

develop a mental model needed to practice systems thinking [36]. Further, their framework has

previously been used in educational contexts and is universally applicable to individuals with

varying disciplinary backgrounds [36]. Cabrera and Cabrera [39] defined systems thinking as a

four-part cognitive skill consisting of tenets like making distinctions (D), organizing the system

(S) into parts and wholes, recognizing relationships (R) between parts and wholes of the system,

and taking multiple perspectives (P). Taken together, this four-part skill helps develop a holistic

approach to designing a solution to a problem.

In the context of threat modeling, the systems thinking approach translates as a way to help

engineers account for and mitigate system-level threats that arise as a result of interaction

between the components without discounting threats posed to each component individually. For

instance, by practicing systems thinking during threat modeling, the software engineer can not

only address threats arising due to the relationship between components but also consider threats

from the perspectives of inside and outside attackers. Therefore, teaching systems thinking in

conjunction with popular threat modeling techniques like STRIDE can help overcome the

drawbacks of existing threat modeling techniques.

Although systems thinking has the potential to ensure more robust threat modeling practice, no

prior work has looked to develop a STRIDE rubric and use systems thinking in combination with

STRIDE to teach and assess threat modeling of software engineering students. Further, previous

research on threat modeling does not provide evidence if popular approaches such as STRIDE

foster system-level threat modeling while teaching threat modeling. Given the rising

cybersecurity risks and the utmost importance of effective system-level threat modeling

techniques, the purpose of our work is to propose systems thinking as a supplementary

framework to use alongside STRIDE for teaching and assessing the threat modeling competency

of upper-level software engineering students. Based on the above-discussed gaps, we aim to

address the following research question:

Research Question - To what extent do upper-level software engineering students with and

without systems thinking instruction practice systems thinking while applying the STRIDE threat

modeling framework?

Context

Course Description and Cybersecurity Aspects

We situated our study in a three-credit software engineering course offered to Electrical and

Computer Engineering (ECE) majors at Purdue University, a large Midwestern university in the

USA. This course is offered in a synchronous modality to 3rd- and 4th-year bachelor’s students in

the ECE department. Enrollment of the course is 75-150 students per offering. The prerequisite

knowledge is a two-course sequence in introductory programming and a course in data structures

and algorithms. The learning outcomes cover software engineering methodologies (e.g., iterative

vs. plan-based) and specific techniques for software design, implementation, validation,

deployment, and maintenance. Pertinent to this study, one learning outcome relates to

cybersecurity analysis.

The course uses a project-based learning approach to teach these outcomes. Students work in

teams (groups of 3 to 4 individuals) on a semester-long software engineering project. Teams

must provide weekly updates, but these are intended to help course staff assist struggling teams

rather than as assessment instruments. The primary assessable assignments are the major

milestones of the project – deliveries in week 4, week ~8, and week 16. The project requirements

have been similar in all offerings of the course (Fall 2021, Spring 2023, Fall 2023). Teams build

a replica of the NPM package registry and deploy it to a cloud platform (Google Cloud or AWS).

Students in the course are allowed to use Large Language Models (LLMs) for assignments and

team projects, including the threat modeling component. A more detailed description of the

course and LLM usage is available in [40] and [41] respectively.

The previous iterations of this course (Fall 2021 and Spring 2023) taught threat modeling using

the STRIDE framework. The instructor observed that the students’ analyses were somewhat

naïve, lacking a holistic perspective. In the Fall 2023 iteration of the course, the instructor took

three steps to improve the student's threat modeling skills. These steps were:

1. Training: Additional learning material on systems thinking was developed and integrated

into the learning module on threat modeling. This material was taught during one lecture

and introduced the DSRP principles of systems thinking. The material described DSRP as

offering a mindset with which to think systematically about a computing system while

conducting a security analysis.

2. Tooling: The instructor worked with a company called ThreatModeler

(https://threatmodeler.com/) to obtain educational access to the ThreatModeler platform.

Students were able to develop their system models on this platform. Given a model, this

platform performs automated threat identification (following a checklist) and

recommends mitigations. The instructor emphasized that this automated support was

simplistic and that if students relied on it then their system would be insecure.

3. Assessment: The instructor updated the assignment associated with the security analysis

to ask students to provide more detailed rationales for their system models, identified

threats, and mitigations. This enabled us to better assess the level of holistic thinking

demonstrated by the students. These changes are detailed next.

Framework constructs for rubric development

STRIDE

STRIDE, a robust threat modeling framework developed by Microsoft [20], [21], encompasses

six key types of security threats: Spoofing Identity (S), Tampering with Data (T), Repudiation

(R), Information Disclosure (I), Denial of Service (DoS) (D), and Elevation of Privilege (E).

Spoofing involves deceptive practices to assume the identity of trusted entities. Tampering

threats revolve around unauthorized data modifications and compromising integrity. Repudiation

pertains to individuals denying involvement in actions, and challenging accountability.

Information Disclosure involves unauthorized access to confidential data. Denial of Service

disrupts system availability through resource overload. Elevation of Privilege seeks unauthorized

escalation of user privileges. This framework provides a comprehensive approach to identifying

and addressing security threats, aiding security professionals in evaluating and mitigating

potential risks. The components of the STRIDE framework discussed above act as the important

constructs that our rubric (discussed in methods) needs to assess the STRIDE threat modeling

performance.

DSRP Systems Thinking.

In the educational and research context, the Distinction – System – Relationship – Perspective

(DSRP) is a systems thinking framework developed by Cabrera and Cabrera [39] that has been

used to teach and learn systems thinking. The DSRP criteria have been intricately woven into the

assessment process, offering a unique lens for evaluating an individual’s systems thinking

approach. The Distinctions (D) component ensures a keen eye for detail, recognizing nuances

https://threatmodeler.com/

and differences between components and systems. Systems (S) thinking allows for a holistic

evaluation, by understanding the role of each component of the system and how they contribute

to the overall coherence of the system as a whole. Relationships (R) are scrutinized to assess how

various components interact and how their interaction influences the system. Perspectives (P)

demand a nuanced understanding of different points of view to observe and understand the

system under study. Taken together, these four cognitive rules help evaluate how one

demonstrates systems thinking. The tenets of the DSRP framework shown above act as the

important constructs that our system thinking rubric needs (rubric introduced in methods) to

assess in the context of threat modeling. We discuss how these constructs are used to develop the

rubric in the methods subsection on rubrics.

Methods

This paper is part of an ongoing project to investigate how systems thinking can be used in

combination with popular threat modeling frameworks like STRIDE to teach and assess

component-level and system-level threat modeling to upper-level software engineering students.

In this section, we provide an overview of the methods we used in our study. We begin by

describing the software engineering course where we piloted our study. Next, we discuss our data

collection strategy, introduce the pilot version of our rubric, our data analysis approach (scoring

strategy using our rubric), and ethical considerations.

Data collection

To answer our research question, we collected data on the students’ team projects. In the project,

student teams had to deliver the implementation of the software they developed and

communicate the final status of the project.

Specifically, the project’s final milestone (week 16) asks student teams to describe and provide

evidence of the achieved functional requirements (e.g. the system is deployed to Amazon Web

Services and supports the requisite API) and non-functional requirements, notably a security case

that includes a security analysis using STRIDE. For this study, we analyzed the security case

provided by each team.

In the security case deliverable of the project, the student teams had a baseline requirement to

discuss the following various components of their threat model (1) systems data flow diagram

with trust boundaries (2) threat model(s) (3) Consideration of STRIDE-type threats in the context

of system and threats, possibly with reference to OWASP Top 10 and other lists of security best

practices and threats, (4) Mitigations taken in response to the analysis, and (5) risks they did not

mitigate along with their rationale. Figure 1 provides an overview of the security analysis prompt

of the team project.

The same deliverable was common to all student teams - Fall 2021, Spring 2023, and Fall 2023.

In Fall 2023 however, we tweaked the response template to include new prompts focused on

systems thinking. Figure 2 shows the new prompts we added in the Fall 2023 to the response

template. Our objective behind adding the prompts on systems thinking was to understand if

student teams practiced DSRP principles of systems thinking while conducting security analysis

using STRIDE. Specifically, we wanted to understand if teams thought about, identified, and

considered aspects like the relationship between components, threats arising from the

relationship between components, threats from multiple attacker perspectives, and system-level

threats while performing security analysis using STRIDE.

Figure 1

The figure describes a security case as a deliverable for student team projects. The security case

focuses on developing a threat model based on STRIDE principles for the ACME Corporation

and suggesting mitigation for the threats identified. Further, the figure mentions the baseline

requirements that each team had to prepare for their security case.

Figure 2

New prompts on systems thinking that we added to security case deliverable in Fall 2023. The

previous iterations of the course in Fall 2021 and Spring 2023 did not explicitly ask students to

discuss risks emerging from interactions.

Rubric

In this subsection, we introduce a rubric we developed based on STRIDE and system thinking

frameworks for threat modeling.

Need for a rubric

Rubrics provide a guide for scoring student work and help assess the performance of a particular

learning outcome [42]. Rubrics act as a scoring tool that helps evaluate the student on specific

dimensions of the assignment by providing a detailed explanation of what constitutes a

satisfactory and unsatisfactory level of performance on the assignment [43]. Prior research

suggests that well-developed rubrics can aid in evaluating student performance in a reliable way

[44]. As a result, rubrics are a useful, effective, and reliable tool to understand and assess if the

student's work has met a sufficient level of satisfactory performance on the learning outcomes of

a given assignment.

As discussed previously, no prior work has developed a rubric for STRIDE as well as systems

thinking to assess the threat modeling performance of software engineering students. Therefore,

we have developed an initial and pilot version of two analytical rubrics – one to assess STRIDE

performance, and the second to assess systems thinking performance. We developed an analytical

rubric because it helps assign a numeric score to a specific construct or learning outcome being

measured based on the quality of the response provided in the assignment [45]. In our case, these

learning outcomes are called constructs. These constructs include various steps in the STRIDE

and DSRP systems thinking frameworks. We introduced these constructs in the frameworks

section and now discuss them below.

Constructs of the rubric

Based on the STRIDE and DSRP constructs discussed in the frameworks section, we have

developed two rubrics that help us understand how well students perform on the different

learning outcomes of STRIDE and DSRP. We broke down the rubric into specific assessment

constructs for (1) STRIDE and (2) DSRP. Each of the constructs of STRIDE and DSRP was

divided into three scales based on the quality of student response: Beginner, Intermediate, and

Advanced. This thorough approach can help us see how good students are at handling security

issues using STRIDE as well as how they demonstrate systems thinking skills like making

distinctions, understanding systems, recognizing relationships, and viewing the threat model

from multiple perspectives. By looking closely at these constructs and scales, we introduce a

detailed assessment rubric that will help educators evaluate STRIDE and systems thinking

performance. The STRIDE rubric and DSRP rubric for threat modeling are shown in Appendix A

and their sample versions are shown in Table 1 and Table 2 respectively. Further, we divided the

STRIDE rubric into two phases (1) Modeling and (2) Threat Analysis. The modeling phase

consisted of constructs of Defining threats in a model, Defining security requirements, Dataflow

diagram (DFD), and Documentation. The threat analysis phase consisted of Spoofing,

Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege, and

Mitigation Strategy.

Table 1

A sample version of the STRIDE rubric to assess the security case deliverable is shown. The

detailed version of this rubric is available in the Appendix. Note: A score of 0 was given if there

was no response related to a given construct

Constructs Beginner (score = 1) Intermediate

(Additional to

beginner skillset;

Score = 2)

Advanced (Additional to

intermediate skillset; Score

= 3)

Defining threats

in a model

Identifies if a system

has a potential source

of threat or not.

Understands the threat

that contributes to the

risk, and the extent of

how the threat impacts

the components.

Identify the specific threat

agents that can harm the

components and/or the

system.

STRIDE -

Spoofing

Defines Spoofing and

identifies which part of

the model contributes

to the same

Identifies the

property(ies) violated:

E.g., Authentication

Identifies the extent to which

the threat is affecting the

component and/or system and

ranks its importance.

Mitigation

strategies

Identifies correct

mitigation strategies

based on the properties

violated

Discusses the

effectiveness of

mitigation strategies

and specifically

answers the questions:

Which threat? What

strategy? How to

implement it? And,

why this

implementation

mitigates the earlier

mentioned problem?

1. Identifies the threats that

exist due to the

interaction between the

different components and

their extent of

contribution to the threat

of the entire model.

Discuss possible

mitigation strategies.

2. Discusses about efficient

implementation of

mitigation strategies and

talk about resource-

constrained situations.

3. Discusses possible scope

of trade-offs and if there

are new requirements in

the system for threat

mitigation.

Table 2

A sample rubric was developed to assess DSRP systems thinking for the security case

deliverable. The detailed version of this rubric is available in the Appendix. Note: A score of 0

was given if there was no response related to a given construct

DSRP

Construct

Beginner (score =

1)

Intermediate

(Additional to beginner

skillset; Score = 2)

Advanced (Additional to

intermediate skillset; Score =

3)

Distinctions Identifies basic

distinctions

between

components and

system.

Analyzes distinctions in

moderately complex

threat scenarios.

Critically evaluates and

synthesizes complex distinctions

between different threats for

system and components,

showcasing depth.

Relationships Identifies basic

relationships

between

components.

Analyzes relationships

between components in a

nuanced manner.

Evaluates intricate relationships

between components as well as

how they collectively contribute

to the system, demonstrating

advanced insights.

Participants

To answer our research questions, we collected data from 24 student teams in Fall 2021, 37

student teams in Spring 2023, and 18 student teams in Fall 2023 who were enrolled in the

software engineering course at Purdue University, USA. The students enrolled in this course are

junior and senior year students from either electrical or computer engineering majors. As

discussed, the Fall 2021 students and Spring 2021 students did not receive any instruction on

systems thinking whereas students from Fall 2023 did.

For this study, we randomly selected five student team projects from each of the Fall 2021,

Spring 2023, and Fall 2023 semesters (total 15 projects) and analyzed their security case

deliverables using the rubrics we developed. Next, we discuss our scoring approach based on the

rubric we developed for assessing STRIDE and system thinking during threat modeling.

Data analysis

Scoring using the rubric.

The first step in the data analysis process was to score the security case deliverable using the

rubrics shown above. For each dimension, students’ responses were scored on a scale of 0–3 We

used a score of zero for no response, one for beginner-level response, two for intermediate-level

response, and three for advanced-level response if teams successfully fulfilled the scoring

requirements of the given constructs of STRIDE and DSRP systems thinking as shown in the

above rubrics.

The scoring took place in two stages. In the first stage, the two members of the research team

met and selected five student projects at random and scored their security case based on the

initial version of the rubric. After the first stage of scoring, the two members identified

irregularities and came to a consensus on consistent definitions and interpretation for each

construct as well as each score assigned in the two rubrics. To ensure consistency in the

interpretation and scoring of the rubric, they added clarificatory sentences to each score of the

rubric. In this way, a refined rubric was developed. This rubric was shared with the course

instructor and an engineering education faculty for feedback, both of whom are authors of this

paper.

In the second stage, two members of the research team scored the remaining security case

deliverables from Fall 2021, Spring 2023, and Fall 2023 using the refined rubric. Once all the

scoring was completed, the two members met and came to a consensus on the final score given

to each construct of the rubric. The average rating agreement was close to 94%.

After the analysis was completed, we compared how the students from Fall 2021, Spring 2023,

and Fall 2023 performed on their systems thinking (DSRP) and STRIDE framework scores

(modeling and threat analysis phases). The comparison of scores for each STRIDE and systems

thinking construct using histograms and averages helped us address our research question.

Ethical considerations

The Purdue University IRB has reviewed our study as an analysis of existing data because the

team project reports were collected as part of the assessment for the software engineering course

(Purdue IRB #2024-120). To ensure anonymity, we masked student names and deidentified the

data by assigning a participant ID to their project submission. The participant key and the

deidentified data were stored on a secured cloud drive and the original identifiable data were

deleted upon deidentification. Additionally, to avoid coercion, the team projects were analyzed

using the rubric only after the end of the Fall 2023 semester once all grades had been submitted.

Results

In the previous section, we introduced our proposed rubric for assessing STRIDE and systems

thinking performance during threat modeling, and, in this section, we will describe the results of

piloting this rubric. The purpose of this section is to compare STRIDE and systems thinking

performance of three groups during threat modeling – one who received instruction on systems

thinking and STRIDE (Fall 2023) and the other two who received only instruction on STRIDE

(Fall 2021 and Spring 2023). By making the comparison we aim to answer the following

research question: To what extent do upper-level software engineering students with and without

systems thinking instruction practice systems thinking while applying the STRIDE threat

modeling framework? The comparison will help us, and other educators (1) draw preliminary

inferences on the using systems thinking to supplement threat modeling and (2) determine if it is

promising to explore the intersection between threat modeling and system thinking in the future.

First, we share the results of scoring using the rubric and discuss how students from Fall 2023

compare with Spring 2023 and Fall 2021 on their STRIDE analysis and systems thinking

performance. Second, we explain qualitative differences between student teams’ performance on

DSRP systems thinking by comparing responses of two student teams’ security case deliverable.

Third, we highlight the trends and blind spots related to systems thinking and STRIDE analysis

that we noticed while scoring using the rubric. The preliminary results of our investigation are

discussed below.

Results of scoring using STRIDE and systems thinking rubric

Our scoring results (shown in Figure 3 and Figure 4), reveal that most of the student teams from

Fall 2021 (group 1), Spring 2023 (group 2), and Fall 2023 (group 3) have done well in

developing their threat models using the STRIDE framework. We observe that the average scores

of all three groups in the modeling and threat analysis phases of STRIDE (Figure 3) are close by

and consistent (ranging from 2.6 to 3). Further, most of the teams from the three groups have

scored a 2 or 3 on their STRIDE modeling and threat analysis phases. In some cases, student

teams have scored zero on STRIDE properties because they did not discuss components and

affected security properties associated with components that might be susceptible to the threats.

For scores associated with the systems thinking performance of students (Figure 4), we observe

that Fall 2021 and Spring 2023 students demonstrated beginner to intermediate level (with

average scores generally between 1.20 and 1.60 and most scores being either 1 or 2) systems

thinking while developing their threat models. Observing the Fall 2023 students, we realize that

they did very well on their systems thinking scores and generally demonstrated an intermediate

to advanced level of systems thinking (average scores between 2.4 and 2.8 and most scores being

either 2 or 3) while developing their threat models using STRIDE.

Figure 3

This figure presents the scoring results as per the STRIDE rubric. The first figure here shows the

average score received by the three groups in the Modeling and Threat Analysis phases. The

second and third figure shows the number of times each group received a score of 0, 1, 2, and 3

during the Modeling and Threat Analysis phases.

Fall 2021 Spring 2023 Fall 2023

Average Modeling score 2.85 2.6 3

Average Threat analysis score 2.49 2.40 2.74

Figure 4

This figure presents the scoring results as per the Systems thinking rubric. The first figure here

shows the average score received by the three groups on each of the DSRP constructs. The

second figure shows the number of times each group received a score of 0, 1, 2, and 3 during

DSRP systems thinking.

Taking the STRIDE and systems thinking results together, our results indicate that although Fall

2021 and Spring 2023 students performed well on STRIDE, they had beginner to intermediate-

level system thinking performance. Further, the scoring of their threat modeling approach

reflects their emphasis on component-level aspects of threat modeling rather than a systems-level

perspective. On the other hand, as the Fall 2023 students had a module on systems thinking, they

demonstrated relatively more advanced level of systems thinking and STRIDE performance

while (higher average scores than the other two groups) performing the threat modeling.

Additionally, the scoring results of Fall 2023 students indicate that their threat modeling

approach shifted their focus from just component-level threat modeling toward more system-

level threat modeling.

Qualitative differences between students’ systems thinking scores.

As teams from all the semesters scored well on their STRIDE analysis, in this subsection, we

qualitatively compare the systems thinking performance of Fall 2023 teams and teams from the

other two semesters. To make this comparison, we have chosen examples from students’ security

Average Fall 2021 Spring 2023 Fall 2023

D 1.60 1.40 2.60

S 1.20 1.40 2.40

R 1.40 1.40 2.80

P 2.40 1.60 2.40

DSRP 1.65 1.45 2.55

case deliverable that focus on the Systems and Perspective constructs of the DSRP framework.

For this comparison, we selected one team from the Fall 2021 semester (hereby referred to as

2021-Team A) and one from the Fall 2023 semester (hereby referred to as 2023 - Team U). These

two teams were selected for comparison because they both did well on the STRIDE analysis but

had very different scores on the DSRP system thinking constructs. The 2023 - Team U team had

a score of three on each of the DSRP constructs whereas 2021-Team A had a score of one, zero,

zero, and two on the D, S, R, and P constructs respectively.

Comparing the teams on their Systems construct, we observe that while developing a mitigation

strategy for Spoofing, 2021-Team A recognizes and mitigates only basic component-level

threats. For instance, to address the threat of intruders accessing repository files, they have

implemented the following mitigation:

“Risk: Intruder gets access to our repository’s files.

Mitigations applied: only authenticated users like team members and people who were given

access to the repo can view the repo content.

Degree of risk resolution: High

Suggestions for additional mitigations, if needed: N/A.”

On the other hand, 2023 - Team U while developing a mitigation strategy for Spoofing

recognizes multiple threats, looks at multiple vulnerable components, and how their vulnerability

can cause issues to the system. Their mitigation strategy for a risk associated with intruders

gaining access is as follows:

“Risk: Weak Identity, Credential, and Access Management

Mitigations applied: Mitigations applied: Use of strong authentication mechanisms (MFA),

centralized identity management (AWS IAM), adherence to least privilege principle, AWS
CloudWatch monitoring. encryption of data in transit and at rest, and Role-Based Access Control

(RBAC).

Degree of risk resolution: All team members are required to enable multi-factor authentication
with their AWS account. We use AWS IAM to assign roles to users to give them access to specific

components within the system. We adhere to a least privilege principle along with RBAC to make
sure that all components have access to the minimum needed levels. AWS DynamoDb and 53

automatically encrypt data at rest and utilize AWS KMS to make sure data is secure. Finally,

through AWS Amplify we use HTTPS methods to transfer our data in an encrypted manner. With

these mitigations in place, it greatly reduces the chances of unintended user access.

Suggestions for additional mitigations, if needed: If we were not limited to AWS free tier, we could

implement AWS X-Ray to view, filter, and gain insights into that data to identify issues and

opportunities for optimization or could use AWS Shield advanced to protect our registry better”

Observing the mitigation strategy of the two teams, we notice that 2023 - Team U demonstrates a

deeper level of understanding of the threat related to accessing information than 2021-Team A.

Subsequently, 2023 - Team U develops a mitigation strategy that has layers of security for each

vulnerable component of the system while also placing mitigations measures at weak points of

the system so that no unintended user gets access to the system. On the other hand, 2021-Team A

does not describe their mitigation strategy in detail and only describes that they prevented access

to a component but not the whole system. Further, 2021-Team A does not discuss ‘how’ they

prevented access to the vulnerable component whereas 2023-Team U does by specifying

mechanisms like MFA, least privilege principle, etc.

Now, comparing the teams on their Perspective construct, we notice that 2021-Team A identifies

two trust boundaries and only mentions that there are threats from both insiders and outsiders.

2023 - Team U on the other hand identified not just the insider and outsider threats but also

explained the rationale behind having multiple trust boundaries. In Figures 5 and 6m we see how

the two teams describe the trust boundary and multiple perspectives through which they analyzed

the threats to the system.

From the two figures, we notice that 2023 - Team U not only recognized how the attacks on the

system can take place from multiple perspectives but also set up measures in the form of trust

boundaries to counter those attacks. 2021-Team A on the other hand only mentioned that attacks

can take place from multiple perspectives but did not discuss how the trust boundary helps

prevent those attacks. Further, 2023 - Team U also discussed various attacker perspectives while

developing their mitigation strategies during STRIDE while 2021-Team A did not discuss the

role of different attackers while developing their mitigation strategies.

Figure 5

This figure presents trust boundaries and attacker perspectives discussed by 2021-Team A in

their security case deliverable.

Figure 6

This figure presents trust boundaries and attacker perspectives discussed by 2023 - Team U in

their security case deliverable.

Trends and blind spots in students' threat modeling approach

In this subsection, we discuss the trends and blind spots we noticed in teams’ security case

deliverables. We begin by discussing trends and blind spots we observed during STRIDE (Table

3) and systems thinking (Table 4).

STRIDE

Table 3

This table described the trends and blind spots we observed in students’ security case deliverable

while scoring their projects using the STRIDE rubric.

Category Observation

Trend Most teams clearly defined the security requirements and threats associated with their

software and hence, received an advanced score on these constructs

Blindspot The majority of the Fall 2021 and Spring 2023 teams that received a score of two

presented only a high-level overview of the dataflow diagram but did not present a

detailed version of the dataflow diagram with all the trust boundaries and components.

Trend Fall 2023 had a detailed DFD with all trust boundaries and components. They

exhaustively discussed the problematic regions in the dataflow diagram and talked about

potential vulnerability scenarios with respect to trust boundaries. We believe that by

using the functionalities of the ThreatModeler tool students were able to build detailed

DFD, and system models, and also identify risks associated with each component.

Blindspot Fall 2021 and Spring 2023 teams did not exhaustively discuss the problematic regions in

the dataflow diagram and talk about potential vulnerability scenarios for a component or

a system based on its trust boundaries

Blindspot A few teams in all three semesters did not discuss affected security properties during

STRIDE risk analysis and/or mitigation and hence

Blind spot Some teams from Fall 2021 and Spring 2023 received a score of one if they identified

risks and mitigations but implemented only a few mitigations. Additionally, they

received a score of two if they discussed component-level mitigation but did not discuss

mitigations for situations where there were threats due to interactions between

components

Trends Fall 2023 students discussed different scenarios where components interacted and hence,

may have identified the potential threats associated with interactions. Further, they also

recommended mitigation strategies for a few threat scenarios that arose due to

interaction between components

DSRP Systems thinking

Table 4

This table described the trends and blind spots we observed in students’ security case deliverable

while scoring their projects using the systems thinking rubric.

Category Observation

Trend Most teams from Fall 2023 teams identified system-level threats and/or emergent

threats arising due to interaction between components and scored high on systems

thinking constructs of Systems and Relationships

Trend While discussing system-level threats, many of the Fall 2023 teams also discussed

different scenarios where and how the system could be vulnerable

Blindspot Teams from Fall 2021 and Spring 2023 either did not discuss system-level threats, or

interaction threats, or discussed them very minimally (e.g., mentioned only in security

requirements). Instead, they chose to focus only on component threats. These teams

scored between beginner and intermediate on S and R

Blindspot Fall 2021 and Spring 2023 teams did not exhaustively discuss the problematic regions

in the dataflow diagram and talk about potential vulnerability scenarios for a component

or a system based on its trust boundaries

Trend Teams from Fall 2023 scored high on Distinctions because they drew detailed DFDs.

We observed that the ThreatModeler tool functionalities helped students develop

detailed DFDs and describe the role and risks associated with each component. They

discussed specific and unique risks (both component and system level) for each

STRIDE property and identified mitigation strategies for each risk. A few Fall 2021 and

Spring 2023 teams did the same.

Blind spot Although students from the Fall 2021 and Spring 2023 performed well with the DFD,

they did not always describe the role of each component of the system and did not

discuss distinct system-related threat or failure scenarios

Trends Many teams across the three groups identified attackers from multiple perspectives i.e.,

insider attackers or outsider attackers. At times teams from Fall 2021 and Fall 2023 also

described how at least one of the attackers would implement an attack

Trends Many teams from Fall 2023 described not just an attacker and their implementation

strategy but also presented how failure or threats can take place and the consequences

that could happen at component and systemwide levels

Discussion

The purpose of our paper was to use STRIDE and introduce systems thinking as frameworks for

teaching and assessing the threat modeling competency of upper-level software engineering

students. While teaching STRIDE threat modeling using a holistic systems approach, the

instructor (1) incorporated modules on systems thinking; (2) acquired and provided access to the

educational version of the ThreatModeler platform as a tool for developing system models; and

(3) Updated the assessment on security analysis by asking students to provide more detailed

rationale for their system models, identified threats, and mitigation strategies. To assess the

security analysis in student team projects, we developed two separate rubrics, one for assessing

their STRIDE threat modeling performance and the other for assessing systems thinking

performance during STRIDE threat modeling. We piloted the above rubrics on two student

groups – the first which had received instruction only on STRIDE threat modeling (Fall 2021

and Spring 2023), and the second which had received instruction on both STRIDE and systems

thinking (Fall 2023). Our results revealed that Fall 2023 students who had received STRIDE and

systems thinking instruction performed better than the Fall 2021 and Spring 2023 groups in

holistically identifying and mitigating component as well as system-level risks. Given that

students were holistically able to identify and work on mitigating system-level risks, we think

that there is potential for using systems thinking in threat modeling teaching and assessment.

Currently, STRIDE is the industry standard and a popular framework for teaching threat

modeling [23]. STRIDE is taught because it is easy to teach, not time-consuming, and can be

incorporated into existing curriculum without many changes. Additionally, the resources for

teaching STRIDE like its documentation and tools are readily available (e.g., see Security Design

using Microsoft STRIDE). However, one of the drawbacks of STRIDE is that it is not originally

developed to identify and mitigate system-level threats and threats arising due to the relationship

between components [21]. Our results suggest that teaching a 1-week module on systems

thinking in addition to STRIDE can help students identify system-level threats and also account

for threats arising due to the relationship between components. This weeklong systems thinking

plug-in module can be particularly useful because it is difficult to dedicate multiple weeks to

teach other secure software development techniques like NIST Cybersecurity Framework [46] or

NIST Secure Software Development Framework [47] in a software engineering (SWE) course.

From an assessment standpoint, our results suggest that incorporating systems thinking questions

in student assignments of threat modeling can be useful in identifying trends and blind spots in

the security case deliverables. Particularly, the blind spots we identified help reiterate that the

STRIDE threat modeling framework does not probe SWE students to consider the relationships

between components and their resultant emergent threats [21]. However, including probing

questions on systems thinking during STRIDE can be advantageous as they prompt students to

think about relationships between components and potential threat scenarios that arise due to the

relationships. These modifications to the security case deliverable can help overcome the

drawbacks of frameworks like STRIDE. Further, identifying relationships between components

can be useful for identifying complex threat scenarios that arise when component interactions

take place in a system [29]. Thus, there are potential benefits to incorporating systems thinking

questions in student assignments on threat modeling.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach

Along with tweaking the assessment template, our work also focused on developing and piloting

two rubrics, one for assessing STRIDE performance and another for systems thinking

performance while conducting STRIDE. Our pilot results showed the potential for using these

rubrics for assessing the STRIDE and systems thinking competencies during STRIDE. Our

ongoing and future work will thus focus on building off these baseline results of the rubric and

developing the rubric as per the procedure suggested by [48]. Specifically, we plan to

longitudinally test student work for the remaining Fall 2021, Spring 2023, and Fall 2023 security

case deliverables and identify any potential concerns associated with the rubric for further

refinement. In addition, we will also make this rubric accessible to other professionals and

educators and ask them to use the rubric to evaluate similar security case artifacts. We plan to

seek their feedback and use their input to improve the construct validity of our rubric. Our end

goal of this project is to develop teaching and assessment resources that combine threat modeling

and systems thinking principles so that educators can use them to prepare SWE students for

developing secure software.

Conclusion

This paper focuses on using STRIDE and introducing systems thinking as frameworks for

teaching and assessing the threat modeling competency of upper-level software engineering

students. As a part of this work, we introduced a module on systems thinking in a SWE course

and developed two novel rubrics - one for STRIDE and another for systems thinking. We piloted

these rubrics to analyze security case deliverable of SWE student team projects. Our results

reveal that student teams who had systems thinking as well as STRIDE instruction were able to

identify both system-level and component-level threats in their team projects and attempted to

address them. Teams who received only STRIDE instruction tended to focus on component-level

threats and minimally identified and mitigated system-level threats. Thus, we believe that there is

potential for using systems thinking in threat modeling teaching and assessment. In summary,

our work contributes to both teaching and assessment of the crucial skill of threat modeling to

improve cybersecurity education and prepare students with the necessary skills for the

workforce.

Acknowledgements

This work was funded by the Purdue Engineering Education Explorers Program, and by a

pedagogy grant from the Elmore Family School of Electrical and Computer Engineering.

References

[1] M. J. Assante, “Infrastructure Protection in the Ancient World,” presented at the 2009 42nd

Hawaii International Conference on System Sciences, IEEE Computer Society, Dec. 2009,

pp. 1–10. doi: 10.1109/HICSS.2009.775.

[2] A. Hussain, A. Mohamed, and S. Razali, “A Review on Cybersecurity: Challenges &

Emerging Threats,” in Proceedings of the 3rd International Conference on Networking,

Information Systems & Security, in NISS ’20. New York, NY, USA: Association for

Computing Machinery, May 2020, pp. 1–7. doi: 10.1145/3386723.3387847.

[3] J. A. Lewis and W. Crumpler, “The Cybersecurity Workforce Gap,” Center for Strategic and

International Studies, Jan. 2019. Accessed: Dec. 06, 2023. [Online]. Available:

https://www.csis.org/analysis/cybersecurity-workforce-gap

[4] Siemens, “Cybersecurity in the Modern Industrial World,” Harvard Business Review, Feb.

07, 2019. Accessed: Dec. 06, 2023. [Online]. Available:

https://hbr.org/sponsored/2019/02/cybersecurity-in-the-modern-industrial-world

[5] D. Bendler and M. Felderer, “Competency Models for Information Security and

Cybersecurity Professionals: Analysis of Existing Work and a New Model,” ACM Trans.

Comput. Educ., vol. 23, no. 2, pp. 1–33, Jun. 2023, doi: 10.1145/3573205.

[6] K. Trimlin and J. A. Lewis, “Hacking the Skills Shortage: A Study of the International

Shortage in Cybersecurity Skills,” McAfee and CSIS, Santa Clara, CA, 2016. [Online].

Available: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hacking-skills-

shortage.pdf.

[7] CyberSeek, “Cybersecurity supply/demand heat map,” Cyberseek.org. Accessed: Dec. 06,

2023. [Online]. Available: https://www.cyberseek.org/heatmap.html

[8] W. Xiong and R. Lagerström, “Threat modeling – A systematic literature review,” Comput.

Secur., vol. 84, pp. 53–69, Jul. 2019, doi: 10.1016/j.cose.2019.03.010.

[9] X. Yuan, L. Yang, B. Jones, H. Yu, and B.-T. Chu, “Secure Software Engineering

Education: Knowledge Area, Curriculum and Resources,” J. Cybersecurity Educ. Res.

Pract., vol. 2016, no. 1, Jun. 2016, [Online]. Available:

https://digitalcommons.kennesaw.edu/jcerp/vol2016/iss1/3

[10] S. Acharya and W. W. Schilling, “Infusing software security in software engineering,” in

2017 ASEE Annual Conference & Exposition, Columbus, OH, 2017.

[11] I. A. Buckley, J. Zalewski, and P. J. Clarke, “Introducing a cybersecurity mindset into

software engineering undergraduate courses,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 6,

2018.

[12] H. Gonzalez, R. Llamas-Contreras, and C. Guerra-García, “Cybersecurity Practices At The

Initial Stages Of The Software Engineering Process,” in 2021 9th International Conference

in Software Engineering Research and Innovation (CONISOFT), Oct. 2021, pp. 219–226.

doi: 10.1109/CONISOFT52520.2021.00037.

[13] I. Williams and X. Yuan, “Evaluating the effectiveness of Microsoft threat modeling tool,”

in Proceedings of the 2015 Information Security Curriculum Development Conference, in

InfoSec ’15. New York, NY, USA: Association for Computing Machinery, Oct. 2015, pp. 1–

6. doi: 10.1145/2885990.2885999.

[14] R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of Microsoft’s threat

modeling technique,” Requir. Eng., vol. 20, no. 2, pp. 163–180, Jun. 2015, doi:

10.1007/s00766-013-0195-2.

[15] W. Xiong, E. Legrand, O. Åberg, and R. Lagerström, “Cyber security threat modeling based

on the MITRE Enterprise ATT&CK Matrix,” Softw. Syst. Model., vol. 21, no. 1, pp. 157–

177, Feb. 2022, doi: 10.1007/s10270-021-00898-7.

[16] D. Van Landuyt and W. Joosen, “A descriptive study of assumptions in STRIDE security

threat modeling,” Softw. Syst. Model., vol. 21, no. 6, pp. 2311–2328, Dec. 2022, doi:

10.1007/s10270-021-00941-7.

[17] M. T. J. Ansari, D. Pandey, and M. Alenezi, “STORE: Security Threat Oriented

Requirements Engineering Methodology,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34,

no. 2, pp. 191–203, Feb. 2022, doi: 10.1016/j.jksuci.2018.12.005.

[18] P. Bedi, V. Gandotra, A. Singhal, H. Narang, and S. Sharma, “Threat-oriented security

framework in risk management using multiagent system,” Softw. Pract. Exp., vol. 43, no. 9,

pp. 1013–1038, 2013, doi: 10.1002/spe.2133.

[19] D. Dhillon, “Developer-Driven Threat Modeling: Lessons Learned in the Trenches,” IEEE

Secur. Priv., vol. 9, no. 4, pp. 41–47, Jul. 2011, doi: 10.1109/MSP.2011.47.

[20] F. Swiderski and W. Snyder, Threat modeling. Redmond, Wash: Microsoft Press, 2004.

[21] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Uncover Security Design Flaws

Using The STRIDE Approach.” Accessed: Oct. 27, 2023. [Online]. Available:

https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-

security-design-flaws-using-the-stride-approach

[22] A. Konev, A. Shelupanov, M. Kataev, V. Ageeva, and A. Nabieva, “A Survey on Threat-

Modeling Techniques: Protected Objects and Classification of Threats,” Symmetry, vol. 14,

no. 3, Art. no. 3, Mar. 2022, doi: 10.3390/sym14030549.

[23] N. Shevchenko, T. A. Chick, P. O’Riordan, T. P. Scanlon, and C. Woody, “Threat modeling:

a summary of available methods,” Carnegie Mellon University Software Engineering

Institute Pittsburgh United …, 2018.

[24] T. UcedaVelez, “Real world threat modeling using the pasta methodology,” OWASP App

Sec EU, 2012.

[25] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack trees,” J. Comput. Sci.

Coll., vol. 23, no. 4, pp. 124–131, 2008.

[26] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A threat model-based approach to

security testing,” Softw. Pract. Exp., vol. 43, no. 2, pp. 241–258, 2013, doi:

10.1002/spe.2111.

[27] K. Wuyts, L. Sion, and W. Joosen, “LINDDUN GO: A Lightweight Approach to Privacy

Threat Modeling,” in 2020 IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW), Sep. 2020, pp. 302–309. doi: 10.1109/EuroSPW51379.2020.00047.

[28] J. A. Ingalsbe, L. Kunimatsu, T. Baeten, and N. R. Mead, “Threat Modeling: Diving into the

Deep End,” IEEE Softw., vol. 25, no. 1, pp. 28–34, Jan. 2008, doi: 10.1109/MS.2008.25.

[29] S. Verreydt, L. Sion, K. Yskout, and W. Joosen, “Relationship-based threat modeling,” in

Proceedings of the 3rd International Workshop on Engineering and Cybersecurity of

Critical Systems, in EnCyCriS ’22. New York, NY, USA: Association for Computing

Machinery, Nov. 2022, pp. 41–48. doi: 10.1145/3524489.3527303.

[30] R. Galvez and S. Gurses, “The Odyssey: Modeling Privacy Threats in a Brave New World,”

in 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Apr.

2018, pp. 87–94. doi: 10.1109/EuroSPW.2018.00018.

[31] F. Camelia and T. L. J. Ferris, “Systems Thinking in Systems Engineering,” INCOSE Int.

Symp., vol. 26, no. 1, pp. 1657–1674, 2016, doi: 10.1002/j.2334-5837.2016.00252.x.

[32] R. Joseph and C. Reigeluth, “The Systemic Change Process in Education: A Conceptual

Framework (149),” Contemp. Educ. Technol., vol. 1, pp. 97–117, Apr. 2010, doi:

10.30935/cedtech/5968.

[33] K. Wuyts, D. Van Landuyt, A. Hovsepyan, and W. Joosen, “Effective and efficient privacy

threat modeling through domain refinements,” in Proceedings of the 33rd Annual ACM

Symposium on Applied Computing, in SAC ’18. New York, NY, USA: Association for

Computing Machinery, Apr. 2018, pp. 1175–1178. doi: 10.1145/3167132.3167414.

[34] R. D. Arnold and J. P. Wade, “A Definition of Systems Thinking: A Systems Approach,”

Procedia Comput. Sci., vol. 44, pp. 669–678, 2015, doi: 10.1016/j.procs.2015.03.050.

[35] M. Frank, “Knowledge, abilities, cognitive characteristics and behavioral competences of

engineers with high capacity for engineering systems thinking (CEST),” Syst. Eng., vol. 9,

no. 2, pp. 91–103, 2006, doi: 10.1002/sys.20048.

[36] D. Cabrera and L. Cabrera, “What Is Systems Thinking?,” in Learning, Design, and

Technology: An International Compendium of Theory, Research, Practice, and Policy, M. J.

Spector, B. B. Lockee, and M. D. Childress, Eds., Cham: Springer International Publishing,

2019, pp. 1–28. doi: 10.1007/978-3-319-17727-4_100-1.

[37] P. M. Senge, The Fifth Discipline: The Art and Practice of the Learning Organization.

Doubleday/Currency, 2006.

[38] D. Cabrera, L. Cabrera, and E. Powers, “A unifying theory of systems thinking with

psychosocial applications,” Syst. Res. Behav. Sci., vol. 32, no. 5, pp. 534–545, 2015.

[39] D. Cabrera and L. Cabrera, Systems thinking made simple: new hope for solving wicked

problems. Ithaca?, New York: Odyssean Press, 2018.

[40] J. C. Davis, P. Amusuo, and J. R. Bushagour, “Experience Paper: A First Offering of

Software Engineering,” in Proceedings of The First International Workshop on Designing

and Running Project-Based Courses in Software Engineering Education (ICSE-DREE),

2022, p. 5.

[41] B. A. Tanay, L. Arinze, S. S. Joshi, K. A. Davis, and J. C. Davis, “An Exploratory Study on

Upper-Level Computing Students’ Use of Large Language Models as Tools in a Semester-

Long Project,” in 2024 ASEE Annual Conference & Exposition, Portland, USA, (Accepted)

2024, pp. 1–27.

[42] A. Greene, “Developing rubrics for open-ended assignments, performance assessments, and

portfolios,” presented at the Proceedings of the Best Assessment Processes in Engineering

Education Conference, Rose-Hulman Institute of Technology, 1997.

[43] D. D. Stevens and A. J. Levi, Introduction to rubrics: An assessment tool to save grading

time, convey effective feedback, and promote student learning. Routledge, 2023.

[44] S. M. Brookhart and F. Chen, “The quality and effectiveness of descriptive rubrics,” Educ.

Rev., vol. 67, no. 3, pp. 343–368, Jul. 2015, doi: 10.1080/00131911.2014.929565.

[45] F. McMartin, A. McKenna, and K. Youssefi, “Scenario assignments as assessment tools for

undergraduate engineering education,” IEEE Trans. Educ., vol. 43, no. 2, pp. 111–119, May

2000, doi: 10.1109/13.848061.

[46] National Institute of Standards and Technology, “The NIST Cybersecurity Framework 2.0,”

National Institute of Standards and Technology, Gaithersburg, MD, NIST CSWP 29 ipd,

2023. doi: 10.6028/NIST.CSWP.29.ipd.

[47] M. Souppaya, K. Scarfone, and D. Dodson, “Secure Software Development Framework

(SSDF) Version 1.1: Recommendations for Mitigating the Risk of Software

Vulnerabilities,” National Institute of Standards and Technology, NIST Special Publication

(SP) 800-218, Feb. 2022. doi: 10.6028/NIST.SP.800-218.

[48] S. Allen and J. Knight, “A Method for Collaboratively Developing and Validating a

Rubric,” Int. J. Scholarsh. Teach. Learn., vol. 3, no. 2, Jul. 2009, Accessed: Jan. 31, 2024.

[Online]. Available: https://eric.ed.gov/?id=EJ1136714

Appendix

Table A1

STRIDE rubric we developed to assess security case deliverable. Note: We gave a score of 0 if

there was no response related to a given construct

Constructs Beginner (score =

1)

Intermediate

(Additional to

beginner skillset;

Score = 2)

Advanced (Additional to

intermediate skillset; Score

= 3)

Defining threats in a

model

Identifies if a

system has a

potential source of

threat or not.

Understands the threat

that contributes to the

risk, and the extent of

how the threat

impacts the

components.

Identify the specific threat

agents that can harm the

components and/or the

system.

Define security

requirements

Identifies critical

assets we need to

protect (like

Confidential Data)

Identify if there are

any user roles with

varying privileges.

Identify where data can be

entered or extracted

Dataflow diagram

(DFD)

1. Defines trusted

boundaries.

2. Discusses how

the data flows

from a no-

trusted

boundary

through other

parts of the

system

1. Correctly define

trusted boundaries

and explain why

they are

problematic.

2. Discusses how the

data flows from a

no-trusted

boundary through

other parts of the

system.

3. Presents a

simplistic version

of the DFD

1. Correctly define trusted

boundaries and explain

why and how they are

problematic.

2. Describes how the data

flows from a no-trusted

boundary through other

parts of the system.

3. Identifies multiple

exhaustive problematic

regions in a diagram.

4. Identifies the extent to

which things can go

wrong using a more

detailed version of DFD

Documentation Documents all

possible

implementations.

Documents the

specific strategies to

mitigate certain

problems.

1. Discusses how

implementation of certain

strategies helps with

reducing risk to a greater

extent than others.

2. Discusses ways to

reproduce or implement

proposed results in detail

STRIDE - Spoofing Defines Spoofing

and identifies which

part of the model

contributes to the

same

Identifies the

property(ies) violated:

E.g., Authentication

Identifies the extent to which

the threat is affecting the

component and/or system and

ranks its importance.

STRIDE - Tampering Defines Tampering

and identifies which

part of the model

contributes to the

same

Identifies the

property(ies) violated:

E.g., Integrity,

Permissions

Identifies the extent to which

the threat is affecting the

component and/or system and

ranks its importance.

STRIDE -

Repudiation

Defines Repudiation

and identifies which

part of the model

contributes to the

same

Identifies the

property(ies) violated:

E.g., Logging,

signatures

Identifies the extent to which

the threat is affecting the

component and/or system and

ranks its importance.

STRIDE –

Information

Disclosure

Defines Information

Disclosure and

identifies which part

of the model

contributes to the

same

Identifies the

property(ies) violated:

E.g., Permission,

encryption

Identifies the extent to which

the threat is affecting the

component and/or system and

ranks its importance.

STRIDE – Denial of

Service

Defines Denial of

Service and

identifies which part

of the model

contributes to the

same

Identifies the

property(ies) violated:

E.g., Availability

Identifies the extent to which

the threat is affecting the

component and/or system and

ranks its importance.

STRIDE– Elevation of

Privilege

Defines Elevation of

Privilege and

identifies which part

of the model

contributes to the

same

Identifies the

property(ies) violated:

E.g., Authorization,

sandboxes

Identifies the extent to which

the threat is affecting the

component and/or system and

ranks its importance.

Mitigation strategies Identifies correct

mitigation strategies

based on the

properties violated

Discusses the

effectiveness of

mitigation strategies

and specifically

answers the questions:

Which threat? What

strategy? How to

implement it? And,

4. Identifies the threats that

exist due to the interaction

between the different

components and their

extent of contribution to

the threat of the entire

model. Discuss possible

mitigation strategies.

why this

implementation

mitigates the earlier

mentioned problem?

5. Discusses about efficient

implementation of

mitigation strategies and

talk about resource-

constrained situations.

6. Discusses possible scope

of trade-offs and if there

are new requirements in

the system for threat

mitigation.

Table A2

DSRP rubric we developed to assess security case deliverable. Note: We gave a score of 0 if

there was no response related to a given construct

DSRP Construct Beginner (score =

1)

Intermediate

(Additional to

beginner skillset;

Score = 2)

Advanced (Additional to

intermediate skillset; Score

= 3)

Distinctions Identifies basic

distinctions between

components and

system.

Analyzes distinctions in

moderately complex

threat scenarios.

Critically evaluates and

synthesizes complex

distinctions between different

threats for system and

components, showcasing

depth.

Systems Recognizes basic

systems/components

in simple scenarios.

Applies DSRP to

analyze and synthesize

moderately complex

systems. Simplify

systems enough to be

able to analyze

different parts and talk

about their impact on

the greater system.

Discusses system-level

risks and mitigations.

Applies advanced systems

thinking, demonstrating a

deep understanding of both

component-level and system-

level threats using

scenarios/discussion/mitigatio

n approaches.

Relationships Identifies basic

relationships

between

components.

Analyzes relationships

between components in

a nuanced manner.

Evaluates intricate

relationships between

components as well as how

they collectively contribute to

the system, demonstrating

advanced insights.

Perspectives Understand basic

perspectives within a

context (just

mentioning insider

or outside attackers

without discussion

or scenarios)

Applies perspectives

effectively to analyze

threat situations from

different attacker

standpoints. Does not

discuss scenarios of

how the attacker might

influence the system.

Does not distinguish

which type of attacker

is responsible for which

type of risk.

Integrates multiple

perspectives of threat

situations seamlessly,

demonstrating expertise by

discussing scenarios of how

threats from different

perspectives impact the

system/components.

