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Abstract—Improving software performance through configu-
ration parameter tuning is a common activity during software
maintenance. Beyond traditional performance metrics like la-
tency, mobile app developers are interested in reducing app
energy usage. Some mobile apps have centralized locations for
parameter tuning, similar to databases and operating systems,
but it is common for mobile apps to have hundreds of parameters
scattered around the source code. The correlation between these
“deep” parameters and app energy usage is unclear. Researchers
have studied the energy effects of deep parameters in specific
modules, but we lack a systematic understanding of the energy
impact of mobile deep parameters.

In this paper we empirically investigate this topic, combining
a developer survey with systematic energy measurements. Our
motivational survey of 25 Android developers suggests that
developers do not understand, and largely ignore, the energy
impact of deep parameters. To assess the potential implications
of this practice, we propose a deep parameter energy profiling
framework that can analyze the energy impact of deep param-
eters in an app. Our framework identifies deep parameters,
mutates them based on our parameter value selection scheme,
and performs reliable energy impact analysis. Applying the
framework to 16 popular Android apps, we discovered that
deep parameter-induced energy inefficiency is rare. We found
only 2 out of 1644 deep parameters for which a different value
would significantly improve its app’s energy efficiency. A detailed
analysis found that most deep parameters have either no energy
impact, limited energy impact, or an energy impact only under
extreme values. Our study suggests that it is generally safe for
developers to ignore the energy impact when choosing deep
parameter values in mobile apps.

I. INTRODUCTION

Improving energy efficiency is one of a mobile app de-
veloper’s software maintenance activities. App users desire
efficient energy usage [1], and the resulting improvement in
accessibility can benefit individuals and societies [2], [3].
Mobile platform vendors, e.g., Google and Apple, also advise
app developers to optimize app energy usage [4], [5].

One potential strategy to reduce a mobile app’s energy
usage is to tune its configuration parameters. All software
includes configuration parameters to help it be adapted to
different contexts. Mobile apps are no exception: in addition
to the parameters explicitly exposed in resource files and other
configuration files, these apps have many deep parameters, i.e.,
parameters that are scattered around the source code to control
runtime behaviors including buffer sizes, task frequencies,

and UI layout positions. Researchers have shown that tun-
ing parameters can improve the performance of conventional
software [6]–[8]. However, mobile deep parameters are often
overlooked by developers, and little is known about the energy
impacts of deep parameters in mobile apps. Prior works have
only studied the energy impacts of deep parameters in specific
modules [9] or libraries [10], [11], not systematically.

We investigated the energy impact of mobile deep pa-
rameters using mixed methods [12], combining a developer
survey with systematic energy measurements. In our survey
of 25 Android app developers, we found that developers are
uncertain about the energy impact of deep parameters and do
not usually consider energy when choosing parameter values.

To measure the implications of developers’ practices on
deep parameters, we propose a parameter-centric energy pro-
filing framework. The framework extracts deep parameters
from the app, mutates them based on our parameter value
selection scheme, and measures the changes in energy drain.
Our framework overcomes several challenges: identifying deep
parameters, choosing appropriate mutation values, and reliably
measuring the energy impact.

We systematically measured deep parameter energy effects
in 16 popular open-source Android apps. Among the 1644
parameters tested, only 2 are set to energy-inefficient values.
Further analysis shows that the rest of the parameters either
have no energy effect, have limited energy effects, or only
have energy effects under extreme values that developers can
typically avoid based on their domain knowledge. We conclude
that it is generally safe for developers to ignore energy effects
when choosing deep parameter values — developers must look
elsewhere for energy-reducing refactorings.

Our study makes the following contributions:

• We describe the practices of mobile app developers on
deep parameters and energy optimization (N=25) (§IV).

• We propose a framework for parameter-centric profiling
in Android, automatically identifying deep parameters
and measuring their energy impacts (§V).

• We perform the first systematic study of the energy im-
pact of deep parameters in Android apps (N=16) (§VII).
We describe the roles of deep parameters in these apps,
and identify three energy categories of deep parameters.



• We open-source our framework and full survey and
experiment results1 to enable reproducibility and further
exploration from the research community.

II. BACKGROUND AND DEFINITIONS

A. Configuration Tuning in General

Many categories of software can be configured for different
usage scenarios and deployment environments. Such soft-
ware includes databases, stream processing frameworks, web
servers, codecs, and others. Their configuration parameters
are typically exposed through configuration files, command-
line interfaces, or certain data structures [6]. For example, to
configure the video codec x265, one can pass command-line
arguments to the executable [13], or specify the x265_param
data structure through its API [14].

In addition to their implications on software functionality,
configuration parameters may also impact performance met-
rics. For example, by tuning its ∼200 configuration param-
eters, MySQL database throughput can be improved by 6x
and its latency reduced by 3x on common benchmarks [8]. As
configuration tuning is an NP-hard problem [15], configura-
tion tuners aim to efficiently search the configuration space
and recommend configuration values for a given workload
(e.g., [6], [7]). In these contexts, auto-tuners are able to focus
on the performance optimization task because the software
parameters are clearly defined (e.g., in configuration files).

B. Parameters in Mobile Apps

Mobile apps also contain configurable parameters that con-
trol various aspects of the apps. As in most user-facing
software, latency is a major performance metric in mobile
apps. However, energy is also a key metric in mobile apps.
Similar to configuration tuning for other performance metrics,
other researchers have provided preliminary evidence that
some parameters impact app energy consumption. Canino et
al. [9] showed that GPS configuration parameters can be
tuned to meet specified energy consumption SLAs. Similarly,
Bokhari et al. [10], [11] optimized the energy consumption of
the Rebound physics library by tuning its numeric parameters.
However, it is unclear whether such energy-affecting parame-
ters are common in general Android apps.

This problem is challenging because, in contrast to the soft-
ware discussed above, parameters in Android apps are more
often scattered all around the source code rather than stored
at central places. We speculate that parameter centralization
occurs when the software is designed to be maintained by
skilled operators such as database administrators. Most mobile
apps are designed for unskilled users, and so there is little
customer demand to centralize and expose parameters. This
challenge must be overcome in order to understand the impact
of parameters on mobile app energy usage.

C. Definitions

Following Bokhari et al. [10], [11], we define a deep
configuration parameter as a constant in app source code

1https://doi.org/10.5281/zenodo.5823364

1 Bitmap.createBitmap(320, 240, ARGB_8888);
2 byte[] serverVersion = new byte[512];
3 sock.setSocketTimeout(0);
4 layoutParams.width = 12;

Fig. 1: Real Android code snippets; deep parameters in red.

that can be changed by app developers, but does not affect
app functionality. In other words, all app components should
function properly when tuning a deep parameter’s value, with
“minimal” impact on user experience. This property can be
determined by examining the source code or the runtime app
behavior.2 Some examples are given in Figure 1, e.g., buffer
sizes, timeouts, and UI element sizes, and the parameters can
be numeric, Boolean, or enumeration values.

III. RESEARCH QUESTIONS

We seek to understand the energy efficiency of Android
deep parameters. App energy efficiency might be affected by
developers’ awareness of the energy impact of deep parameters
and their strategy in deciding parameter values. We also want
to measure and understand the energy effects of tuning deep
parameters. Operationalized, our research questions are:

RQ1: What are the energy impacts of parameters in develop-
ers’ eyes?

RQ2: How do developers choose parameter values?
RQ3: Is deep parameter-induced energy inefficiency common

among apps?
RQ4: When and why do (and do not) deep parameters impact

app energy consumption?

We investigated RQ1-2 with a developer survey. We studied
RQ3-4 through a systematic energy measuring experiment.

IV. DEVELOPER PERSPECTIVES

We surveyed Android developers to better understand their
perceptions and practices regarding Android parameters.

A. Methodology

We designed an IRB-approved survey to obtain mobile app
developers’ perspectives on RQ1 and RQ2. The RQs were
operationalized into 6 demographic questions and 13 study-
specific questions. These questions included closed- and open-
ended questions across three topics: (1) the nature of the
parameters in their apps; (2) their perceptions of parameters’
energy impacts; and (3) their process when choosing param-
eter values. Rather than using interviews to elicit relevant
topics for the survey, we based the questions on (a) our
own expertise from studying and developing energy-efficient
mobile apps; and (b) preliminary findings and observations
from our energy experiments (detailed in sections V to VII).
To improve instrument validity and reduce bias, we followed
best practices during survey design [16], [17], e.g., avoiding
leading questions, and refined the survey through two rounds
of pilot studies with graduate students.

2A high-quality test suite would be a suitable oracle, but we found these
suites inadequate in our experiments.
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(b) How often do you consider energy consumption while choosing parameter
values?

Fig. 2: Distribution of responses to developer perception of parame-
ters’ energy impact and how they pick parameter values

To ensure participant’s understanding of the term “param-
eter”, we provided the following definition before survey
questions: “Android apps contain parameters that control
various aspects of the apps. Common types of parameters
include upper/lower bounds, UI layout sizes/positions, buffer-
/cache sizes, thread counts, timeouts, task frequencies, etc.
They could be hard-coded numbers, constants, or dynamically
varying. In this survey, we are interested in the parameters
that are accessible to developers, i.e., not in-app settings.”3

Respondents were asked to answer in terms of the app they
spent the most time developing.

We distributed the survey to Android developers through
multiple channels. We posted the survey on popu-
lar forums frequented by Android developers (subreddits
r/androiddev and r/mAndroidDev) and developers in
general (Hacker News and DEV), and social media groups of
Android developers (LinkedIn, Facebook, and Slack). We also
contacted Android developers in our professional networks.
Survey participants were not compensated.

We received 25 non-blank responses: 15 from forums and
social media groups, and 10 from professional connections.

B. Results

a) Demographics: The median respondent has 6-10
years of software development experience and 3-5 years of
Android development experience. Respondents work on apps
from 13/37 categories defined by Google Play [18]. For 21/25

responses, the answers describe commercial app development.
b) RQ1: Developer Perception of Energy Impact: De-

velopers are concerned about app energy usage: 10 of the 25
respondents monitor energy consumption. However, most of
these respondents use coarse-grained measurements like CPU
usage or battery statistics. These tools can detect severe or
specific types of energy bugs (e.g., wake lock [19]), but are
difficult to use for energy tuning. Perhaps in consequence,
only 3 respondents are confident about the energy impacts of
“a lot” of their apps’ parameters (Figure 2a).

3This definition includes both deep (cf. §II-C) and traditional parameters.
Our results thus give a broader perspective on the energy tuning practices of
mobile app developers. As deep parameters are a subset of this definition, our
survey results also characterize engineering practices for deep parameters.

Finding 1: Around half of mobile app developers
measure app energy usage. Few developers (12%) are
confident about the energy impact of parameters.

c) RQ2: Picking Parameter Values: Our respondents said
that when they choose parameter values, their top concerns
are app functionality and user experience. Only 2 of the 25
developers frequently or always consider energy consumption
when parameterizing (Figure 2b). The reason might again
lie in the fact that developers don’t have handy tools for
energy tuning. As developers have only limited confidence
in parameters’ energy impacts, further experiments are still
needed to validate developers’ choices.

Finding 2: Only 8% of developers frequently consider
energy consumption when choosing parameter values.

d) Parameter Locations: Other data from our survey in-
formed our parameter measurement approach. For parameters
in source files, our respondents estimated that the majority
are scattered across the codebase; only a third of respondents
described their apps as having substantial parameter central-
ization in files like Config.java or Constants.java.
This finding is consistent with our observations of open-source
Android apps, discussed in §II-B.

V. DEEP PARAMETER TESTING FRAMEWORK

The developers in our survey indicated that they rarely
consider energy consumption when picking deep parameter
values. This practice does not necessarily mean that they
make poor choices. Developers might intuitively make energy-
efficient choices; energy-efficient choices may correlate with
choices that improve usability; or deep parameters may not
have a substantial effect on energy usage. However, since
developers told us that they do not consider the energy
effects of parameters, our governing hypothesis is that ignoring
energy effect results in suboptimal deep parameterizations. To
test the hypothesis, we propose a framework that mutates every
deep parameter and checks if the change reduces energy usage.

An overview of the mutate-and-test process is shown in
Figure 3. As deep parameters are scattered in the source code,
we first extract deep parameters from the set of all constants.
For each of the parameters extracted, we try several new values
based on our parameter mutation scheme, and measure the
energy consumption of the app variants. We manually validate
all parameterizations that reduce energy use, and finally report
any discovered energy-reducing parameters.

We present the details of each step below. Many design
details are informed by preliminary experiments and obser-
vations. The primary design constraint is time: testing one
parameter takes a long time (on average 22 minutes), as we
need to perform repeated tests for multiple parameter values
on the phone; and these tests are not easily scaled, since we
need a physical device to get accurate energy measurements.

We describe our experiment applying the framework to 16
popular Android apps in §VI and the results in §VII.
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Fig. 3: Workflow of the mutate-and-test process.

A. Deep Parameter Extraction

Deep parameters are scattered around source files. Thus, to
test the parameters, one design option is to test all constants,
regardless they are deep parameters or not. However, an
app has thousands of constants and testing all of them is
prohibitively time-consuming. We therefore use a mix of
automatic and manual filtering to distinguish deep parameters
from other constants.

a) Usage Scenarios and Parameter Coverage: Our
framework tests an app using UI automation scripts over
several of its usage scenarios. After we identify these usage
scenarios, we use code coverage to identify the candidate deep
parameters. A usage scenario may target a particular feature
set (e.g., features to be used in a low-power mode), and only
some deep parameters will affect the energy usage in this
scenario. Deep parameters that are not used cannot have an
energy effect. Based on this insight, we record the line-level
code statement coverage and filter out parameters that are
not covered. This filtering is performed prior to the energy
measurements, thus energy measurements are conducted on a
non-instrumented app and do not have instrumentation effects.

b) Heuristic Rules: We noticed that true deep parameters
are more likely to occur in certain code constructs, while
constants in some other code constructs are unlikely to be
deep parameters. For example, variable initializers and method
call arguments tend to be deep parameters; bitwise operator
arguments typically not.

Using “negative patterns” matching non-parameter constants
minimize the chance that we incorrectly filter out deep pa-
rameters. Thus, we assemble a set of patterns that are shared
by portions of the non-parameter constants, and filter out
constants that match any pattern. The patterns are extracted by
manually classifying constants in a file to be deep parameters
or not, and identifying any patterns that the non-parameter
constants may share.

After manually inspecting the files with the most constants,
we derived heuristic rules as shown in Table I. Each rule may
be applicable to one or several parameter types. As the rules
are more pertinent to programming language idioms [20] than
an individual developer’s habits, they apply across apps. How-
ever, as the rules depend on common development practices,
they may incorrectly filter parameters (false negatives).

c) Manual Filtering: The preceding filters are automated.
However, many constants remain for consideration. We man-
ually examine the remainder and filter out non-parameter
constants based on their semantic. For example, error codes are

TABLE I: Heuristic rules for filtering non-parameter constants.

Type Rule Example

Num Array index a[0]
Num Comparison with 0 or 1 a.size() > 0
Num Plus 1 or 2 or minus 1 a.length() - 1
Num For loop initialization for (int i = 0; ...)
Num Ignored methods s.substring(0, 4)
Bool One argument method call item.setVisible(true)
Enum Time unit convert(5, DAYS)
Enum Locale toLowerCase(US, str)

All Condition if (a.size() > 0)
All Return value return 0
All Multiple writes to variable See Figure 4

class Foo {
int counter = 0;
void count() { counter++; }
void reset() { counter = 0; }

}

Fig. 4: Example of multiple writes. counter is updated in multiple
places, so the 0 constants are not considered deep parameters.

not parameters, since mutating them will make the app report
the wrong kind of error, and thus affecting app functionality.

B. Deep Parameter Mutation

We mutate and test each deep parameter in isolation. It is
intractable to test all possible values for each parameter, thus
sampling is used for value selection. We choose new values
carefully to maximize the chance that we observe a parame-
ter’s energy impact. For example, the energy consumption may
not change if we choose values too close to the original one,
yet we may crash the app if we choose values too far away. On
other hand, the new values do not need to be optimal, as we
can perform further investigation as long as we can observe
an energy reduction.

Based on preliminary experiments, we developed a guide-
line for choosing new values for numeric parameters:
• Choose values from both sides of the original value; most

parameters are monotonic in terms of their energy effects.
• A factor of 8 will expose the difference (if any) in en-

ergy consumption, unless the parameter only has energy
impact under extreme cases (cf. §VII-C3).

We further fine-tune the values chosen based on the original
parameter value, as we observed that the original value indi-
cates the valid value range to some extent. For example, 0 is
invalid for many positive integer parameters, while floating-
point parameters with original values between 0 and 1 are
highly likely to be valid only between 0 and 1.



TABLE II: Mutated values for numeric parameters.

Original value New values

0 0xffffff, 255, 8
1 8, 0

x (> 1, int) x ∗ 8, max(x/8, 1)
0.0 0.5, 1.0

x (0 < x < 1, float) 1− (1− x)/8, x/8
x (≥ 1, float) x ∗ 8, x/8

Combining the guidelines and the fine-tuning, we build a
parameter mutation scheme for numeric parameters as shown
in Table II. Integer parameters with original value 0 have
versatile semantics and do not fit into our guidelines. Thus, we
choose several special values commonly used in programming
to maximize the chance that some values suit the semantics.

Boolean and enumerator parameters are simpler than nu-
meric parameters. We invert Boolean parameters, and for
enumerations we randomly choose three additional values.

C. Automated Testing

The high-level workflow of automated testing is simple: we
drive each app with a deterministic UI automation script. For
each deep parameter, we measure the energy drain for both the
unmodified app and the app with a new parameter value, and
finally compare the results to see if the parameter can reduce
the app energy drain. However, to ensure that the tests are
reproducible, statistically solid, having minimal false positives
and false negatives, and faithfully reflect the effects of the
parameters, every step needs to be carefully thought out.

1) UI Automation Script: There has been a large body of
research on automated UI testing for Android apps [21]–[26].
However, these works aim at improved code coverage while
our automated testing instead focuses on reproducibility.

We design one UI automation script for each test scenario.
While it is relatively easy to write a script that runs for a
couple of times, extra caution is needed to design a script that
runs thousands of times and ensures everything is reproducible
at the same time. We enumerate four lessons we learned from
our experience.

a) Ensure the interactions are deterministic: Executing
the same script each time does not guarantee that the app
performs the same actions. For example, the problematic code
in Figure 5 swipes on a scrollable list until it finds the desired
item. If the list contents or order vary, the app behavior will
also vary, affecting energy usage. Avoid such loops with non-
deterministic terminating conditions.

b) Ensure the test data are also deterministic: App
behaviors depend on both the interactions and the data fed
into the apps. Watching different videos or reading different
posts may consume different amounts of energy. This issue
is easy to solve for local apps like galleries or file managers,
but harder for apps that rely on remote content. For example,
the most popular posts on Reddit change. We address this
by accessing static content whenever possible. In the case of
the Reddit client slide (cf. Table III), instead of fetching
trending posts, we fetch the most popular posts of all time.

while (!onScreen(item))
swipe();

Fig. 5: UI automation code with potentially non-deterministic test
interactions. This could lead to flaky test results.
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(b) The CDF of the normalized standard deviations in Figure 6a.

Fig. 6: Energy consumption of the unmodified ap app. Each data
point represents 5 runs.

c) Save app data to save bandwidth and time: Many apps
need to download a large amount of data when opened for the
first time. For example, fdroid needs to download tens of
megabytes of metadata for all apps in the store. While this
is acceptable for a small test, downloading the data several
hundred times can easily lead to protective measures like
reduced bandwidth or even blockage on the server-side.

On the other hand, preparing an app for a test may be
very time-consuming. For example, to realistically test a
password manager app, the app’s database should have dozens
of password entries. However, popping the database with so
many entries for every fresh install takes time.

The solution for both scenarios is to utilize the data ex-
port functionality provided by many apps. By exporting the
bootstrap data, all subsequent tests only need to import them
locally after app installation.

d) Pay attention to the server state: For many apps
requiring account login, part of the state is stored on the
server-side. Without resetting the server state, the app may
behave non-deterministically. For example, the server of the
instant messenger conv recognizes the phone as a new device
every time the app reinstalls. In the end, the server maintains
thousands of “devices”, which drastically changes the app
behavior. As servers are black boxes, this type of problem
is hard to diagnose. Our solutions were app-specific.

2) Back-to-Back Testing: Due to the time-dependent net-
work condition and server load, the app energy consumption
is changing over time for many apps with network access.
Figure 6a shows the energy consumption of ap over a period
of 3 days. While adjacent data points typically have similar



energy consumption, the energy consumptions of distant data
points can differ by as much as 14%. To reduce the influence
of such time-dependent energy consumption drifts, we rerun
the unmodified app before testing each deep parameter, and
only compare the adjacent tests.

3) Hypothesis Testing: To determine whether a parameter
value reduces energy consumption, we run both the unmodi-
fied app and the modified app 5 times (denoted as B1, . . . , B5

and P1, . . . , P5 respectively), and perform Student’s t-test
with the null hypothesis being mean(Pi) = mean(Bi) and
the alternative hypothesis being mean(Pi) < mean(Bi), and
a significance level of 0.05.

However, when applying the above hypothesis testing, we
noticed that many energy drain reductions are due to small
energy consumption fluctuations, rather than the parameters.
To reduce such false positives, we set a threshold td for each
app and filter out energy differences smaller than the threshold.
Specifically, instead of performing the t-test for Pi and Bi,
we now perform t-test for Pi and B′i, where B′i = (1− td)Bi.
Since Pi and B′i have different variances, we switch from
Student’s t-test to Welch’s t-test.

4) Stability Threshold: In the last section, we addressed the
false positives caused by energy fluctuations. However, energy
fluctuations can also introduce false negatives. Figure 6b plots
the CDF of the normalized standard deviations (σ/µ) using the
same data as Figure 6a. Although the standard deviation is low
(< 3%) in most cases, intermittently it can reach 16% of the
mean. The chance of passing the t-test is minimal with such
a high standard deviation. In such cases, we choose another
small threshold ts for each app, and discard results until the
normalized standard deviation is back to normal (less than ts).
Both td and ts are determined through experiments (cf. §VI).

D. Manual Validation

In the last step, we manually validate the energy-reducing
cases to make sure that they are really caused by the parameter
value changes, and the app functionalities are not impacted.
Sometimes the energy fluctuation is too large and abrupt to
be filtered out by the t-test threshold, while in other cases the
app may not function normally with the parameter change.

E. Alternative Design

An alternative design for estimating the energy impact
of deep parameters utilizes static or dynamic analysis. For
each deep parameter, we can identify the dependent code
segments by performing static data and control dependence
analysis [27] or dynamic taint analysis [28], [29]. During
execution, the energy consumption of the dependent code
segments is measured and attributed to the corresponding
parameter. Such an approach has the advantage of measuring
the energy impacts of all deep parameters at once, but it also
faces a number of challenges.

First, the dependencies between a deep parameter and the
relevant code segments are often hard to track, or require ad
hoc customizations to achieve good coverage. For example,

we observed that many dependencies span programming lan-
guage boundaries, or involve inter-process or inter-device (e.g.,
client-server) communication.

Second, it is also hard to determine the right granularity
of the code segments for dependence analysis. Dependence
analysis at the branch level of branches has the advantage that
the causal relationship between parameter values and branch
conditions is easy to analyze. However, we observed that many
deep parameters affect app energy consumption in ways other
than controlling branch conditions. For example, app energy
consumption can be affected by controlling the timer duration
or thread count. Alternatively, we can perform the analysis at
the method granularity by tracking the dependency between
deep parameters and method call arguments. However, the
relation between the parameter value and the method energy
consumption is often opaque, if there is any relation at all.

In view of these challenges, we chose to apply the parameter
mutation approach detailed earlier and leave improvements on
program analysis tools for future work.

F. Implementation

We implemented our framework in 3.5 KLoC: parameter
analysis and mutation (in Spoon [30]); UI automation (Ap-
pium [31]); and coverage analysis (JaCoCo [32]). App source
code is required since we perform parameter analysis by
examining the source code syntax tree.

The app needs to be rebuilt for each parameter mutation.
Building apps and running test scripts are done in parallel,
so that both the desktop and the phone can be fully utilized.
We also make our test framework fully reentrant, and thus
different tests can run on different phones independently.

VI. EXPERIMENTAL DESIGN

We perform our experiments using 16 popular open-source
Android apps. We choose the apps from 16 different categories
to make sure our findings are not restricted to certain app
categories. As we use Spoon to analyze app source code,
we restrict ourselves to apps mostly (>70%) written in Java.
Table III summarizes each app.

We design one test scenario for each app based on their
typical usages (Table III). The lengths of the test cases are
between 30 and 60 seconds.

The stability threshold ts is determined by first running the
experiments without the threshold. We then draw the CDF
of the normalized standard deviations as in Figure 6b, and
choose the turning point of the CDF curve as ts. To determine
the other threshold td, we rerun the parameters that pass
the standard t-test (td = 0), and do the t-test again on the
new measurements. Those that only pass the first t-test are
considered due to energy fluctuations instead of the parameters
themselves. Then we choose the minimum td that filters out
the fluctuating ones while keeping the rest.

A. Energy Measurement

We run the experiments on two Pixel 2 phones, which
are connected via USB to install app variants and accept



TABLE III: Tested apps and their test configurations. The popularity statistic (installs) is from Google Play.

App (Abbr.) Category Installs Version Test Scenario ts td

SAI (sai) App installer 5M+ 4.5 Install 2 apps 0.02 0.01
ConnectBot (cb) SSH client 4M+ 1.9.7 View 6 Python files using vi 0.03 0.03

AnySoftKeyboard (ask) Keyboard 2M+ 1.10-rc4 Type username and password 0.03 0.01
KeePassDroid (kpd) Password manager 2M+ 2.5.12 Copy 8 password entries 0.03 0.03

Amaze File Manager (amaze) File manager 1M+ 3.4.3 Move a picture and delete a picture 0.03 0.03
AntennaPod (ap) Podcast client 691K+ 1.8.3 View 6 episode descriptions 0.03 0.03

OpenKeychain (ok) Encryption 538K+ 5.7.5 Encrypt and decrypt a file 0.02 0.01
Slide for Reddit (slide) Online community 222K+ 6.3 View 3 posts in 3 subreddits 0.08 0.02

Conversations (conv) Instant messenger 127K+ 2.8.9 Send 10 random messages 0.04 0.01
Download Navi (dn) Download manager 75K+ 1.4 Download a 100MB file 0.03 0.02

Wikimedia Commons (wc) Image sharing 69K+ 2.13 View 4 images 0.08 0.02
Etar Calendar (etar) Calendar 39K+ 1.0.26 Create 3 events 0.08 0.03

IPFS Lite (ipfs) P2P Browser 4K+ 2.5.4 View 5 Wikipedia articles 0.06 0.03
F-Droid (fdroid) App store N/A 1.8 View 3 app descriptions 0.06 0.03

F-Droid Build Status (build) Continuous delivery N/A 2.8.0 View 5 build logs 0.03 0.03
RadarWeather (rw) Weather N/A 4.4 View weather of 5 cities 0.04 0.03

TABLE IV: Effectiveness of combining coverage- and heuristic-based
filtering. Other apps are omitted for space.

cb kpd
Num Bool Enum Num Bool Enum

No filtering 12402 844 269 1218 575 164
Coverage 1277 311 73 310 142 29
Heuristic 9404 236 112 606 184 113

Combined 451 115 31 131 71 13

UI automation commands. Since power meter readings are
inaccurate when devices are connected [33], power models are
used to measure energy consumption. We use well-established
utilization-based power models [34], [35] for CPU and GPU
energy, and finite-state machine-based modeling [36]–[40] for
WiFi. We calculate the power of each hardware component by
collecting the relevant data (state and frequency information
for CPU/GPU; transmission log for WiFi) using ftrace [41]
and feeding them into the power models. As only the energy
consumption of hardware components with power models
can be calculated, we did not test apps that use specialized
hardware components like hardware codecs or GPS.4

VII. RESULTS AND FINDINGS

A. Parameter Extraction

To speed up testing, we filter out unused and non-parameter
constants by combining both automatic and manual filtering.
Figure 7 shows the effect of each filtering method for numeric
constants. Automatic filtering filters out 92.1% of the numeric
constants. Manual filtering filters out another 6.2%, which
further speeds up testing and leaves us on average 48 deep
parameters per app. For Boolean constants the proportions
are 90.3% automatic and 5.5% manual, leaving on average
40 deep parameters per app. For enumerator references, the
proportions are 88.9% and 9.2% , and on average 15 are left.

To measure the effectiveness of each automatic filtering
method, we turn them on and off individually and calculate

4Prior work on GPS parameter tuning [9] used long-running experiments
instead, and they estimated energy consumption by reading the battery level.
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Fig. 7: Number of numeric parameters identified (blue), and of
constants filtered out by manual (beige) after automatic (green)
filtering. Other parameter types are omitted for space.
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Fig. 8: Energy effects of two deep parameters. Error bars represent
the standard deviation of 5 runs. Note y-axes do not start from 0.

the number of constants filtered out. Per Table IV, coverage-
based filtering alone filters out on average 86.2% constants,
while heuristic-based filtering alone filters out 31.1%. Com-
bining them further improves the filtering efficiency to 94.8%,
reducing subsequent manual filtering effort.

B. RQ3: Parameter-Induced Energy Inefficiency

To see whether energy-reducing deep parameters are com-
mon among apps, we mutate each deep parameter and measure
the energy drain of each variant. After filtering the constants



TABLE V: Number of deep Parameters (P) tested for each app and
parameter type, number of parameters that appear to Reduce the
energy drain (R) during the test, and number of parameters manually
Validated (V) to be energy-reducing.

Numeric Boolean Enum
P R V P R V P R V

sai 16 2 0 22 0 0 10 0 0
cb 116 2 0 17 0 0 10 0 0
ask 91 0 0 35 0 0 17 0 0
kpd 8 0 0 37 0 0 5 0 0

amaze 50 0 0 25 0 0 15 0 0
ap 30 0 0 33 2 0 18 0 0
ok 39 0 0 55 4 0 14 0 0

slide 79 2 1 168 0 0 29 0 0
conv 74 3 0 58 1 0 24 0 0
dn 14 1 0 50 0 0 9 0 0
wc 14 1 0 1 1 0 7 0 0

etar 112 1 0 65 0 0 39 0 0
ipfs 23 1 1 18 2 0 3 0 0

fdroid 52 1 0 32 0 0 10 0 0
build 4 1 0 10 0 0 15 0 0
rw 42 1 0 21 0 0 8 2 0

Total 764 16 2 647 10 0 233 2 0

in the 16 apps, we get in total 764 numeric parameters,
647 Boolean parameters, and 233 enumerator parameters. In
testing all the parameters, we run the automated tests 15040
times (3008 parameter values with 5 runs each), which is 596
hours (25 days) of phone execution time.

Table V shows a summary of the test results. Out of the 1644
deep parameters tested, we observed reduced energy drain for
28 parameters. We then manually examined the 28 parameters,
and found that only 2 numeric parameters really reduce the
energy drain of the app without breaking app functionality.

Finding 3: Parameter-induced energy inefficiency is
uncommon among apps. Out of the 1644 deep param-
eters from the 16 apps, only 2 reduce energy drain
without breaking app functionality.

1) The True Positives: One energy-reducing parameter is
identified in the Reddit client slide. While browsing the
posts in a subreddit, the app fetches posts from the server. A
batch of posts will be fetched each time, and each post will be
processed immediately after being fetched. The energy used
for processing is wasted if posts are fetched but not displayed.

The optimal batch size depends on the usage scenario. In
Figure 8a, we measured the energy consumption with respect
to the batch size for two different scenarios: view 3 posts in 3
subreddits (Scenario 1) and scroll 5 times in a subreddit feed
(Scenario 2). The first scenario favors a smaller batch size, as
it only loads the first screen for each subreddit. The second
scenario favors a larger batch size as it loads more posts.

The other energy-reducing parameter, identified in the P2P
browser ipfs, controls the ping interval to multiple peers. By
reducing the ping frequency from once every second to once
every 8 seconds, the app energy usage is reduced by 12.1%
due to less frequent WiFi usage.
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Fig. 9: For each of the 74 numeric parameters in conv, the energy
consumption of the parameter value consuming the least energy
(Modified) vs. the original parameter value (Unmodified). Error bars
represent the standard deviation of 5 runs. Data points in dashed box
have statistically significant reduction in energy drain.

2) The False Positives: The other deep 26 parameters
appear to reduce energy drain for three different reasons. The
3 numeric parameters in conv happened to correspond to the
three reasons. Thus, we use these parameters to illustrate.

Figure 9 shows the test results of the 73 numeric parameters
in conv. All standard deviations are within 4% (ts) of the
corresponding means. Most parameter values have energy
consumption very close to the original values. The only three
data points that have statistically significant energy difference
are those in the dashed box (5.8%, 4.8%, 8.2%).

The rightmost data point represents the most common
reason (12 of the 26 parameters): Even though we try to
reduce false positives caused by the stochastic energy drain
through measures like back-to-back testing, hypothesis testing,
and stability threshold, sometimes the changes are too large
and abrupt that the framework treats them as real energy
reductions. The way to identify such cases is to rerun the
tests and see if the energy reduction can be reproduced.

The data point in the middle corresponds to the second
reason (13 of the 26 parameters): energy reduction at the
cost of broken or degraded functionality. The conv parameter
controls the refresh rate of various UI elements. By increasing
the refresh interval from 500ms to 4000ms, the app energy
consumption is reduced by 4.8%. However, when sending a
text message, the message will take 4 seconds to appear in
the conversation view. Other parameters have problems like
blanking out the app screen or disappearing all images.

The last and only one in its category is due to unexpected
interaction between the app and our test automation script.
When measuring energy consumption, we omit the initializa-
tion phase of the app and only measure the target test scenario.
As we do not know exactly when all initializations are done,
there may be some lingering initialization tasks after we have
entered the test scenario, and their energy consumption will
also be measured. This is not a problem as long as we enter
the test scenario after the same delay. But the conv parameter
delays entering the test scenario until all initializations have
been done, leading to the apparent energy reduction.

C. RQ4: Parameters’ Energy Effect

In the last section, we showed that deep parameter-induced
energy inefficiency is uncommon among apps, and discussed
the 2 energy-reducing parameters we discovered. In this sec-



tion, we consider the “Why” question: Why do deep parame-
ters commonly not affect energy usage?

To answer the question, we manually examine the 143 deep
parameters in cb, and try to figure out their energy effects by
understanding their semantics in the context of the source code
and testing additional parameter values. We finally classified
them into 3 categories based on their energy effect: having no
energy effect, having limited energy effect, and having energy
effect under extreme values.

1) Deep Parameters with No Energy Effect: 71 of the 143
parameters fall in this group and are further divided into two
representative types. The first type of such parameters has
binary effects. When the parameter value is in the valid range,
the app works the same way regardless of the exact parameter
value. On the other hand, the app breaks if the parameter
value is in the invalid range. Lines 2-3 in Figure 1 shows two
examples. Line 2 creates a buffer for version string parsing.
App behavior is preserved when the buffer is big enough to
hold the version string, but incorrect parsing occurs when the
buffer is too small. In the second example, if the timeout of the
socket is longer than the server’s response latency, the socket
communication works normally regardless of the exact timeout
value (0 means indefinite timeout); the connection breaks if
the timeout value is too small.

The other type of deep parameters without energy effect is
due to limitations of our energy measurement methodology.
We use power models to calculate the energy consumption of
each hardware component. The change in energy consumption
of a hardware component cannot be captured if the correspond-
ing power model is missing. For example, the choice of colors
can affect the energy consumption of OLED displays [42], but
we omitted it since measuring the OLED energy consumption
is expensive (we would have to record every frame).

2) Deep Parameters with Limited Energy Effects: 61 deep
parameters fall in this category. Each parameter is typically
attached to a certain component of the app. Thus, the energy
effect of the parameter depends on both the total energy
consumption of the component and the importance of the
parameter in the component. The logging component typically
consumes a limited amount of energy for most apps; the
parameters controlling logging levels will thus have limited
energy effect. On the other hand, although UI is energy
expensive, the energy consumption of UI rendering mainly
depends on the structure of the UI element tree, instead of the
precise positions and sizes of the individual UI elements, and
thus these UI parameters also have a limited energy effects.

3) Deep Parameters Having Effects under Extreme Values:
To see how energy drain can be affected by extreme parameter
values, we will first look at an example. Figure 8b shows the
energy drain of cb under varying CHANNEL_BUFFER_SIZE,
which controls the size of the stdout and stderr buffers
attached to the terminal. Extremely small buffers divide ter-
minal outputs into small chunks, and processing them one by
one adds overhead. Such extreme values only occupy a tiny
fraction of the valid value range, thus are not captured by our

framework. However, a developer is also unlikely to pick such
extreme values if she understood the meaning of the parameter.

Apart from buffer sizes, making the font size of the terminal
extremely small also increases energy consumption drastically.
In total 9 parameters in cb are of this kind. Such parameters
also exist in other apps. For example, the UI update frequency
parameter discussed in the last section also only exhibits an
energy effect when the update interval is extremely long.
Similarly, a developer will not choose such extreme values
if she considered the semantics of the parameters. Basically,
developers can typically avoid such extreme values based on
their domain knowledge.

Finding 4: Most deep parameters either have no energy
effect, limited energy effect, or only have energy effect
under extreme values. We expect developers would
typically avoid such extreme values based on their
domain knowledge.

VIII. DISCUSSION AND FUTURE WORK

a) Potential impact factors to energy consumption: Our
work is the first systematic attempt to understand the energy
impact of deep parameters in mobile apps. Across 16 apps, we
found that mobile deep parameters did not have a significant
impact on app energy. We conjecture three possible explana-
tions. First, it may be that the app’s design — the software
architecture and design patterns [43] — has a dominant effect
on the app’s energy usage [44]–[46]. Second, it may be that our
constraint was too strong; mobile apps may have to sacrifice
user experience or remove features to conserve energy. Third,
while individual parameters cannot move the needle, tuning
them in combination might have a bigger impact [47], [48].
Each of these possibilities is a direction for further study.

b) Automatic support for tuning deep parameters: Most
parameter tuning systems work only with the “formal” pa-
rameters exposed by developers in a central repository (cf.
§X). This design assumes that developers have identified
and centralized their parameters. However, when exposing
parameters by hand, it is difficult to anticipate the needs of
future use cases. Wang et al. [49] discussed difficulties in
tuning database systems because developers had hard-coded
deep parameters instead of exposing them for tuning.

One strength of our deep parameter-identification frame-
work (Figure 3) is that we automatically identify deep pa-
rameters. In the future, we plan to apply our deep parameter
search framework to other classes of software (e.g., database
systems) and help discover those important deep parameters.
In these contexts, we will develop a unified parameter tuning
approach that merges formal and deep parameters.

c) Large-scale energy measurement: Current mobile
phone energy measurement methods (both power monitors
and power models) rely on real phones, making energy mea-
surement unscalable. In our experiments, it took on average
22 minutes to test each parameter, which means roughly 1.5
days per app. Accurate energy measurement in virtualized



environments will enable larger-scale experiments on energy
optimization. Accurate emulation of the hardware states and
frequencies for power modeling is one possible direction.

IX. THREATS TO VALIDITY

a) Internal Validity: There are several threats to internal
validity. Survey: Although we refined our survey instrument
through pilot studies, it has not been validated [50]. We
assume our respondents replied honestly. Energy experiments:
Energy changes might be due to factors other than the mutated
parameter. Such factors include changes in timing, network
conditions, and external service behaviors. This threat is
mitigated by using automated testing and repeated trials for
each deep parameter.

b) External Validity: Our findings may not generalize
to different classes of software [51]. Within Android apps,
there may be differences between the 16 open-source apps we
investigated vs. (1) commercial apps, and (2) apps that are
deliberately designed to be energy-efficient. For some insight
on this threat, most of our survey respondents develop Android
apps commercially. They indicated that their parameters and
parameterizations were not designed for energy efficiency.

c) Construct Validity: We define a deep parameter as
a constant, and our experimental design preserves each pa-
rameterization throughout the lifetime of each measurement.
Similarly, we tune deep parameters on a (static) per-class basis
rather than a (dynamic) per-instance basis. This definition is
generally consistent with how these constructs are defined
in the apps we studied. However, a dynamic notion of deep
parameters might affect our results; for example, the energy-
optimal parameter choice has been shown to vary dynamically
for GPS parameters in Android apps [9].

X. RELATED WORK

a) Configuration tuning: Tuning software configuration
parameters for better performance is a common practice for
many classes of software. Recently, many automated configu-
ration tuning systems are proposed, either for arbitrary config-
urable systems [6], [49], [52]–[55], or for specific application
types [7], [56]. Tuning is conducted either offline, optimizing
parameter values for a fixed workload and environment [57],
[58], or online, dynamically reconfiguring the target system to
adapt to changes [59], [60].

Most such works are focused on systems software, e.g.,
file systems and databases. Only Bokhari et al. [10], [11]
and Canino et al. [9] have considered deep parameters in
Android apps. They focus on deep parameters in specific app
components. Our work is the first step to understanding the
energy impact of deep parameters in general Android apps;
we study the energy impact of single parameters, and leave
combinatorial tuning to future work.

b) Performance modeling: Many works [61]–[65] focus
on building a performance model for a certain application and
workload. A performance model is a mathematical function
where the domain is the configuration parameters and the
codomain is the performance. Performance optimization or

other tasks can be further performed based on the performance
model. These systems mostly rely on sampling, and they
generate a better performance model by sampling efficiently.
These works rely on explicitly exposed parameters. We con-
sider instead a program’s deep parameters.

c) Energy impacts of design patterns and refactoring:
Researchers have studied the energy impacts of design patterns
across software domains. Sahin et al. [66] compared the
power profile of data center software using design patterns
against those not using. Pinto et al. [67] focus on the energy
consumption of Java thread management constructs.

Refactoring energy-greedy code patterns can also reduce
app energy drain. Carette et al. [44] design a framework that
automatically refactors Android code smells and observe re-
duced energy drain after correcting them. Cruz and Abreu [45]
study refactorings for energy efficiency in the wild by mining
source code commits, issues, and pull requests. Couto et
al. [46] further study the impacts of refactoring on energy con-
sumption by applying combinations of refactorings to a large
set of Android apps. Their guidelines help developers reduce
energy drain through refactoring. Our work considers energy
improvement through parameterization instead of refactoring.

d) Mobile app energy testing: Discovering energy inef-
ficiency through testing is an ongoing research topic. Ding
and Hu [35] uncover the potential energy inefficiency during
the rendering process. Jindal and Hu [68] discover energy-
inefficient components by comparing them with other apps
with similar functionalities. Jabbarvand et al. [69] enhances
UI automated testing techniques to cover energy-heavy APIs,
but lack proper oracles for unknown energy defects. As a first
step towards automated energy test oracle construction, their
subsequent work [70] employed deep learning to determine
energy efficiency based on lifecycle and hardware states. Li et
al. [71] classified mobile app energy issues into 6 categories
and proposed different methods to detect the energy issues
of each category. Our work focuses on constructs at a finer
granularity, and is complementary to those works.

XI. CONCLUSION

We studied the energy impact of mobile deep parameters.
We used a developer survey to understand the perceived
impact, and a systematic experiment to understand the actual
impact. Our survey showed that many app developers are un-
certain about and ignore the energy impact of deep parameters.
Our experiment and analysis with 16 apps showed that single-
parameter-induced energy inefficiency is uncommon. How-
ever, in order to more fully explore energy-feature tradeoffs, in
future work we plan to explore energy optimization opportu-
nities through tuning combinations of deep parameters as well
as through non-functionality-preserving parameterizations. For
now, it appears that mobile app developers can ignore the
energy impact when choosing deep parameter values — they
will not substantially degrade their app’s energy performance.
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