
Finding 709 Defects in 258 Projects: An Experience Report on
Applying CodeQL to Open-Source Embedded Software
(Experience Paper)
MINGJIE SHEN, Purdue University, USA
BRIAN A YUAN, Purdue University, USA
AKUL ABHILASH PILLAI, Purdue University, USA
XINYU ZHANG, Purdue University, USA
JAMES C. DAVIS, Purdue University, USA
ARAVIND MACHIRY, Purdue University, USA

Embedded software is deployed in billions of devices worldwide, including in safety-sensitive systems like
medical devices and autonomous vehicles. Defects in embedded software can have severe consequences. Many
embedded software products incorporate Open-Source Embedded Software (EMBOSS), so it is important
for EMBOSS engineers to use appropriate mechanisms to avoid defects. One of the common security practices is
to use Static Application Security Testing (SAST) tools, which help identify commonly occurring vulnerabilities.
Existing research related to SAST tools focuses mainly on regular (or non-embedded) software. There is a lack
of knowledge about the use of SAST tools in embedded software. Furthermore, embedded software greatly
differs from regular software in terms of semantics, software organization, coding practices, and build setup.
All of these factors influence SAST tools and could potentially affect their usage.

In this experience paper, we report on a large-scale empirical study of Static Application Security Testing
(SAST) in EMBOSS repositories. We collected a corpus of 258 of the most popular EMBOSS projects, and then
measured their use of SAST tools via program analysis and a survey (N=25) of their developers. Advanced
SAST tools are rarely used – only 3% of projects go beyond trivial compiler analyses. Developers cited the
perception of ineffectiveness and false positives as reasons for limited adoption. Motivated by this deficit, we
applied the state-of-the-practice CodeQL SAST tool and measured its ease of use and actual effectiveness.
Across the 258 projects, CodeQL reported 709 true defects with a false positive rate of 34%. There were 535
(75%) likely security vulnerabilities, including in major projects maintained by Microsoft, Amazon, and the
Apache Foundation. EMBOSS engineers have confirmed 376 (53%) of these defects, mainly by accepting
our pull requests. Two CVEs were issued. Based on these results, we proposed pull requests to include our
Workflows as part of EMBOSS Continuous Integration (CI) pipeline, 37 (71% of active repos) of these are
already merged. In summary, we urge EMBOSS engineers to adopt the current generation of SAST tools,
which offer low false positive rates and are effective at finding security-relevant defects.

ACM Reference Format:
Mingjie Shen, Brian A Yuan, Akul Abhilash Pillai, Xinyu Zhang, James C. Davis, and Aravind Machiry. 2025.
Finding 709 Defects in 258 Projects: An Experience Report on Applying CodeQL to Open-Source Embedded
Software (Experience Paper). In Proceedings of ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA’25). ACM, New York, NY, USA, 23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Societies rely on embedded systems and IoT devices in our transportation [10], traffic manage-
ment [89], resource distribution [79, 84], homes [13], and in many other ways [9]. The Embedded
Software (EmS) that enables these devices must be free of vulnerabilities. Such vulnerabilities have
far-reaching consequences [20, 28, 71, 76, 100] due to the pervasive and interconnected nature

Authors’ addresses: Mingjie Shen, Purdue University, West Lafayette, IN, USA, shen497@purdue.edu; Brian A Yuan, Purdue
University, West Lafayette, IN, USA, bayuan@purdue.edu; Akul Abhilash Pillai, Purdue University, West Lafayette, IN, USA,
pillai23@purdue.edu; Xinyu Zhang, Purdue University, West Lafayette, IN, USA, zhan5085@purdue.edu; James C. Davis,
Purdue University, West Lafayette, IN, USA, davisjam@purdue.edu; Aravind Machiry, Purdue University, West Lafayette,
IN, USA, amachiry@purdue.edu.

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Shen et al.

of embedded devices. Additionally, Open-Source Software (OSS) plays an important role in EmS
development [16, 42, 64]. For instance, FreeRTOS [14] and Zephyr [91], two of the most pop-
ular and industry-endorsed Real Time Operating Systems (RTOSes), are open-source. Previous
studies [17, 87] show that Open-Source Embedded Software (EMBOSS) are riddled with security
vulnerabilities, specifically memory safety issues.

Several static and dynamic analysis-based tools exist for vulnerability detection. Dynamic anal-
yses, such as fuzzing [68], are known to be effective at precise vulnerability detection. However,
applying these techniques to embedded systems is challenging [75, 98] because of their close
interaction with hardware and its diversity. Static analysis techniques, specifically SAST tools,
are best suited as they do not need to execute the embedded software or EMBOSS. On the other
hand, most existing works [54, 77, 83, 86] on evaluating SAST tools focus on traditional (i.e., non-
embedded) software. However, embedded software differs from traditional software in organization,
architecture, build system, and toolchains [98]. What would be the effectiveness of SAST tools on
EMBOSS?

In this experience paper, we present the first empirical study on the use of SAST tools to detect
security vulnerabilities in EMBOSS. For our study, we curated a corpus of 258 popular EMBOSS
projects from GitHub. We used this corpus for the three phases of our investigation.
(1) Measuring the use of SAST in EMBOSS: First, we combined automated analysis of CI

Workflows from the corpus and a survey of the project developers to understand the prevalence
of SAST usage. We found that only 10 (4%) projects use explicit SAST tools as part of their CI
Workflows. Their developers are aware of SAST tools but do not use them on EMBOSS projects as
they believe that the effectiveness of SAST tools on their repositories is low. It is unclear whether
this is indeed true.
(2) Selecting and Configuring a SAST Tool: Next, to fill this knowledge gap, we aim to

understand the effectiveness of SAST on EMBOSSs. We conducted a preliminary analysis and found
that the CodeQL was the most effective available SAST tool. First, the default setup of CodeQL
(that works well for traditional software) failed on EMBOSS repositories. Furthermore, the default
analyses resulted in a lot of false positives. We tackled this by manually (with minimal engineering
effort) creating CI Workflows enabling the execution of CodeQL on EMBOSS repositories. Second,
the default analyses queries of CodeQL resulted in a lot of false positives. We tackled this by
filtering out certain queries and modifying relevant queries.
(3) Measuring the effectiveness of SAST in EMBOSS: We executed our CI Workflows with

modified CodeQL queries and found a total of 709 defects, with 535 (75%) being security vulner-
abilities. On a per-report basis, CodeQL exhibits a false positive rate of 34%, but this is due to a
few outlier rules and projects. For most studied repositories, the false positive rates were low. We
reported 586 of defects we found. Developers have already confirmed 376 (53%) of these defects,
mainly by accepting our patches. We also raised pull requests to 129 EMBOSS, integrating our
manually created Workflows (enabling running CodeQL) into their CI pipeline, out of which 37
(71% (Active) and 29% (Total)) are already accepted. We hope that our findings: (1) provide evidence
of the effectiveness of SAST tool on EMBOSS repositories; (2) encourage EMBOSS developers to
adopt SAST tools; and (3) motivate researchers to work on techniques to automatically integrate
SAST tools in CI Workflows.

In summary, this experience report contributes:
• (Empirical Study)We presented the first study on the prevalence, challenges, and effectiveness
of using SAST tools in EMBOSS, via automated and manual analysis and a developer study.

• (Lessons Learned)We summarize our experience in four lessons learned (§6), capturing our
experiences using a State of The Practice (SoTP) SAST tool, finding hundreds of defects, reporting
them, and integrating the SAST tool in the CI pipeline of EMBOSS repositories.

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 3

• (Dataset) We curated and categorized a list of 258 major EMBOSS projects, accompanied by
GitHub Workflows for compilation to permit the execution of static and dynamic analysis tools.
This is the first large-scale embedded software dataset with compilation infrastructure.

• (Impact) Using off-the-shelf CodeQL queries on these Workflows, we identified a total of 709
defects (535 (75%) security vulnerabilities) across this dataset, including projects maintained by the
Apache Foundation,Microsoft, and Amazon.We reported 586 of these defects, of which developers
confirmed 376 (53%) of them. We also raised pull requests to 129 projects to integrate CodeQL
Workflows in their CI pipelines, of which 37 are accepted.
Significance for software engineering: Empirical software security research has a substantial

body of knowledge on open-source software, but has focused on IT or general-purpose software.
We report on a large-scale experience of applying static analysis to open-source embedded software.
Across 258 EMBOSS repositories, the CodeQL SAST tool finds hundreds of defects with low false
positive rates in the majority of repositories. Motivated by this knowledge, we recommend that
EMBOSS software developers use this tool to easily improve software quality.

2 BACKGROUND
Here we define Open-Source Embedded Software (EMBOSS) and Dynamic and Static Application
Security Testing (SAST).

2.1 Open-Source Embedded Software (EMBOSS)
2.1.1 Definition of embedded software and EMBOSS. Embedded software is designed to run on
embedded systems, ranging from industrial controllers [27] to IoT devices with resource-constrained
microcontrollers [13].
Open-Source Software (OSS) is an essential part of the software supply chain of embedded

software applications. A considerable proportion of software products incorporate open-source
software in order to reduce costs and develop more competitive products [16]. Application devel-
opers re-use many kinds of EMBOSS, but a particularly common dependency is on specialized Real
Time Operating Systems (RTOSes) designed for reduced-resource environments (e.g., real-time
scheduling, low power consumption, low memory overhead). According to osrtos.com, there are
31 different RTOSes [2], with the majority (26) of them being open-source. Examples of RTOSes
include RIOT, Contiki, FreeRTOS, and Azure RTOS.

2.1.2 Measuring project importance. A common way to measure the importance of an open-source
project is the Open Source Security Foundation (OSSF) criticality score [22]. This score is used by
security analysts to triage security vulnerabilities when studying a large number of projects [37, 65].
A project’s importance is a number between 0 and 1 based on attributes including its popularity,
dependents, and level of activity. Ranges correspond to qualitative labels: 0.0-0.2 is considered low
criticality, 0.2-0.4 is medium, 0.4-0.6 is high, 0.6-0.9 is critical, and above 0.9 is extremely critical.
For examples, the RTOS contiki-os has a criticality score of 0.51 (high), the RTOS Zephyr’s score is
0.81 (critical), and the Node.js runtime’s score is 0.99 (extremely critical).

2.2 Static Application Security Testing (SAST)
2.2.1 SAST vs. DAST in embedded software. In software security analysis, both static (SAST) and
dynamic (DAST) application security testing are necessary.

In the context of embedded systems, dynamic analysis (e.g., Fuzzing) is more costly and sometimes
infeasible when compared to static analysis. Embedded software is coupled to hardware [75], e.g.,
using hardware-specific interfaces and custom instruction sets. Executing it on custom hardware
needs an emulator (support may be lacking [41]) or physical boards (resulting in unscalable testing).

, Vol. 1, No. 1, Article . Publication date: December 2025.

4 Shen et al.

Static Application Security Testing (SAST) tools do not require execution, making them attractive
to use on embedded software.

2.2.2 Landscape of SAST tools. There are many open-source and commercial SAST tools. The
open-source tools vary in the underlying techniques and corresponding guarantees. There are
high-assurance tools, such as IKOS [30], that use abstract interpretation and provide soundness
guarantees. However, these tools must be properly configured with suitable abstract domains to
avoid false positives – a cumbersome process requiring a formal background. On the other hand,
there are best-effort pattern-based tools, such as cppcheck [72] and flawfinder [97], which can be
readily used but do not provide any guarantees. Several works [33, 45, 63, 74] evaluate these tools
on non-embedded software and show that they vary in precision, recall, and usability. There are also
many commercial SAST tools. Coverity is considered state-of-the-art (SOTA) and allows developers
to customize the tool to reduce false positives [53], but its license forbids evaluation in research
papers. Other notable tools include Fortify [80], Checkmarx [34], and Veracode [94].
CodeQL is a SOTA [61] open-source SAST tool. CodeQL was released in 2016 by GitHub and

is maintained by Microsoft. CodeQL represents code as a relational database and uses relational
queries to find defects in the given codebase. It has several static analysis capabilities, such as control
flow analysis, data flow analysis, and taint tracking to detect security issues [24]. Furthermore, Cod-
eQL has built-in queries for common security issues (i.e.,CommonWeakness Enumerations (CWEs)).
Security analysts and developers have used CodeQL to find thousands of security vulnerabilities
in large and well-tested codebases including the Linux kernel [4, 5, 46]. Since CodeQL is free to
use on open-source codebases and its queries are open-source, it is a popular SAST tool within the
open-source community.

2.2.3 How SAST is Applied in Modern OSS. Continuous Integration (CI) pipelines [52] have become
ubiquitous in the modern software development lifecycle. They automate various software develop-
ment processes, such as building, testing, and deploying code. By this means, software development
has shifted towards the continuous (or near-continuous [19]) integration of changes, allowing
deployment at more rapid intervals [43]. SAST and DAST tools are often applied as part of a CI
pipeline [26, 69, 70], reflecting the “shift left” trend to assess security throughout the engineering
process rather than at fixed intervals.
On GitHub, the main open-source software platform, there are several options for CI frame-

works [39], e.g., TravisCI [93], CircleCI [35], and GitHub Actions [32]. The most popular is GitHub
Actions because of its close integration with GitHub’s platform [50]. The GitHub CI is structured
as a set ofWorkflows associated with events. Each Workflow is comprised of one or more Actions.
Our Extended Report [23] provides more detail about GitHub Workflows.

3 MOTIVATION
Many works [54, 77, 83, 86] emphasize the importance of using SAST tools on software projects,
especially in unsafe languages such as C/C++ (which most EMBOSS repositories use). Cybersecurity
and government organizations [1, 6] also recommend the use of SAST. But no study measures the
prevalence or benefits of SAST in EMBOSS.
Existing studies [21, 33, 45, 63, 74] evaluate the effectiveness of SAST tools on non-embedded

software. Embedded software differs from traditional software in organization, architecture, build
system, and toolchains [98]. EMBOSS follows a layered organization where each layer exposes fixed
functionalities to the one above and relies on those below [88]. To enhance flexibility, inter-layer
communication uses function pointers, leading to indirect control flow transfers – a common cause
of static analysis imprecision. Additionally, EMBOSS employs an event-driven architecture with
handlers triggered by specific events (e.g., interrupts) [85]. These handlers communicate via global

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 5

objects, creating asynchronous control flows with global pointer manipulations, which challenge
flow-based static analysis. Furthermore, EMBOSS relies on diverse, non-standard build systems [88]
and exotic compilers (e.g., avr-gcc), posing engineering difficulty in applying compilation-based
SAST tools. Therefore, it is unclear how challenging it is to use existing SAST tools and how
effective they are on EMBOSS.

4 PREVALENCE STUDY
Given the potential benefits of SAST tools, we first study the prevalence of their usage in EMBOSS.
We curate a corpus of major EMBOSS from GitHub (§4.1) and other well-known sources.

4.1 Corpus of Major EMBOSS Projects

Table 1. Summary of repositories in our EMBOSS dataset, grouped by project categories. SLOC calculated
with cloc [38]. Criticality with the OSSF tool [22]. Data is as of July, 2023. The Total row gives medians across
corpus, not by category.

Median Median Median
Category # Repos Example Repo GH stars SLOC Crit. Score

Hardware access library (HAL) 18 grbl 303.5 98,502 0.44
Device drivers (DD) 10 TinyUSB 452 20,078 0.41
Network (NET) 54 contik-ng 314 36,345 0.46
Database access libraries (DAL) 8 tiny SQL 659 26,977 0.39
File systems (FS) 5 littlefs 401 11,195 0.49
Parsing utilities (PAR) 10 mjson 313.5 2,547 0.41
Language support (LS) 33 micropython 479 33,389 0.42
UI utilities (UI) 14 flutterpi 584.5 56,712 0.46
Embedded applications (APP) 32 Infinitime 508 22,662.5 0.39
OSes (OS) 42 FreeRTOS 727.5 409,667.5 0.47
Memory Management Library (MML) 4 tinyobjloader-c 242.5 6,205.5 0.34
Other General Purpose Library

for Embedded Use (GPL) 22 tinyprintf 391 12,742.5 0.35
Other (OT) 6 368.5 94,805 0.43

Total 258 406.5 33545 0.43

We aim to collect a set of representative and well-engineered EMBOSS. We combine two ap-
proaches (Figure 1). First, we searched GitHub for embedded software projects (§4.1.1). Second, we
used an external index of RTOSes (§4.1.2).

4.1.1 EMBOSS from GitHub Search. We searched GitHub for popular embedded software on
GitHub. Specifically, we collected original (i.e., non-forked), active (i.e., non-archived) C/C++ em-
bedded software. Figure 1 shows the exact filters for our search. The initial query yields ∼20K
projects. We sorted them by popularity (operationalized as the number of stars [29]) and collected
the top 250. We manually filtered out 12 false positives (non-embedded repositories) based on their
READMEs. For instance, we filtered out a machine learning project that had the word “embedded”
in its keywords.

4.1.2 EMBOSS from Index of RTOSes. Embedded systems are usually powered by an RTOS, which
provides the necessary library and scheduling support for various application components. We
collected RTOSes from osrtos.com [2], which lists all open-source RTOSes. Specifically, we selected
those available on GitHub with >100 stars. This resulted in a total of 32 repositories.

, Vol. 1, No. 1, Article . Publication date: December 2025.

osrtos.com

6 Shen et al.

4.2 Analysis of Corpus

Keyword: "embedded" &&
fork=false &&

archived=false &&
language=C,C++ &&

sort=stars

osrtos.com

On GitHub &&
 stars

Filters

Filters

Embedded Software Dataset
(258 distinct repos)

Top 250 repos
32 repos

Manual filter:
remove non-embedded repos

238 repos

Fig. 1. Two-pronged approach to collecting embedded
software dataset. The GitHub search (left side) was
performed onApril 8, 2023. The osrtos.com search (right
side) was performed on June 7, 2023.

We combined the repositories and de-duplicated
them, resulting in a total of 258 unique EMBOSS
repositories. Table 1 summarizes all projects
along with their fine-grained categorization
(performed manually). Most repositories are
reasonably large, with a median of 33K Source
Lines of Code (SLOC) and a maximum
>400K SLOC. This is similar to the project sizes
examined in other studies [88].

We also measured the repositories using the
OSSF criticality measure (§2.1.2). All 13 cate-
gories have a median project with “medium” or
“high” criticality score; the overall median crit-
icality score is 0.43 (high). This indicates that
our corpus includes important projects.

4.3 Study Methodology
We examine the state of practice usage of SAST
tools from two views: the use of SAST in the
CI Workflows of the corpus, and a survey of the project developers in the corpus.

4.3.1 Workflow analysis. We noticed that 42% (109/258) of the EMBOSS repositories use GitHub
Workflows to build and test the underlying codebase. We automatically analyzed these Workflows
to detect the use of SAST tools. Specifically, for each Action used in a Workflow, we check if it is
a SAST tool by checking its category in the GitHub CI Actions marketplace. We define SAST tools
as those whose marketplace category is “code quality” or “security.” Next, we manually check every
matching Action to validate that it is indeed a SAST tool.

For Workflows for which no SAST was found (248/258 of projects), we estimated whether or not
this occurred due to errors in our automated analysis, or because they indeed used no SAST. We
performed a random sampling of 20 Workflows and manually checked them.
To make the measured rate of SAST usage interpretable, we performed the same measurement

on the top 5,000 OSS projects deemed “critical” and “extremely critical” according to the OpenSSF
criticality score. These projects do not target embedded contexts — none of the projects from our
corpus appear in this list.
Results. We found that only 10 (4%) of the repositories use a sophisticated SAST tool. All of these
use free SAST tools, specifically, CodeQL. None of them use commercial SAST tools. Of the 10
repositories that use CodeQL, 7 use an out-of-date version.
By comparison to the top 5,000 OSS projects by criticality (without the embedded constraint),

we can see how small this adoption rate is. Of the top 5,000 OSS projects we examined for compari-
son, 958 (19%) use ≥1 SAST tools by our definition.

In our random sampling to check for false negatives in the EMBOSS measure (a random sample
of 20 projects), we found only two false negatives, i.e., 10% false negative rate. Both were due to
a level of indirection around the use of a SAST tool. RIOT-OS/RIOT runs its static tests in a Docker
container, and InfiniTimeOrg/InfiniTime runs clang-tidy in a script.

4.3.2 Developer survey. To complement our previous workflow analysis, we conducted a developer
survey under the supervision of our institution’s Institutional Review Board (IRB). The survey

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 7

aimed to gather insights from projects’ maintainers about their security practices and to identify
any alternative ways in which they might use SAST tools. Our population of interest was the
maintainers of the 248 (96%) of projects that do not use any SAST Actions. For each of these
projects, we collected emails of users who recently contributed and emailed them the link to our
survey. We were able to find the maintainers’ email for 104 (out of 248) projects. There were 15
questions in the survey with an anticipated time of 5 min. The full survey is in Our Extended
Report [23].
Results. We got 25 responses (24% response rate), representing 20 distinct repositories. This
response rate is comparable to that reported by other works that survey developers from GitHub
(e.g., [7, 56]). While the survey’s sample size is relatively small, it still offers valuable insights into
developers’ perspectives, and complements our quantitative measurement results for this research
question.

Use SAST
Tools?

Why?

Where?

Workflows

Out-of-band

-Wall, -Wextra

clang static-analyzer

-Wall, -Wextra

Other tools

cppcheck

80% (20/25)

20% (5/25)

55% (11/20)

90% (18/20)

22% (4/18)

89% (16/18)

64% (7/11)

73% (8/11)

27% (3/11)

No

Yes

Lack of resources 20% (1/5)

1-3
25% (5/20)

4-6
25% (5/20)

>6
50% (10/20)

Years working on the project

1-3
20% (1/5)

4-6
60% (3/5)

>6
20% (1/5)

Years working on the project

Use Regularly
85% (17/20)

Aware
15% (3/20)

SAST Tool Experience

SAST Tool Experience
Un Aware
40% (2/5)

Use Regularly
20% (1/5)

Aware
40% (2/5)

Why not in
Workflows?

No time.

Wasn't aware.

18% (2/11)
50% (1/2)

50% (1/2)
Exclusively
out-of-band

Low security impact 60% (3/5)

Other tools 39% (7/18)

Fig. 2. Summary of our developer survey on the use of SAST tools.

Figure 2 illustrates the responses to our survey. We discuss why developers do and do not use
SAST tools.
Use of SAST Tools. Most of the surveyed developers (80% (20/25)) claimed to be using SAST

tools. However, they just used compiler warnings such as gcc -Wall -Wextra and considered those to be
adequate SAST. Compiler warnings are not effective as they mainly catch simple issues and have
high false negative rates. As a simple demonstration of the weaknesses of compiler warnings as
SAST, we executed gcc’s analyses on a set of test cases from the CodeQL repository. These are
simple test cases (<10 lines), each demonstrating a security issue, e.g., using %s in scanf or passing
invalid pointer types to a function call. We compiled these test cases using a recent version of gcc
(11.4.0) with strict warnings. This configuration of gcc found issues in only 17 (21%) defect types.
Some simple security issues were flagged, such as the use of strcpy instead of strncpy. However, more
complex ones were missed, such as inconsistent NULL checks and use-after-free errors. We provide
more details in Our Extended Report [23]. This shows that current SAST practices in EMBOSS are
not adequate.

Not Using SAST Tools. 20% (5/25) of the developers use no SAST tools. Most of these respon-
dents (3/5) believe the security vulnerabilities in the corresponding projects have a low impact.
However, these projects have an averageOSSF criticality score of 0.43 (“high”). These developersmay
underestimate the severity of security issues in their projects, in line with previous studies [62, 101].

, Vol. 1, No. 1, Article . Publication date: December 2025.

8 Shen et al.

The developers of another project reported insufficient resources (e.g., time). Unfortunately, this
project is one of the most popular (>5K stars) open-source C++ libraries for embedded systems,
with an OSSF score of >0.6 (“critical”).

A final common reason for non-SAST use was concern about their effectiveness. Five respondents
felt that using SAST tools on embedded software is questionable and might result in many false pos-
itives. This finding is consistent with previous surveys of non-embedded software developers [57].

To summarize our findings from this study of SAST prevalence in EMBOSS:

Finding 1: Sophisticated SAST tools are rarely used in EMBOSS repositories. Only 4% of
the EMBOSS repositories do so. With the same measure, 19% of non-embedded OSS do.
Many EMBOSS repositories rely only on compiler warnings for SAST, which fail to find many
common security defects.
Finding 2: The surveyed developers are generally aware of CI Workflows and use them to run
their SAST tools. When they do not use SAST, it is commonly because they believe the security
impact or effectiveness of SAST is low.

5 SOTA SAST PERFORMANCE
Given the lack of SAST tool usage in EMBOSS, our aim is to understand the effectiveness of SOAT
SAST on EMBOSS.

5.1 Selection of the SOTA SAST tools

Table 2. Comparison of the SAST tools we considered, on the Juliet benchmark and our EMBOSS dataset. The
median # of warnings is reported for repositories where the tool ran successfully (CodeQL did not produce
warnings on over half of repositories). *EMBOSS dataset precision is estimated via sampling. The cpp-lint
performance measurement may be biased (see text).

GitHub Action SAST Juliet perf. # Repos Failure(s) Med. # warn. Precision

david-a-wheeler/flawfinder flawfinder [97] Error 176 (68%) Invalid SARIF; Crashes 12 64/316 (20%)
cpp-linter/cpp-linter-action cpplinter [58] Timeout 230 (89%) Timeout; Crashes 111 0/213 (0%)*
deep5050/cppcheck-action cppcheck [81] Timeout 256 (99%) Timeout 19 116/200 (58%)
github/codeql-action CodeQL [24] F1 : 0.21 74 (29%) Autobuild failure 0 154/160 (96%)

We want to apply the best-performing open-source SAST tool that (1) has a low false posi-
tive/negative rate; (2) can be readily used on OSS repositories; (3) is stable (not pre-release), free
(not requiring licenses), and “plug-and-play” (supports a range of compilers and does not require
knowledge of program semantics/modeling, etc.).

Competing Tools We selected popular GitHub Actions that perform SAST on C/C++ reposito-
ries, as shown in Table 2. Selection criteria are detailed in Our Extended Report [23]. We made a
Workflow for each Action to apply them uniformly to the benchmarks for comparison.

Juliet Benchmark Performance As one measure of effectiveness, we tested these tools on the
Juliet Test Suite. The Juliet Test Suite is a labeled dataset commonly used to test SAST tools [78].
It does not focus on embedded software, so this is a measure of performance on general C/C++
code that may not reflect performance on embedded code. We used a time limit of 6 hours, the
maximum time allowed for a job on many CI platforms, such as GitHub CI [48].

The middle column of Table 2 shows the results. Most tools either errored out or timed out. Cod-
eQL completed in 40 minutes. CodeQL raised 11,101 warnings with a precision of 71% (7,904/11,101)
and a recall of 12% (7,904/65,263).1
1We count a reported flaw as a true positive if the reported location matches that of a ground truth bug.

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 9

EMBOSS Sample Performance To obtain another vantage, we also ran the tools on the 258
repositories in our EMBOSS corpus. We needed ground truth to evaluate the precision of each tool.
CodeQL produced 471 warnings, while the others produced between 4K-200K warnings. It was
infeasible to check them all. Therefore, we randomly sampled warnings to check. Specifically, for
each tool, we randomly selected 30 repositories with < 20 warnings and manually checked each
warning for those repositories.

The final columns of Table 2 show results. CodeQL has the highest precision by far, at 96% —
unsurprising given its effectiveness on Juliet Test Suite. cppcheck and flawfinder had false positive
rates > 40%. We recorded cpp-linter as having 100% false positives. This was likely a flaw in our
sampling approach: all sampled warnings were related to compile-time issues that did not cause
cpp-linter to error out, but we expect the sampling approach caused us to only examine warnings
related to projects it struggled to compile.

Given thatCodeQL is the most effective tool, we next perform a thorough evaluation ofCodeQL’s
effectiveness on EMBOSS.

5.2 Effectiveness of CodeQL
As shown in Table 2,CodeQL failed to run on 71% of EMBOSS repositories. Specifically, the Autobuild
phase of CodeQL failed to handle the diverse build setup of these repositories. We, therefore,
manually created build scripts for all repositories based on their documentation and existing CI
Workflows.

Build Scripts Creation. We made the build scripts cover as much part of the codebase as
possible (e.g., by compiling all example applications and all supported architecture and boards
whenever possible). We successfully created build scripts for 156 (60%) repositories. For the other 102
repositories, the build instructions were either missing (17), too complex (i.e., unavailable toolchains
or dependencies) (49), or we could not get them to work (36). This manual process took ∼45-60
minutes per repository.

Analysis and Configuration Details of CodeQL. CodeQL supports many suites (i.e., collec-
tions of queries). There are three built-in suites for security scanning: default, cpp-security-extended,
and cpp-security-and-quality. Each is a subset of the next, sowe used the largest of these, cpp-security-
and-quality, which contains 166 queries. Despite the queries’ effectiveness on non-embedded code-
bases, Our preliminary analysis showed that (i) A few of these queries are not applicable to embedded
software, and (ii) The risk of corresponding defects is low because of the lack of process support
and OS abstractions. We identified nine such queries and excluded them from our analysis. The
Table 3 shows the list of queries and the corresponding rationale for their exclusion.

Table 3. Reasons for excluding certain CodeQL queries. “Code readability” means the query detects code
readability issues but not defects.

Query Reason for ignoring

cpp/path-injection Inapplicable
cpp/world-writable-file-creation Inapplicable
cpp/poorly-documented-function Code readability
cpp/potentially-dangerous-function2 Low-risk (Lack of OS abstractions and arbitrary process support)
cpp/use-of-goto Code readability
cpp/integer-multiplication-cast-to-long Low-risk (Most embedded device configurations are 32-bit)
cpp/comparison-with-wider-type Low-risk (Most embedded device configurations are 32-bit)
cpp/leap-year/* Low-risk
cpp/ambiguously-signed-bit-field Low-risk

, Vol. 1, No. 1, Article . Publication date: December 2025.

10 Shen et al.

Table 4. Summary of CodeQL results.

Number of ... Value

Setup

Repos in dataset 258
Repos built 156
Repos analyzed 151

CodeQL Results

Errors reported 772
Warnings reported 2,286

Manual Analysis

Defects discovered 709
Repos where defects were discovered 97 (64%)
Security defects discovered 535
Repos where security defects were discovered 85 (56%)

Responsible Disclosure

Defects disclosed 586
Defects confirmed 376
Security defects disclosed 433
Security defects confirmed 302
Patch pull requests submitted 163
Patch pull requests merged (i.e., accepted) 104
CVEs issued 2

CodeQL SAST Workflow

Pull requests submitted 129
Pull requests merged 37 (71% (Active)

and 29% (Total))

Furthermore, based on initial results, we modified three queries to improve their precision and
ignore certain restrictions. First, we modified the cpp/stack-address-escape query to ignore cases of
assigning a function parameter of a pointer type to a non-local variable. This usage is commonplace
in practice and is unlikely to constitute a defect of significant concern as embedded systems
usually have a fixed memory layout. Second, we modified cpp/constant-comparison to only report
comparisons that are always false because we found that always-true comparisons are usually not
defects in the EMBOSS context. For instance, developers can be overly cautious and perform the
same check multiple times, where the second check will always be true. e.g., if (p != NULL) ... if (p

!= NULL). Third, we modified cpp/uninitialized-local to eliminate false positives caused by casting a
variable explicitly to void. Developers prevalently use such casts in EMBOSS to suppress compiler
warnings on unused variables, e.g., (void) x;. CodeQL accepted one of our query modifications
into their main repository [3].

Finally, we created GitHubWorkflows for the 156 successfully-built repositories. TheseWorkflows
invoke the necessary build scripts and run CodeQL with the required configuration. We ran these
GitHub Workflows on these 156 repositories. This produced many issues, which CodeQL divides
into errors (high-severity concerns, e.g., memory un-safety) and warnings (lower-severity issues,
e.g., code smells).

2cpp/potentially-dangerous-function checks for calls to gmtime, localtime, ctime and asctime. These functions are not
thread-safe.

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 11

The Table 4 shows the summary of our results across all repositories. We discuss the results by
answering the following questions:
Q1 What defects do SOTA SAST find in EMBOSS?
Q2 How do results vary by EMBOSS type?
Q3 What is the false positive rate of SAST?
Q4 How do developers respond to SAST results?
Q5 Will developers integrate SAST tools in CI pipelines?

0 10 20 30 400%

20%

40%

60%

80%

100%

defects in a repo

%
of

re
po

sit
or
ie
s

Total defects
Security defects

Fig. 3. CDFs of # of all and security-relevant
defects in a repository.

5.2.1 Q1: What defects do SOTA SAST find in EMBOSS?.
Wemanually analyzed all CodeQL issues for 151 reposito-
ries (out of a possible 156). The others have a substantial
number of issues, and we did not have time to analyze
them thoroughly. As reported in the Defects Discovered
row of Table 4, we identified 709 defects across 97 repos-
itories. There were 535 (85 repositories) likely security
vulnerabilities, including in major projects maintained by
organizations like Microsoft, Amazon, and the Apache
Foundation. EMBOSS engineers have confirmed 376 (53%)
of these defects, mainly by accepting our pull requests.

Defect Rates Per Repository. Figure 3 shows CDFs
of the number of all defects and security defects in each
repository. A point (𝑥,𝑦) on a line indicates that 𝑦% of
repositories contain less than or equal to 𝑥 corresponding
type of defects. The left-most point on both the lines
indicates that there are 64% (97) repositories with at least one defect, and 56% (85) repositories
with at least one security defect. The security defects line has almost the same trend as total
defects, indicating that most defects in all repositories are security-relevant. Although ~90% of the
repositories have less than ten total defects, nine repositories have significantly more. Table 5 lists
the top 5 repositories with the most total defects and their criticality scores.

Table 5. Top-5 EMBOSS repositories by number of total defects found.

Repo Criticality Score # Total # Security

apache/nuttx 0.69 35 24
contiki-ng/contiki-ng 0.67 34 24

raysan5/raylib 0.70 33 33
ARMmbed/mbed-os 0.72 32 22
openlgtv/epk2extract 0.45 29 27

Common Types of Security Defects. We found several classes of security defects across all
repositories. Figure 4 shows the top 10 types of security defects (i.e., vulnerabilities) [47] found
along with the corresponding number of defects. We discuss the top three major types of security
defects in Our Extended Report [23].
Severity of Security Defects. The severity of a security bug depends on its exploitability

and the criticality of the underlying software [36, 90]. Given the large number of defects, man-
ually assessing exploitability is intractable. Instead, we use the OSSF criticality score (§2.1.2) of
the target repository to assess the severity of a bug. Figure 5 shows the CDF of the severity of
security defects. Specifically, a point (𝑥,𝑦) on the line indicates 𝑦% of the defects have severity
less than or equal to 𝑥 . Approximately 50% of bugs have a severity score of more than 0.5, which

, Vol. 1, No. 1, Article . Publication date: December 2025.

12 Shen et al.

represents high-severity repositories (§2.1.2). Specifically, ~40% of bugs have a score of more than
0.6, representing vulnerabilities in critical repositories. For instance, we found an out-of-bounds
access in micropython/micropython (Listing 1) and a use-after-free in apache/nuttx (Listing 2), an RTOS
with a score of 0.69 – both of these are critical projects.

0 50 100 150

cpp/inconsistent-null-check
cpp/missing-check-scanf

cpp/uncontrolled-allocation-size
cpp/unbounded-write

cpp/wrong-type-format-argument
cpp/uninitialized-local

cpp/offset-use-before-range-check
cpp/overflowing-snprintf

cpp/incorrect-allocation-error-handling
cpp/toctou-race-condition

135 (25%)
70 (13%)

49 (9%)
47 (9%)
41 (8%)

32 (6%)
21 (4%)
17 (3%)
15 (3%)
14 (3%)

security-relevant defects
Fig. 4. Top-10 CodeQL queries by security-relevant defects found.

CommonTypes ofNon-Security
Defects. These defects may not lead
to security vulnerabilities but can
cause functionality issues, undefined
behavior, and compilation issues. For
instance, the rule cpp/missing-return

detects non-void functions with no
explicit return statement. This may
result in undefined behavior dur-
ing runtime [60]. Similarly, the rule
cpp/virtual-call-in-constructor detects
calls to virtual functions in a construc-
tor. This also could lead to undefined
behavior as the object’s virtual table may not be completely initialized [49]. Figure 7 shows the top
ten non-security defects along with the corresponding number of defects.

0 0.2 0.4 0.6 0.8 10%
20%
40%
60%
80%
100%

criticality score

%
of

se
cu
rit
y
de
fe
ct
s

Fig. 5. CDF of the severity of security defects.

5.2.2 Q2: Trends by EMBOSS type. Figure 6 shows
the number of defects found across various repos-
itories according to their categories. At a high level,
across all categories, the number of security defects is
more than that of the number of non-security defects.
Furthermore, the number of defects is proportional
to the number of repositories of the particular cat-
egory (Table 1). For instance, Network (NET), Oper-
ating Systems (OS), and Applications (APP) are the
top three categories containing the highest number
of repositories (128 (50%)), and they also contain the
highest number of defects (423 (60%)). The Memory
management libraries with the least number (4) of
repositories also have the least defects (6). Interestingly, we noticed that defect density, i.e., number
of defects per KSLOC, is non-uniform. Our Extended Report [23] provides defect distribution
per-repo and defect density across various categories of EMBOSS. In summary, APP and NET have
the highest defect densities. On the other hand, OS and HAL have the lowest densities. Our results
empirically show defect density is not uniform across different categories of EMBOSS.

5.2.3 Q3: False positive rates. False positive rate analysis requires a significant amount of work,
yet false positives are also a major concern in the adoption of SAST tools. Given the large number
of repositories, we sampled 123 successfully built repositories (the 50 most starred, the 50 least
starred, and 23 randomly picked repositories) and manually categorized all issues in them into true
and false positives. A false positive means that the result does not match what the rule intends to
detect, e.g., an error for an uninitialized variable when it is actually initialized. Two analysts worked
for one month to analyze the results. The two analysts worked largely independently but discussed
uncertainties with each other and with the rest of the research team. All analysts and researchers
had substantial training (coursework and experience) in C/C++ programming and cybersecurity,

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 13

HAL(5) DD(4) NET(20) DAL(3) FS(1) PAR(3) LS(15) UI(7) APP(12) OS(16) MML(1) GPL(6) OT(4)
0

50

100

150

200

3
1

17

13
4

17 4
32

67

11
539

13

99

12 8 3
54 57 72

136

6 9 27

N
um

be
ro

fd
ef
ec
ts

Security Non-security

Fig. 6. Number of defects of each type (Table 1). On x-axis, numbers show # repositories with ≥ 1 defect.

and we believe they were able to make correct judgments about whether or not a CodeQL issue
represented a true positive.
The overall percentages of true and false positives are 66% (1039/1577) and 34% (538/1577),

respectively. Figure 8a shows the CDF of the false positive rates of different rules. Specifically, a
point (𝑥,𝑦) on a line indicates 𝑦% of the rules have false positive rates of less than or equal to 𝑥%.
Approximately 60% rules had no false positives, and 10% had no true positives. This indicates that
false positives are polarized, and a few rules contribute to the majority of false positives. Specifically,
20% of rules contribute to more than 60% of false positives. We present comprehensive information
of CodeQL rules contributing to false positives in Our Extended Report [23].

// micropython/extmod/vfs_lfsx.c

size_t from = 1;

char *cwd = vstr_str(&self->cur_dir);

while (from < CWD_LEN) {

for (; cwd[from] == '/' && from < CWD_LEN;

++from) {↩→
// Scan for the start

}

...

Listing 1. The offset from is used before the range check (),
leading to an out-of-bounds access of one byte ().

Although the cumulative false positive
rate is high (34%), it does not affect most
repositories. The Figure 8b shows the CDF
of % of repos and false positive rate; we can
see that ∼40% of repos have no false posi-
tives and more than 60% of the repos have
less than 20% false positive rate. Further-
more, the actual number of false positives is
very low, as shown in Figure 8c. Specifically,
∼55% of the repos have less than one false
positive, and 90% of repos have less than ten
false positives. These results show that the
majority of EMBOSS repositories are not
affected by false positives.

// apache/nuttx/drivers/sensors/apds9960.c

ret = register_driver(devpath, &g_apds9960_fops, 0666,

priv);↩→
if (ret < 0)

{

snerr("ERROR: Failed to register driver: %d\n", ret);

kmm_free(priv);

}

priv->config->irq_attach(priv->config,

apds9960_int_handler, priv);↩→

Listing 2. The memory pointed by priv is freed () inside
the if condition. It is accessed later on, resulting in use-after-
free ().

5.2.4 Q4: Developer response on SAST de-
fects. We responsibly disclosed all identi-
fied defects in repositories that are actively
maintained (had commits in the past three
months). We opened issues and raised
pull requests with appropriate patches
where possible. The bottom of Table 4
summarizes the developer response. In to-
tal, 53% (376/709) of defects have been
confirmed by developers (via merging our
pull requests or expressing confirmation
in replies to issues).

, Vol. 1, No. 1, Article . Publication date: December 2025.

14 Shen et al.

Most of the patches were readily ac-
cepted by the developers. In a few cases,
developers were even interested in know-
ing the techniques we used to find the defects. For instance, developers of an AWS-owned repository
said “I’m curious how you stumbled across this — Was there some sort of test you ran or was this
something that came up during your development? I’m hoping we can duplicate your method of
discovery to add some sort of check/test to the repo.”
There were two pull requests where the developers did not choose to fix potential security

issues. They stated that although code robustness is important, they deemed reduced code size
and RAM usage to be a higher priority in their embedded software. These observations support
the conventional wisdom that software engineers (and especially engineers in embedded systems)
trade-off between security and performance [44, 51].

Although many security-relevant defects were resolved, only two Common Vulnerabilities and
Exposures (CVEs) were assigned. When we disclosed the security-relevant defects, we did not
explicitly ask the engineering teams to issue CVEs. Of the 94 repositories against which we opened
at least one security-relevant defect, only two issued CVEs for these defects: mbedtls issued CVE-
2023-BLINDED, and contiki-ng issued CVE-2023-BLINDED. We eventually followed up on our 77
reports of defects to the 10 most popular repositories (by GitHub stars) to inquire whether CVEs
were being prepared. Two of the engineering teams replied suggesting that we email their security
teams — we did so, but received no response. The other eight teams did not respond. Our research
supports the observation of prior work [66], that security defects are often fixed “silently”, without
tracking via a CVE.

5.2.5 Q5: Developers response on Integrating SASTWorkflows. We opened PRs to integrate our Cod-
eQL scanning Workflows into projects CI pipeline. This would have the effect of using Cod-
eQL’s SAST to check all subsequent pull requests. We measured the number of merged pull
requests and the kinds of replies made by the developers. An example PR is given in Our Extended
Report [23].
We raised 129 pull requests (PRs) to integrate our CodeQLWorkflows into the corresponding

projects. We did not submit some pull requests as the repositories do not accept external con-
tributions, e.g., Microsoft Azure. In addition, some of our Workflows became out of date due to
concurrent changes in the project’s build process. Our Extended Report [23] shows our pull request
with some details redacted for anonymity. We received responses for 52 of our PRs, of which 37
were merged (71% acceptance rate for responses, 29% acceptance rate overall).

0% 20% 40% 60% 80% 100%0%
20%
40%
60%
80%
100%

False positive rate

%
of

Ru
le
s

(a) CDF of the false positive rates of
rules

0% 20% 40% 60% 80% 100%0%
20%
40%
60%
80%
100%

False positive rate

%
of

re
po

s

(b) CDF of the false positive rate v/s
% of repos

100 101 102
0%
20%
40%
60%
80%
100%

of false positives

%
of

re
po

s

(c) CDF of # of false positives v/s %
of repos

Fig. 8. CDF of the false positive rates of rules, along with CDFs of the rate and number of false positives v/s
percentage of repositories (repos).

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 15

10 20 30 40

cpp/missing-return
cpp/stack-address-escape
cpp/constant-comparison

cpp/implicit-function-declaration
cpp/duplicate-include-guard

cpp/virtual-call-in-constructor
cpp/non-member-const-no-effect

cpp/comparison-precedence
cpp/nested-loops-with-same-variable

cpp/unsigned-comparison-zero

36 (21%)
33 (19%)

24 (14%)
18 (10%)

10 (6%)
9 (5%)
8 (5%)

6 (3%)
5 (3%)
5 (3%)

non-security-relevant defects
Fig. 7. Top-10 CodeQL queries by non-security defects found.

Accepted Requests. Most of
the developers readily accepted our
Workflow. In a few cases (3), we had
to make syntactic adjustments to our
Workflow according to the reposi-
tory coding practices. Few developers
(2) had concerns of the effectiveness
of CodeQL. When asked, we pointed
to the defects we identified as evi-
dence. Interestingly, one developer
surveyed their friends on X (formerly
Twitter) for opinions about CodeQL,
before accepting our pull request.
Closed Requests. Several developers (7) closed our pull requests, assuming that these were

generated by bots. We contacted them again to clarify that we were not bots but received no
response. A few developers (3) mentioned that they do not have enough resources to handle the
alerts raised by CodeQL. A few developers (2) mentioned concerns about licensing.

In summary, this part of our investigation yielded the following findings:

Finding 3 (Q1): CodeQL finds hundreds of real defects in the studied EMBOSS repositories,
including in repositories maintained by reputable organizations like Amazon and Microsoft.
Finding 4 (Q2): Defect density (defects per SLOC) is not uniform across different categories
of EMBOSS. Some categories of projects (e.g., APP and NET) are more likely to contain defects
than others (e.g., OS and HAL).
Finding 5 (Q3):CodeQL has a false positive rate of 34% in the 123 sampled repositories. However,
false positives are polarized, i.e., A few rules contribute to the majority of false positives.
Finding 6 (Q3): Although the overall false positive rate is high, it has minimal impact
on EMBOSS repositories: ∼40% of repos have no false positives, ∼55% of the repos have ≤ 1
false positive, and 90% of repos have ≤ 10 false positives.
Finding 7 (Q4): Developers readily accept fixes for SAST defects – demonstrating that they
care about these defects.
Finding 8 (Q5): Many EMBOSS developers are willing to integrate the CodeQL SAST into their
projects’ CI as a GitHub Workflow, provided that someone else (our research team) prepares,
validates and explains the Workflow for them.
Finding 9: A default Autobuild fails on many EMBOSS projects. However, producing a cus-
tomized build suitable for CodeQL takes minimal engineering effort for developers.

6 LESSONS LEARNED
We summarize our experiences in four lessons on using SAST in EMBOSS.

(Lesson 1) EMBOSS can benefit from SAST: Despite developers’ misgivings about the
effectiveness of SAST on EMBOSS, we found many security defects (535) across various embedded
software by using an existing SAST tool. Developers acknowledged and fixed most of the security
defects (70%) found by SAST tools, which shows that SAST tools can find important defects. Since
many of these repositories (96%) did not use SAST tools, it is perhaps unsurprising that they
were rife with defects that SAST can detect. Nevertheless, evidence of this is important to push
the EMBOSS engineering community toward more responsible engineering practice.

, Vol. 1, No. 1, Article . Publication date: December 2025.

16 Shen et al.

(Lesson 2) Developers are willing to adopting SAST in EMBOSS Repositories: Several
developers accepted our pull requests (71% (Active) and 29% (Total)) to integrate SAST tool (i.e., Cod-
eQL) into their CI pipeline. Our pull request was well-formatted and included all the necessary
details along with evidence of CodeQL’s effectiveness. Specifically, we included the examples of
the defects found by CodeQL in the corresponding repository. Furthermore, there was not much
persuasion needed to accept our pull requests. We draw two sub-lessons here. First, engineers can
easily integrate SAST tool into EMBOSS repositories — the pull request is not too complex and
can be done without much project-specific expertise. Second, engineers will accept contributions
from researchers, provided the contributions come with a demonstration of effectiveness (i.e., an
acceptable cost-benefit tradeoff).

(Lesson 3) SAST tool developers should consider the properties of EMBOSS: Our experi-
ence shows that certain SAST queries, which are effective on traditional (non-embedded) codebases,
might be ineffective or inapplicable for embedded codebases. We therefore recommend that SAST
tool developers take the characteristics of embedded codebases into consideration while evaluating
their tool design decisions. Part of our contribution is a set of modifications and configurations of
CodeQL queries that demonstrate the kinds of changes that are needed.

(Lesson 4) We need more best-effort defect detection techniques for EMBOSS: We were
able to find a large number of defects (709), including security vulnerabilities (535), in EMBOSS
repositories by just using an off-the-shelf SAST tool. Our results complement a recent work [17] that
used simple systematic testing to find several severe security issues in popular EMBOSS network
stacks. These works provide strong evidence that the EMBOSS engineering community should
investigate the potential of integrating simple or best-effort defect detection techniques.

7 FUTUREWORK
Developers accepted our pull requests to integrate SAST tool (i.e., CodeQL) into their CI pipeline.
However, this required manual effort (although minimal) to identify the build setup, create CI
workflow, and raise the pull request. As part of our future work, we plan to automate this process by
using Large Language Models (LLMs) assisted techniques [102]. To further encourage the adoption
of SAST tools, we plan to create rewards badges (such as the OpenSSF Best Practices Badge [92]),
or public recognition for projects that demonstrate the successful use of SAST tools in finding
and fixing vulnerabilities. We also plan to create tutorials, workshops, and documentation that
showcase the effectiveness of SAST tools in identifying real-world vulnerabilities that can help
EMBOSS developers better understand their value.

8 LIMITATIONS AND THREATS TO VALIDITY
Like any empirical study, our study has a range of limitations. We distinguish three types of threats
to validity [99]. Guided by Verdecchia et al., we focus on substantive threats that might influence
our findings [95].
Construct Threats are potential limitations of how we operationalized concepts. We scope

the construct of security vulnerabilities to those detectable by the SAST tools from the GitHub
Marketplace. Other classes of security vulnerabilities, and other kinds of software defects, are
beyond the scope of our work.
Internal threats are those that affect cause-effect relationships. This work was primarily a

measurement study, which does not involve causal inferences. However, our motivation stemmed
in part from the observation that many EMBOSS projects do not use SAST, and that the surveyed
developers often cited the perceived complexity and noisiness of applying SAST. Our measurements
are thus useful in shaping software engineering practice only insofar as these statements are truthful.

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 17

External threats may impact generalizability. Here is where most of the threats are.
• Focus on free SAST tools: We applied SAST tools available in the GitHub Marketplace to the
open-source embedded software available on GitHub. Our results may not generalize to other
SAST tools, particularly commercial ones such as Coverity and Sonar.

• Focus on EMBOSS: Our results may not generalize to other embedded software, particularly
commercial embedded software, to which costly techniques such as formal methods may
have been applied [18]. To shed some light on this threat, in our analysis, we showed that
SAST tool was still able to find defects in commercially-developed open-source software, such
as Amazon’s aws/aws-iot-device-sdk-embedded-C (which uses the commercial Coverity SAST
tool).

• Scoping to GitHub: Our study may suffer from data collection bias as we focus on projects
and SAST tools available on GitHub. There could be other EMBOSS projects (e.g., in BitBucket)
and tools on which our observations may not hold. We tried to avoid this by collecting diverse
projects with varying sizes.

• Limited developer study: Given the low number of responses, the observations from our
developer study (§4.3.2) may not generalize to other EMBOSS repositories. As a modest
mitigation, we note that the response rate was consistent with other surveys of GitHub
developers.

9 RELATEDWORK
Earlier we discussed directly related work. Here we compare broadly.

EmbeddedOperating Systems and Frameworks: Al-Boghdady et al. [8] conducted a thorough
analysis of four IoT Operating Systems, namely RIOT, Contiki, FreeRTOS, and Amazon FreeRTOS.
Their results indicated an increasing trend in the number of security errors over time. Others
agreed: Alnaeli et al. [11, 12] reported a rise in unsafe statements in Contiki and TinyOS, and
McBride et al. [73] found increasing error rates in Contiki. Malik et al. [67] shed some light on
root causes, noting that the complex behaviors of embedded devices are challenging to validate
internally. Our work encompasses these OSes and includes a wider range of embedded software,
leading to a broader view of the state of EMBOSS.

Other Analyses of Embedded Systems: Embedded software has been studied for decades. We
highlight a few recent analyses. Peng et al. [82] proposed a CI environment to improve the efficiency
and quality of software development in the nuclear power industry. The XANDAR project [40]
combines a model-based toolchain and hypervisor-based runtime architecture to create embedded
software systems with safety, security, and real-time properties. Bagheri et al. [25] proposed a
method for automatically generating assurance cases for software certification. Jia et al. [55] used
control and data flow analysis to find malicious behavior in IoT applications. Celik et al.’s SOTERIA
system [31] combines static analysis and model checking to find security and safety violations in
IoT software. Complementing these studies, we focused on static analysis for embedded software
to understand current practices, challenges, and opportunities.

Developers’ Perspectives on SAST Tools: For SAST, many works have examined the factors
hindering or spurring adoption. Johnson et al. [57] found that false positives and (non-)usability of
warnings are barriers. More recently, Ami et al. [15] interviewed 20 practitioners and found that
they considered these tools to be highly beneficial complements to manual analysis. Among the
challenges faced by developers, the significant pain points were false negatives, the absence of
meaningful alert messages, and the effort required for configuration and integration. Wadhams et
al. [96] identified false positives, poor output, time-consuming setup, and manual effort for fixes
as the primary barriers to SAST adoption. They emphasized that both developers and SAST tool

, Vol. 1, No. 1, Article . Publication date: December 2025.

18 Shen et al.

creators have distinct yet equally crucial roles in promoting the widespread use of SAST. Our study
revealed slightly different findings. In addition to false positives, developers were unaware of the
effectiveness of SAST tools on embedded software.
In terms of tool performance, Lenarduzzi et al. have questioned the tools’ capabilities [59],

comparing six SAST tools for Java and finding little agreement among them as well as low precision.
Our experience contrasts with their findings. Our experiments with CodeQL demonstrate that SAST
tools are highly capable of identifying vulnerabilities within the EMBOSS context. We were able to
easily (with minimal engineering effort) configure and integrate CodeQL in EMBOSS repositories.
The alert messages were displayed in SARIF format and were easy to understand and evaluate.

10 CONCLUSIONS
We evaluated the usage and effectiveness of SAST in EMBOSS. Across 258 open-source embedded
software projects, the CodeQL SAST tool found 709 defects (with a false positive rate of 34%), 376
of which have been confirmed. These included 302 defects that were security vulnerabilities such
as crashes and memory corruption. False positives were mainly caused by a few outlier CodeQL
rules and projects. For the majority of repositories studied, the false positive rates were low. We
also raised pull requests to incorporate our CodeQL Workflows as part of EMBOSS CI pipeline,
out of which 37 (71% (Active) and 29% (Total)) are already accepted. We conclude that the current
generation of static analysis tools, exemplified by CodeQL, has overcome concerns about false
positives and can be easily incorporated into embedded software projects. If engineers adopted
these tools, many security vulnerabilities would be prevented. Future research should push the
bounds of vulnerability discovery, but we call for efforts to promote adoption of existing tools.

RESEARCH ETHICS
In the conduct of this study, we upheld two ethical duties: the responsible conduct of research on
human subjects, and the appropriate handling of cybersecurity vulnerabilities.
Ethics for human-subjects research: Studies of human subjects must offer a favorable risk-

reward tradeoff. Our study included a human-subjects study: we surveyed EMBOSS software
engineers. The possible risk to our subjects was professional scrutiny based on following (or not
following) best practices in software engineering such as using SAST. The benefit is an increased
awareness of the available SAST tools and their performance, which may benefit them directly, as
well as those who depend on their software, and the broader EMBOSS community.

This study was conducted with the approval of our institution’s Institutional Review Board (IRB).
Ethics for cybersecurity vulnerabilities: The ethical duty for handling cybersecurity vul-

nerabilities requires responsible disclosure to protect users and systems by informing relevant
parties about identified security risks in a timely manner. Responsible disclosure typically follows
one of two models: Coordinated Vulnerability Disclosure (CVD) or Full Disclosure. CVD involves
informing the responsible parties first, allowing them time to address the issue before publicizing
the vulnerability. Full Disclosure, in contrast, is the practice of publishing vulnerability analyses as
soon as possible, without a private coordination period with the affected project or organization.

Since we identified vulnerabilities without associated exploits, and these vulnerabilities could be
found by anyone applying a SoTP tool, we determined that secrecy was not necessary. We therefore
adopted the Full Disclosure approach by opening public issues or pull requests with patches for
the identified vulnerabilities, as detailed in §5.2.4. By supplying a patch alongside the vulnerability
report, we actively mitigated the risk to users by making it easier for maintainers to address the
issue promptly. EMBOSS engineers frequently fixed the vulnerabilities we identified, and none
raised concerns that our public reporting was unethical.

, Vol. 1, No. 1, Article . Publication date: December 2025.

CodeQL Static Analysis on OSS Embedded Software 19

DATA AVAILABILITY
All project datawill accompany the paper. AnonymizedGitHubworkflows are at: https://anonymous.
4open.science/r/scanner-workflows-73F4. The list of CodeQL alerts we analyzed is at: https://docs.
google.com/spreadsheets/d/1c_qcX4F7UBWwY_AxySKb_nRhEgPtu-eyMzdWD04zBBM/edit?usp=
sharing.

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://anonymous.4open.science/r/scanner-workflows-73F4
https://anonymous.4open.science/r/scanner-workflows-73F4
https://docs.google.com/spreadsheets/d/1c_qcX4F7UBWwY_AxySKb_nRhEgPtu-eyMzdWD04zBBM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1c_qcX4F7UBWwY_AxySKb_nRhEgPtu-eyMzdWD04zBBM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1c_qcX4F7UBWwY_AxySKb_nRhEgPtu-eyMzdWD04zBBM/edit?usp=sharing

20 Shen et al.

REFERENCES
[1] [n. d.]. Application Security Testing. https://www.gsa.gov/technology/it-contract-vehicles-and-purchasing-

programs/technology-products-services/it-security/application-security-testing
[2] [n. d.]. OSRTOS. https://www.osrtos.com/.
[3] [n. d.]. Pull Request for Improvements to CodeQL. REDACTED.
[4] 2021. mogwailabs finds bugs using CodeQL. https://mogwailabs.de/en/blog/2021/09/vulnerability-digging-with-

codeql/.
[5] 2022. Trail of Bits finds bugs using CodeQL. https://blog.trailofbits.com/2022/01/11/finding-unhandled-errors-using-

codeql/.
[6] 2023. Computer Security: Avoiding salmonella in your code. https://rb.gy/yky2e
[7] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L. Mazurek, and Sascha Fahl. 2017. Security Developer

Studies with GitHub Users: Exploring a Convenience Sample. In Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017). USENIX Association, Santa Clara, CA, 81–95.

[8] Abdullah Al-Boghdady, Khaled Wassif, and Mohammad El-Ramly. 2021. The Presence, Trends, and Causes of Security
Vulnerabilities in Operating Systems of IoT’s Low-End Devices. Sensors 21, 7 (2021). https://doi.org/10.3390/s21072329

[9] Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali, Xiaojiang Du, Ihsan Ali, and Mohsen Guizani.
2020. A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. IEEE Communications
Surveys & Tutorials 22, 3 (2020), 1646–1685. https://doi.org/10.1109/COMST.2020.2988293

[10] Fadi Al-Turjman and Joel Poncha Lemayian. 2020. Intelligence, security, and vehicular sensor networks in internet of
things (IoT)-enabled smart-cities: An overview. Computers & Electrical Engineering 87 (2020), 106776.

[11] Saleh M. Alnaeli, Melissa Sarnowski, Md Sayedul Aman, Ahmed Abdelgawad, and Kumar Yelamarthi. 2016. Vulnerable
C/C++ code usage in IoT software systems. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) (Reston, VA,
USA, 2016-12). IEEE, 348–352. https://doi.org/10.1109/WF-IoT.2016.7845497

[12] Saleh Mohamed Alnaeli, Melissa Sarnowski, Md Sayedul Aman, Ahmed Abdelgawad, and Kumar Yelamarthi. 2017.
Source Code Vulnerabilities in IoT Software Systems. 2, 3 (2017), 1502–1507. https://doi.org/10.25046/aj0203188

[13] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK: Security Evaluation of Home-Based
IoT Deployments. Proceedings - IEEE Symposium on Security and Privacy 2019-May (2019), 1362–1380.

[14] Amazon Web Services, Inc. or its affiliates. 2023. FreeRTOS – Real-time operating system for microcontrollers. https:
//www.freertos.org/index.html

[15] Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. 2024. "False negative - that one is going to
kill you" - Understanding Industry Perspectives of Static Analysis based Security Testing. In Proceedings of the 2024
IEEE Symposium on Security and Privacy (S&P). To appear.

[16] Mahdi Amiri-Kordestani and Hadj Bourdoucen. 2017. A survey on embedded open source system software for the
internet of things. In Free and Open Source Software Conference, Vol. 2017.

[17] Paschal Amusuo, Andres Calvo Mendez Ricardo, Zhongwei Xu, Aravind Machiry, and James Davis. 2023. Systemati-
cally Detecting Packet Validation Vulnerabilities in Embedded Network Stacks. In Proceedings of the 38th IEEE/ACM
International Conference on Automated Software Engineering.

[18] Paschal C. Amusuo, Parth V. Patil, Owen Cochell, Taylor Le Lievre, and James C. Davis. 2024. Enabling Unit Proofing
for Software Implementation Verification. arXiv:2410.14818 [cs.SE] https://arxiv.org/abs/2410.14818

[19] Sundaram Ananthanarayanan, Masoud Saeida Ardekani, Denis Haenikel, Balaji Varadarajan, Simon Soriano, Dhaval
Patel, and Ali-Reza Adl-Tabatabai. 2019. Keeping master green at scale. In Proceedings of the Fourteenth EuroSys
Conference 2019. 1–15.

[20] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir Durumeric,
J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th USENIX
security symposium (USENIX Security 17). 1093–1110.

[21] Andrei Arusoaie, Stefan Ciobâca, Vlad Craciun, Dragos Gavrilut, and Dorel Lucanu. 2017. A Comparison of Open-
Source Static Analysis Tools for Vulnerability Detection in C/C++ Code. In 2017 19th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 161–168.

[22] Abhishek Arya, Caleb Brown, Rob Pike, and The Open Source Security Foundation. 2023. Open Source Project
Criticality Score. https://github.com/ossf/criticality_score. original-date: 2020-11-17T16:14:23Z.

[23] ANONYMOUS AUTHOR(S). 2024. An Empirical Study on Static Analysis Tool Use in Open-Source Embedded
Software, and the Effectiveness of CodeQL (Extended Report). Google Drive. https://drive.google.com/file/d/1tqSE_
rxSw4aFvD25iiv06UfrqYqnaky2/view?usp=sharing

[24] Pavel Avgustinov, Oege De Moor, Michael Peyton Jones, and Max Schäfer. 2016. QL: Object-oriented queries on
relational data. In 30th European Conference on Object-Oriented Programming (ECOOP 2016).

[25] Hamid Bagheri, Eunsuk Kang, and Niloofar Mansoor. 2020. Synthesis of Assurance Cases for Software Certification.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://www.gsa.gov/technology/it-contract-vehicles-and-purchasing-programs/technology-products-services/it-security/application-security-testing
https://www.gsa.gov/technology/it-contract-vehicles-and-purchasing-programs/technology-products-services/it-security/application-security-testing
https://www.osrtos.com/
REDACTED
https://mogwailabs.de/en/blog/2021/09/vulnerability-digging-with-codeql/
https://mogwailabs.de/en/blog/2021/09/vulnerability-digging-with-codeql/
https://blog.trailofbits.com/2022/01/11/finding-unhandled-errors-using-codeql/
https://blog.trailofbits.com/2022/01/11/finding-unhandled-errors-using-codeql/
https://rb.gy/yky2e
https://doi.org/10.3390/s21072329
https://doi.org/10.1109/COMST.2020.2988293
https://doi.org/10.1109/WF-IoT.2016.7845497
https://doi.org/10.25046/aj0203188
https://www.freertos.org/index.html
https://www.freertos.org/index.html
https://arxiv.org/abs/2410.14818
https://arxiv.org/abs/2410.14818
https://github.com/ossf/criticality_score
https://drive.google.com/file/d/1tqSE_rxSw4aFvD25iiv06UfrqYqnaky2/view?usp=sharing
https://drive.google.com/file/d/1tqSE_rxSw4aFvD25iiv06UfrqYqnaky2/view?usp=sharing

CodeQL Static Analysis on OSS Embedded Software 21

[26] Pranshu Bajpai and Adam Lewis. 2022. Secure Development Workflows in CI/CD Pipelines. In 2022 IEEE Secure
Development Conference (SecDev). 65–66.

[27] Deval Bhamare, Maede Zolanvari, Aiman Erbad, Raj Jain, Khaled Khan, and Nader Meskin. 2020. Cybersecurity for
industrial control systems: A survey. computers & security 89 (2020), 101677.

[28] Davide Bonaventura., Sergio Esposito., and Giampaolo Bella. 2023. Smart Bulbs Can Be Hacked to Hack into Your
Household. In Proceedings of the 20th International Conference on Security and Cryptography - SECRYPT. SciTePress.

[29] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Understanding Repository Starring Practices
in a Social Coding Platform. Journal of Systems and Software 146 (Dec. 2018), 112–129.

[30] Guillaume Brat, Jorge A Navas, Nija Shi, and Arnaud Venet. 2014. IKOS: A framework for static analysis based on
abstract interpretation. In Proceedings of the International Conference on Software Engineering and Formal Methods
(SEFM 2014). Springer.

[31] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated IoT Safety and Security Analysis. In 2018
USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 147–158.

[32] Chaminda Chandrasekara and Pushpa Herath. 2021. Hands-on GitHub Actions: Implement CI/CD with GitHub
Action Workflows for Your Applications. (2021).

[33] George Chatzieleftheriou and Panagiotis Katsaros. 2011. Test-driving static analysis tools in search of C code
vulnerabilities. In 2011 IEEE 35th annual computer software and applications conference workshops. IEEE, 96–103.

[34] Checkmarx Ltd. 2023. Checkmarx. https://checkmarx.com/
[35] Circle Internet Services, Inc. 2024. Continuous Integration and Delivery - CircleCI. https://circleci.com/.
[36] Roland Croft, M. Ali Babar, and Li Li. 2022. An Investigation into Inconsistency of Software Vulnerability Severity

across Data Sources. In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER).
[37] Tobias Dam, Lukas Daniel Klausner, and Sebastian Neumaier. 2023. Towards a Critical Open-Source Software Database.

In Companion Proceedings of the ACM Web Conference 2023 (Austin, TX, USA) (WWW ’23 Companion).
[38] Albert Danial. 2021. cloc: v1.92. https://doi.org/10.5281/zenodo.5760077
[39] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. 2022. On the use of GitHub actions in

software development repositories. In 2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 235–245.

[40] Tobias Dörr and et al. 2024. XANDAR: An X-by-Construction Framework for Safety, Security, and Real-Time Behavior
of Embedded Software Systems. In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1–6.
https://doi.org/10.23919/DATE58400.2024.10546852

[41] Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt, Manuel Egele,
Aurélien Francillon, Long Lu, Nick Gregory, et al. 2021. Sok: Enabling security analyses of embedded systems via
rehosting. In Proceedings of the 2021 ACM Asia conference on computer and communications security. 687–701.

[42] Daniel Feitosa, Apostolos Ampatzoglou, Paris Avgeriou, and Elisa Yumi Nakagawa. 2015. Investigating Quality Trade-
Offs in Open Source Critical Embedded Systems. In Proceedings of the 11th International ACM SIGSOFT Conference on
Quality of Software Architectures (Montréal, QC, Canada) (QoSA ’15). 113–122. https://doi.org/10.1145/2737182.2737190

[43] Nicole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The science of lean software and devops: Building and
scaling high performing technology organizations. IT Revolution.

[44] Radek Fujdiak, Petr Mlynek, Petr Blazek, Maros Barabas, and Pavel Mrnustik. 2018. Seeking the Relation Between
Performance and Security in Modern Systems: Metrics and Measures. In 2018 41st International Conference on
Telecommunications and Signal Processing (TSP). 1–5. https://doi.org/10.1109/TSP.2018.8441496

[45] Christoph Gentsch. 2020. Evaluation of open source static analysis security testing (SAST) tools for C. (2020).
[46] GitHub, Inc. 2021. CodeQL Wall of Fame. https://securitylab.github.com/codeql-wall-of-fame/.
[47] GitHub, Inc. 2023. CodeQL Query Help for C and C++ — CodeQL Query Help Documentation. https://codeql.github.

com/codeql-query-help/cpp/.
[48] GitHub, Inc. 2023. Usage limits, billing, and administration. https://docs.github.com/en/actions/learn-github-

actions/usage-limits-billing-and-administration.
[49] GitHub, Inc. 2023. Virtual Call from Constructor or Destructor — CodeQL Query Help Documentation.

https://codeql.github.com/codeql-query-help/cpp/cpp-virtual-call-in-constructor/.
[50] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. 2022. On the rise and fall of CI services in GitHub. In 2022 IEEE

International Conference on Software Analysis, Evolution and Reengineering (SANER). 662–672.
[51] Nikhil Krishna Gopalakrishna, Dharun Anandayuvaraj, Annan Detti, Forrest Lee Bland, Sazzadur Rahaman, and

James C. Davis. 2022. "If Security Is Required": Engineering and Security Practices for Machine Learning-based
IoT Devices. In 4th International Workshop on Software Engineering Research & Practices for the Internet of Things
(SERP4IoT). 8.

[52] Jez Humble and David Farley. 2010. Continuous delivery: reliable software releases through build, test, and deployment
automation. Pearson Education.

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://checkmarx.com/
https://circleci.com/
https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.23919/DATE58400.2024.10546852
https://doi.org/10.1145/2737182.2737190
https://doi.org/10.1109/TSP.2018.8441496
https://securitylab.github.com/codeql-wall-of-fame/
https://codeql.github.com/codeql-query-help/cpp/
https://codeql.github.com/codeql-query-help/cpp/
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration

22 Shen et al.

[53] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. 2019. How Do Developers Act on Static Analysis Alerts? An
Empirical Study of Coverity Usage. In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE) (2019-10). 323–333. https://doi.org/10.1109/ISSRE.2019.00040 ISSN: 2332-6549.

[54] Nasif Imtiaz and Laurie Williams. 2019. A synopsis of static analysis alerts on open source software. In Proceedings of
the 6th Annual Symposium on Hot Topics in the Science of Security. 1–3.

[55] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes, Z. Morley Mao, and Atul Prakash.
2017. ContexIoT: Towards Providing Contextual Integrity to Appified IoT Platforms. In 21st Network and Distributed
Security Symposium.

[56] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang. 2017. Why and how developers fork
what from whom in GitHub. Empirical Software Engineering 22 (2017), 547–578.

[57] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why Don’t Software Developers
Use Static Analysis Tools to Find Bugs?. In 2013 35th International Conference on Software Engineering (ICSE) (San
Francisco, CA, USA). IEEE, 672–681. https://doi.org/10.1109/ICSE.2013.6606613

[58] Brenno Lemos. 2023. C/C++ Linter Action – Clang-Format & Clang-Tidy.
[59] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimaki, Savanna Lujan, and Fabio Palomba. 2023. A critical

comparison on six static analysis tools: Detection, agreement, and precision. Journal of Systems and Software 198
(2023), 111575. https://doi.org/10.1016/j.jss.2022.111575

[60] Linearity. 2010. Omitting Return Statement in C++.
[61] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An Empirical Study on the Effectiveness of Static

C Code Analyzers for Vulnerability Detection. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis. ACM, Virtual South Korea, 544–555. https://doi.org/10.1145/3533767.3534380

[62] Tamara Lopez, Helen Sharp, Thein Tun, Arosha Bandara, Mark Levine, and Bashar Nuseibeh. 2019. "Hopefully We
Are Mostly Secure": Views on Secure Code in Professional Practice. In 2019 IEEE/ACM 12th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE). 61–68. https://doi.org/10.1109/CHASE.2019.00023

[63] Bailin Lu, Wei Dong, Liangze Yin, and Li Zhang. 2018. Evaluating and integrating diverse bug finders for effective
program analysis. In Software Analysis, Testing, and Evolution: 8th International Conference, SATE 2018, Shenzhen,
Guangdong, China, November 23–24, 2018, Proceedings 8. Springer, 51–67.

[64] Björn Lundell, Brian Lings, and Anna Syberfeldt. 2011. Practitioner Perceptions of Open Source Software in the
Embedded Systems Area. Journal of Systems and Software 84, 9 (2011). https://doi.org/10.1016/j.jss.2011.03.020

[65] Chujiao Ma, Matthew Bosack, Wendy Rothschell, Noopur Davis, and Vaibhav Garg. 2022. Wanted Hacked or Patched.
(2022). https://www.usenix.org/sites/default/files/opensourcebugbounty_login_final.pdf

[66] Aravind Machiry, Nilo Redini, Eric Camellini, Christopher Kruegel, and Giovanni Vigna. 2020. SPIDER: Enabling Fast
Patch Propagation In Related Software Repositories. In 2020 IEEE Symposium on Security and Privacy (SP). 1562–1579.

[67] Jahanzaib Malik and Fabrizio Pastore. 2023. An empirical study of vulnerabilities in edge frameworks to support
security testing improvement. 28, 4 (2023), 99. https://doi.org/10.1007/s10664-023-10330-x

[68] Valentin JMManès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J Schwartz, and Maverick
Woo. 2019. The art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering (2019).

[69] Muskan Mangla. 2023. Securing CI/CD Pipeline: Automating the detection of misconfigurations and integrating security
tools. Ph. D. Dissertation. Dublin, National College of Ireland.

[70] Steve Mansfield-Devine. 2018. DevOps: finding room for security. Network security 2018, 7 (2018), 15–20.
[71] Joel Margolis, Tae Tom Oh, Suyash Jadhav, Young Ho Kim, and Jeong Neyo Kim. 2017. An in-depth analysis of the

mirai botnet. In 2017 International Conference on Software Security and Assurance (ICSSA). IEEE, 6–12.
[72] Daniel Marjamäki. 2013. Cppcheck: a tool for static c/c++ code analysis. https://cppcheck.sourceforge.io
[73] Jack McBride, Budi Arief, and Julio Hernandez-Castro. 2018. Security Analysis of Contiki IoT Operating System. In

Proceedings of the 2018 International Conference on Embedded Wireless Systems and Networks (Madrid, Spain) (EWSN
’18). Junction Publishing, USA, 278–283.

[74] Jonathan Moerman, Sjaak Smetsers, and Marc Schoolderman. 2018. Evaluating the performance of open source static
analysis tools. Bachelor thesis, Radboud University, The Netherlands 24 (2018).

[75] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide Balzarotti. 2018. What You Corrupt Is Not
What You Crash: Challenges in Fuzzing Embedded Devices. In Network and Distributed System Security Symposium
(NDSS).

[76] Nataliia Neshenko, Elias Bou-Harb, Jorge Crichigno, Georges Kaddoum, and Nasir Ghani. 2019. Demystifying IoT
Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations.
IEEE Communications Surveys & Tutorials 21, 3 (2019), 2702–2733. https://doi.org/10.1109/COMST.2019.2910750

[77] Anh Nguyen-Duc, Manh Viet Do, Quan Luong Hong, Kiem Nguyen Khac, and Anh Nguyen Quang. 2021. On the
adoption of static analysis for software security assessment–A case study of an open-source e-government project.
computers & security 111 (2021), 102470.

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://doi.org/10.1109/ISSRE.2019.00040
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1016/j.jss.2022.111575
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1109/CHASE.2019.00023
https://doi.org/10.1016/j.jss.2011.03.020
https://www.usenix.org/sites/default/files/opensourcebugbounty_login_final.pdf
https://doi.org/10.1007/s10664-023-10330-x
https://cppcheck.sourceforge.io
https://doi.org/10.1109/COMST.2019.2910750

CodeQL Static Analysis on OSS Embedded Software 23

[78] Anh Nguyen-Duc, Manh Viet Do, Quan Luong Hong, Kiem Nguyen Khac, and Anh Nguyen Quang. 2021. On the
Adoption of Static Analysis for Software Security Assessment–A Case Study of an Open-Source e-Government
Project. Computers & Security 111 (Dec. 2021), 102470.

[79] Eoin O’driscoll and Garret E O’donnell. 2013. Industrial power and energy metering–a state-of-the-art review. Journal
of Cleaner Production 41 (2013), 53–64.

[80] Open Text. 2023. Fortify. https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
[81] Dipankar Pal. 2023. Deep5050/Cppcheck-Action.
[82] Tao Peng, Wen-Tao Fu, Si-Di Kong, Xiao-Long Li, Ci-Fu Xie, Ting Fu, and Fei Yang. 2024. Application of Continuous

Integration in the Development of Embedded Software for Nuclear Power Industry. In International Symposium on
Software Reliability, Industrial Safety, Cyber Security and Physical Protection for Nuclear Power Plant. Springer.

[83] Quoc-Sang Phan, Kim-Hao Nguyen, and ThanhVu Nguyen. 2023. The Challenges of Shift Left Static Analysis. In
2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).

[84] Dipika Roy Prapti, Abdul Rashid Mohamed Shariff, Hasfalina Che Man, Norulhuda Mohamed Ramli, Thinagaran
Perumal, and Mohamed Shariff. 2022. Internet of Things (IoT)-based aquaculture: An overview of IoT application on
water quality monitoring. Reviews in Aquaculture 14, 2 (2022), 979–992.

[85] Miro Samek. 2008. Practical UML statecharts in C/C++: event-driven programming for embedded systems. CRC Press.
[86] Wedy Freddy Santoso and Dadang Syarif Sihabudin Sahid. 2021. Implementation and performance analysis develop-

ment security operations (DevSecOps) using static analysis and security testing (SAST). In Proceeding International
Applied Business and Engineering Conference.

[87] Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago Torres-Arias, and Aravind Machiry. 2024. Rust
for Embedded Systems: Current State and Open Problems. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24).

[88] Mingjie Shen, James C. Davis, and Aravind Machiry. 2023. Towards Automated Identification of Layering Violations in
Embedded Applications (WIP). In Proceedings of the 24th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems (Orlando, FL, USA) (LCTES 2023). https://doi.org/10.1145/3589610.3596271

[89] NB Soni and Jaideep Saraswat. 2017. A review of IoT devices for traffic management system. In 2017 international
conference on intelligent sustainable systems (ICISS). IEEE, 1052–1055.

[90] Nuthan TestMunaiah and Andrew Meneely. 2016. Vulnerability Severity Scoring and Bounties: Why the Disconnect?.
In Proceedings of the 2nd International Workshop on Software Analytics (Seattle, WA, USA) (SWAN 2016). 8–14.

[91] The Linux Foundation. 2023. Zephyr® Project. https://www.zephyrproject.org/.
[92] The Linux Foundation. 2024. BadgeApp. https://www.bestpractices.dev/en
[93] Travis CI [n. d.]. Travis CI - Test and Deploy Your Code with Confidence. https://travis-ci.org/.
[94] Veracode. 2023. Veracode. https://www.veracode.com/
[95] Roberto Verdecchia, Emelie Engström, Patricia Lago, Per Runeson, and Qunying Song. 2023. Threats to validity in

software engineering research: A critical reflection. Information and Software Technology 164 (2023), 107329.
[96] Zachary Wadhams, Clemente Izurieta, and Ann Marie Reinhold. 2024. Barriers to Using Static Application Security

Testing (SAST) Tools: A Literature Review. challenge 70 (2024), 15k.
[97] David Wheeler. 2006. Flawfinder. http://www.dwheeler.com/flawfinder.
[98] Elecia White. 2011. Making Embedded Systems: Design Patterns for Great Software. O’Reilly Media, Inc.
[99] ClaesWohlin, Per Runeson,MartinHöst, Magnus COhlsson, Björn Regnell, andAndersWesslén. 2012. Experimentation

in software engineering. Springer Science & Business Media.
[100] Guest Writer. 2020. The 5 Worst Examples of IoT Hacking and Vulnerabilities in Recorded History. https://www.

iotforall.com/5-worst-iot-hacking-vulnerabilities.
[101] Jing Xie, Heather Richter Lipford, and Bill Chu. 2011. Why do programmers make security errors?. In 2011 IEEE

symposium on visual languages and human-centric computing (VL/HCC). IEEE, 161–164.
[102] Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry. 2024. On the Effectiveness of

Large Language Models for GitHub Workflows. In Proceedings of the 19th International Conference on Availability,
Reliability and Security (Vienna, Austria) (ARES ’24). Article 32, 14 pages. https://doi.org/10.1145/3664476.3664497

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://doi.org/10.1145/3589610.3596271
https://www.bestpractices.dev/en
https://travis-ci.org/
https://www.veracode.com/
http://www.dwheeler.com/flawfinder
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities
https://doi.org/10.1145/3664476.3664497

	Abstract
	1 Introduction
	2 Background
	2.1 Open-Source Embedded Software (EMBOSS)
	2.2 Static Application Security Testing (SAST)

	3 Motivation
	4 Prevalence Study
	4.1 Corpus of Major EMBOSS Projects
	4.2 Analysis of Corpus
	4.3 Study Methodology

	5 SOTA SAST Performance
	5.1 Selection of the SOTA SAST tools
	5.2 Effectiveness of CodeQL

	6 Lessons Learned
	7 Future Work
	8 Limitations and Threats to Validity
	9 Related Work
	10 Conclusions
	References

