Exploiting Input Sanitization for Regex Denial of Service

Efe Barlas®
Purdue University
West Lafayette, Indiana, USA
ebarlas@purdue.edu

ABSTRACT

Web services use server-side input sanitization to guard against
harmful input. Some web services publish their sanitization logic
to make their client interface more usable, e.g., allowing clients to
debug invalid requests locally. However, this usability practice poses
a security risk. Specifically, services may share the regexes they use
to sanitize input strings — and regex-based denial of service (ReDoS)
is an emerging threat. Although prominent service outages caused
by ReDoS have spurred interest in this topic, we know little about
the degree to which live web services are vulnerable to ReDoS.

In this paper, we conduct the first black-box study measuring
the extent of ReDoS vulnerabilities in live web services. We apply
the Consistent Sanitization Assumption: that client-side sanitization
logic, including regexes, is consistent with the sanitization logic on
the server-side. We identify a service’s regex-based input sanitiza-
tion in its HTML forms or its AP, find vulnerable regexes among
these regexes, craft ReDoS probes, and pinpoint vulnerabilities. We
analyzed the HTML forms of 1,000 services and the APIs of 475
services. Of these, 355 services publish regexes; 17 services publish
unsafe regexes; and 6 services are vulnerable to ReDoS through
their APIs (6 domains; 15 subdomains). Both Microsoft and Ama-
zon Web Services patched their web services as a result of our
disclosure. Since these vulnerabilities were from API specifications,
not HTML forms, we proposed a ReDoS defense for a popular API
validation library, and our patch has been merged. To summarize:
in client-visible sanitization logic, some web services advertise Re-
DoS vulnerabilities in plain sight. Our results motivate short-term
patches and long-term fundamental solutions.

“Make measurable what cannot be measured.” —Galileo Galilei

CCS CONCEPTS

« Security and privacy — Denial-of-service attacks; Web appli-
cation security; General and reference — Empirical studies;
Measurement; Validation.

KEYWORDS

Empirical software engineering, regular expressions, ReDoS, web
security, denial of service, algorithmic complexity attacks

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510047

Xin Du*
Purdue University
West Lafayette, Indiana, USA
du201@purdue.edu

James C. Davis
Purdue University
West Lafayette, Indiana, USA
davisjam@purdue.edu

ACM Reference Format:

Efe Barlas, Xin Du, and James C. Davis. 2022. Exploiting Input Sanitization
for Regex Denial of Service. In 44th International Conference on Software
Engineering (ICSE °22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3510003.3510047

1 INTRODUCTION

Internet-based web services play a major role in modern society. By
their nature, web services are accessible through an interface, and
so they must handle input from users both legitimate and adver-
sarial. Web services interpret string-based inputs into appropriate
types such as email addresses, phone numbers, and credit card in-
formation. A common first line of defense is therefore to filter for
reasonable-looking input. If this input sanitization is flawed, the
health of the web service can be compromised [73].

Unfortunately, a common input sanitization strategy exposes
web services to a denial of service attack called Regular expression
Denial of Service (ReDoS). Many software systems rely on regular
expressions (regexes) for input sanitization [32, 47]. Some of these
regexes are problematically ambiguous [30, 111] and may require
super-linear time (in the input length) to evaluate in an unsafe
regex engine [102]. At present, most regex engines are unsafe in this
regard [40, 46]. The cost of regex processing, combined with the use
of regexes across the system stack, can affect the availability of web
services, leading to regex-based denial of service (ReDoS) [42, 43].

The ReDoS problem has been considered from several perspec-
tives. Theoretically, the properties of problematic regexes under dif-
ferent search models have been established, including both Kleene-
regular semantics [89, 111, 114] and extended semantics [77]. In
terms of the supply chain, Davis et al. showed that up to 10% of the
regexes in open-source modules are problematically ambiguous [45-
47]. With respect to live services, Wiistholz et al. showed that prob-
lematic regexes in many Java applications are exploitable [114],
and Staicu & Pradel showed that 10% of the Node.js-based web
services they examined were vulnerable to ReDoS [99]. However,
these approaches relied on implementation knowledge; they could
not be applied to an arbitrary web service. Prior researchers have
not studied whether attackers can identify ReDoS vulnerabilities
in a black-box manner. If so, the engineering community should
prioritize adopting ReDoS mitigations [48, 93, 104].

In this paper, we describe the first black-box measurement method-
ology for ReDoS vulnerabilities (§4). We exploit software engineer-
ing practice, examining a previously-unstudied source of ReDoS
information: the regexes that web services provide for use in client-
side sanitization. In the first step of our method, we collect the
regexes provided in HTML forms (sampling popular websites) and
in APIs (using a directory of services with OpenAPI specifications).
Then, we analyze them locally for problematic worst-case behavior
in a typical unsafe regex engine. Finally, we ethically probe web
services for ReDoS vulnerabilities.

https://doi.org/10.1145/3510003.3510047
https://doi.org/10.1145/3510003.3510047

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Please sign in

<form>

<hl>Please sign in</h1>

<input t "email” placeholder="Email address"”
»I.wt: MS+HENS+\ . \S+$/ | maxlength="12">

<input t ‘password” assword” placeholder="Password">»
<button ty "submit" ick="regexCheck()">Sign in</button
</form>
<script>
function regexCheck() {
|const regexp = /.{8}/g; |«

let text = document.getElementById(“password”).value;
let result = regexp.exec(text);

(a) Sanitization in HTML form. Regexes can be applied using an input
field’s pattern attribute, and via JavaScript event handlers.

Efe Barlas, Xin Du, and James C. Davis

paths:
/information:
post:
parameters:
- name: x
in: query
required: true
schema:
type: string
[pattern: "([0-91+(-7))+]
minLength: 5
responses:
200" :
description: ...

(b) Sanitization in OpenAPI-based web API. Regexes are supported
to encode string constraints in popular web API schema definition
languages including OpenAPI [9], RAML [5], and API Blueprint [1].

Figure 1: The use of regexes for client-side sanitization in a web form and a web APL

Our findings indicate that emerging software engineering prac-
tices on the web expose web service providers to ReDoS (§5). Based
on a sample of N = 1000 popular websites, we report that web
service providers do not reveal ReDoS vulnerabilities through their
traditional HTML forms. In contrast, web service providers reveal
ReDoS vulnerabilities through API specification documents. In our
study of a live web services with OpenAPI specifications: there
were 475 web domains; 83 of them document their input sanitiza-
tion regexes; and 6 of these (15 distinct subdomains) are vulnerable
to ReDoS. Web service providers publish much more information
about their sanitization practices in their API specifications than in
their traditional HTML forms. To summarize our contributions:

e We use the Consistent Sanitization Assumption to design the first
black-box ReDoS measurement scheme for web services (§4).

e We identify ReDoS vulnerabilities in several live web services (§5).
Comparing traditional HTML forms with the emerging approach
of API specification, we report that current API specification
practices expose web service providers to ReDoS.

e We describe the responses of engineering practitioners to the vul-

nerabilities we identified (§5.4). We contribute to the engineering

practitioner community through a pull request to a major web

API input sanitization library. The pull request has been merged

and released. !

We share a dataset of web sanitization regexes to complement

existing regex datasets mined from other sources.

Significance: Three aspects of our research contributions are sig-
nificant. First, we establish the first black-box measurement method-
ology for ReDoS vulnerabilities in live web services. Second, we
use this methodology to identify insecure software engineering
practices that affect a growing area of the web: APIs. Third, we
offer an anti-ReDoS patch that will benefit millions of dependent
modules in the OpenAPI ecosystem. Measurements drive change.

See https://github.com/ajv-validator/ajv/pull/1684 and https://github.com/ajv-
validator/ajv/pull/1828.

2 BACKGROUND
2.1 Web Services and Web Interfaces

A web service is a software component (server) with which a user
(client) can communicate over the Internet via a uniform resource
identifier [58]. Common examples include the web services offered
by YouTube and Amazon. Clients interact with a web service using
its interface, which is commonly defined in two ways: (1) a browser-
based interface; and (2) an application programming interface (API).

Most web services offer browser-based interfaces within their
websites. Websites are built using technologies such as HTML, CSS,
and JavaScript, and displayed to clients through a web browser. To
make websites responsive, web engineers provide interfaces, such
as search boxes and login forms, to websites’ users. Those interfaces
allow users to send data to websites’ servers to process the data and
respond if needed. To build such user interfaces, engineers often
use HTML forms [10], as depicted in Figure 1a.

While browser-based interfaces target the general public, some
web services support an Application Programming Interface (API)
for automated interactions. APIs are software interfaces that de-
scribe how different pieces of software should communicate with
each other. Through an API, a web service provider can give a more
formal description of how to interact with the service. This descrip-
tion enables engineers to develop software that interacts with the
service programmatically. APIs can be described with an informal
text-based document, or with a schema definition language such as
OpenAPI [9], RAML [5], or API Blueprint [1] (cf. Figure 1b). API
semantics may be explicit or implied, e.g., using the conventional
meaning of REST verbs to develop a REST-ful API [59].

By their nature, web services interact with untrusted clients. It
is therefore standard engineering practice to sanitize any client in-
put, whether it comes via a browser-based interface or an API [73].
Since the client controls this input, sanitization ought always to
be performed as part of the server’s logic. However, some web ser-
vices also publish input sanitization logic to their clients, to reduce
network traffic and give clients feedback about invalid requests.

https://github.com/ajv-validator/ajv/pull/1684
https://github.com/ajv-validator/ajv/pull/1828
https://github.com/ajv-validator/ajv/pull/1828

Exploiting Input Sanitization for Regex Denial of Service

Figure 1 depicts common forms of sanitization published to
clients. The HTML form in Figure 1a illustrates the two ways to
perform client-side sanitization for HTML forms: HTML-based and
JavaScript-based [11]. Using HTML-based form validation, engi-
neers can enforce attributes on various HTML tags in HTML forms.
The attribute of interest in this work is the “pattern” attribute, which
lets an engineer specify the language of legitimate input. For more
sophisticated checks, JavaScript-based validation supports custom
client-side validation logic applied on a relevant event such as an
attempted form submission. Just like HTML-based form validation,
regexes can also be used in JavaScript-based validation to check
the validity of an input string. Meanwhile, Figure 1b depicts an
OpenAPI-style API definition. Similar to HTML forms, API schema
documents may constrain request headers, payload structure, and
field types and valid values. These constraints may indicate enu-
merations, numeric ranges, string lengths, and — of interest in our
study — regexes prescribing string input languages.

Client-side sanitization can help legitimate users debug their re-
quests, e.g., via feedback from the web browser or an automatically
generated client API driver. However, malicious clients can bypass
client-side sanitization and send unsanitized content to the web
service, so services must sanitize again on the server side [84].

2.2 Regexes and Regex-based Denial of Service

Our work measures a form of denial of service that web services risk
as a result of sharing input sanitization regexes with their clients.

Denial of Service Attacks: A denial of service attack consumes
the resources of a service so that legitimate access to the service is
delayed or prevented [83]. There are many types of denial of ser-
vice attacks, varying in the resource exhausted and the exhaustion
mechanism. For example, attacks might exhaust network resources
(e.g., distributed denial of service) or computational resources (e.g.,
algorithmic complexity attacks [43]).

Regex-based denial of service (ReDoS) is a denial of service attack
that exhausts computational resources by exploiting the worst-case
time complexity of an unsafe regex engine.

Unsafe Regex Engines: A regex describes a language (a set of
strings) [67]. To determine whether a string matches a regex, mem-
bership testing is conducted by a system component called a regex
engine [60]. Most programming languages embed a custom regex
engine for efficient interactions with the programming language’s
string encoding. These regex engines support diverse features with
complex semantics [64]. To reduce implementation and mainte-
nance costs, some regex engine developers chose designs that favor
simplicity over safety [48] — they use a predictive parsing algorithm
with backtracking [14, 40, 46]. The emphasis on simplicity comes
at a cost: this algorithm has high time complexity, polynomial or
exponential in the worst case.

The high time complexity of the standard regex engine algorithm
is triggered by a problematic combination of a regex and an input
string. These regexes are super-linear; there are input strings w
that incur time complexity super-linear in the length of w. Most
regexes in this class are problematically ambiguous [15, 89, 111, 114].
Because they are ambiguous, these regexes can match a string in
multiple ways. The typical regex engine’s backtracking search al-
gorithm will explore all potential matching paths before returning

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

a mismatch. When the number of paths or the cost of each path
depends on the length |w|, the result can be super-linear time com-
plexity. Figure 2 illustrates an example of exponential behavior.
Many researchers have proposed tools to identify regex-input pairs
with worst-case polynomial or exponential behavior [27, 30, 77, 87,
89, 94, 100, 101, 111, 114].

Figure 2: This non-deterministic finite automaton (NFA) cor-
responds to the regex (ala)*b. Using the typical Spencer
algorithm [97], viz. a predictive parse with backtracking, the
search space can be exponential in the length of the input.
For example, consider the behavior on input “a...a” (length
k). The regex does not match this string; the backtracking
algorithm explores all 2k failing paths.

Regex-Based Denial of Service: Regex-based denial of service
(ReDoS), exhausts computational resources by exploiting the algo-
rithmic complexity of regex engines [42]. When client-controlled
input can trigger worst-case regex behavior (Figure 3), it can be
harmful. For example, in 2016 Stack Overflow had a system-wide
outage due to ReDoS [57], and in 2019 Cloudflare had a ReDoS
outage that affected thousands of its customers [65]. While ReDoS
vulnerabilities directly impact compute resources, depending on
the system design they may impact higher-order resources. For
example, many web services multiplex between clients, e.g., event
handler threads [49], and in these designs a ReDoS attack will be
more effective. However, even with near-perfect client isolation,
e.g., via AWS Lambda, algorithmic complexity attacks like ReDoS
provide attackers with an asymmetric attack/defense cost ratio to
inflict economic damage [95, 96].

Slow reachable server-side regexes are a security risk. More
formally [44], a ReDoS attack requires four ReDoS Conditions of
a victim web service: (1) It accepts attacker-controlled input; (2) It
uses a server-side super-linear regex on this input; (3) It uses an
unsafe regex engine; and (4) It has insufficient mitigations to insulate
other clients from slow server-side regex matches (e.g., timeouts).
Although mitigations may reduce the service’s ReDoS risk, they do
not eliminate it [95, 96]. Therefore, if a service meets Conditions
1-3, we consider it vulnerable to ReDoS.

For example, suppose a web service is built with the Node.js
framework. If it has a reachable super-linear regex, then Conditions
1 and 2 are met. The regex may be evaluated on Node.js’s unsafe
default regex engine (Condition 3). Its slow performance would
then affect other clients due to client multiplexing on the Node.js
event loop (Condition 4) [49, 85, 99].

2.3 Prior Empirical Studies on ReDoS

The two previous empirical measurements of the extent of ReDoS
in practice have used a strong threat model: that the attacker con-
trols the input and also has server-side implementation knowledge.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Under that model, Wiistholz et al. identified ReDoS vulnerabili-
ties in open-source Java applications using program reachability
analysis, reporting that many Java applications used reachable
super-linear regexes [114]. Staicu & Pradel exploited knowledge
of the open-source JavaScript software supply chain [90, 113] to
predict ReDoS vulnerabilities in web services that use Express, the
Node.js server-side framework — 10% of the services they probed
had ReDoS vulnerabilities [99].

Although these studies document the risks of ReDoS in practice,
their methodologies depend on knowledge of web service internals,
and are unsuitable to larger-scale probing of web services in a
black-box manner. Finally, studies by Davis et al. measured the
extent of super-linear regexes within the software module supply
chain [45-47], and do not shed light on web service vulnerabilities.

3 ATTACK AND RESEARCH QUESTIONS

Threat Model: Our primary interest is to answer the question: To
what extent do ReDoS vulnerabilities exist in live web services? As
discussed in §2, prior work has measured the possibility of ReDoS
(through module analysis) and the presence of ReDoS (through
white-box analysis). Thus far we lack a methodology to measure
the risk that ReDoS poses to general black-box web services.

We therefore assume the weakest reasonable threat model. First,
we suppose the attacker controls only the input (Condition 1). Sec-
ond, we suppose the attacker does not have access to the web
service’s server-side logic. Under this threat model, the primary
difficulty is in identifying a reachable super-linear regex to sat-
isfy Condition 2.2 Once such a regex is identified, the attacker can
tailor their input to the regex, then use probes to experimentally
determine whether Conditions 3 and 4 are met.

When engineering teams evaluate their own services, this threat
model may be needlessly restrictive. But it may imitate the perspec-
tive of engineers assessing the risks of incorporating a third-party
service or component into their product, or that of adversaries,
penetration testers, and “security-scanning-as-a-service” vendors.

Sanitization-Based ReDoS Attacks: Given this constraint, we
propose sanitization-based ReDoS attacks. As noted in §2, while web
services do not typically publish their server-side implementations,
some of them do publish client-side input sanitization logic. We
adopt the Consistent Sanitization Assumption (Figure 3): following
engineering conventions, the client-side sanitization logic that a
web service publishes is a subset of its server-side sanitization logic.
This assumption implies that a super-linear regex used in client-
side sanitization logic will fulfill ReDoS conditions 1 and 2: this
regex will be applied to attacker-controlled input on the server-side.
If true, ReDoS vulnerabilities can be discovered by finding super-
linear sanitization regexes in client-side sanitization logic, and then
probing web services to test the remaining conditions.

Research Questions: We conduct the first black-box web mea-
surement study of the extent of ReDoS-vulnerable web services in
practice. Our operationalized research questions are:

RQ1: How common is regex-based client-side input sanitization?
(ReDoS Condition 1)

2In the 2000s there were many CVEs for web services that allowed users to specify a
regex to be evaluated on the server side (Condition 2), and they used an unsafe regex
engine. Such CVEs are now rare, so we suppose a weaker threat model.

Efe Barlas, Xin Du, and James C. Davis

Sanitize Business
/a*/ :
—>
Service
*
interfacel " && /af [&& ...

Consistent sanitization?

Figure 3: Web service model. For ReDoS, the attacker identi-
fies a web service with a vulnerable sanitization regex, then
transmits data that (a) passes preceding constraints, then (b)
triggers the worst-case behavior of the regex engine.

RQ2: What proportion of these regexes would be super-linear in
an unsafe regex engine? (ReDoS Condition 2)
RQ3: To what extent do these regexes exhibit super-linear behavior
in live web services? (ReDoS Condition 3)
RQ4: How does the web service community mitigate these prob-
lematic super-linear regexes? (ReDoS Condition 4)
Research ethics constrain us from fully characterizing the ex-
tent of ReDoS vulnerabilities with this method. Using a black-box
approach, we can measure whether a service meets the first three
ReDoS Conditions: (1) it evaluates untrusted input, (2) on a prob-
lematic regex, (3) with a slow regex engine. However, we cannot
comment on (4) the mitigations the service has in place, whether ar-
chitectural or runtime. Web services are opaque. Their mitigations
are difficult to assess without launching a denial of service attack.
In addition, because our method relies only on publicly-accessible
service information, we cannot comment on the existence of hidden
ReDoS vulnerabilities such as those identified by Staicu & Pradel
via implementation inference [99]. With these caveats, our method
lets us measure black-box web services for a new perspective on
the risks of ReDoS in the wild.

4 METHODOLOGY

Our methodology is shown in Figure 4. Given a web interface, first
we analyze its client-side input sanitization logic to determine the
input fields and the regexes applied to them (§4.2). Next, we identify
any super-linear regexes (§4.3). Then, we ethically probe the web
service for ReDoS vulnerabilities (§4.4). Finally, we interact with
web service engineers to understand their perspectives (§4.5).

4.1 Web Service Selection

As discussed in §2, web services commonly offer two kinds of inter-
faces: HTML forms and APIs. We measure ReDoS vulnerabilities
through both kinds of interfaces.

HTML Form Interfaces: For HTML form interfaces, we examine
the forms within a random sample of 1,000 domains from the top
1 million domains according to the Tranco Top 1M ranking [88].
The Tranco directory is a website popularity ranking designed to
address shortcomings of the Alexa list [6].

APIs: API-based interfaces are less common than HTML form
interfaces. To obtain sufficient data, we focused on the popular Ope-
nAPI [9] schema description language for REST-ful [59] APIs. We
determined popularity using web searches and GitHub stars [29];

Exploiting Input Sanitization for Regex Denial of Service

@ RQ1: Parse API specifications for
B —

! endpoints with regexes
Directory o

web services START

(Domains | APls) ———»

RQ1: Crawl domains for HTML
forms with regexes
Regexes
/a*/
RQ2: Analyze regexes for
super-linear behavior
(vuln-regex-detector)

T
3:-'\/3' Tagged OpenAPI schema

RQ3: Probe web services
which document super-
linear regexes

Control: ‘bnrieao’
Q Treatment: ‘aaaaaab’
Web service

Na*)*/

Compare control &
experimental groups’
response times

T
/\ Services with unsafe engines

l RQ4: Disclose vulns. ‘

Figure 4: Overview of the study design.

OpenAPI has 23K stargazers, about three times more than the next-
most-common API language, API Blueprint [1].

Following prior work on specification measurement [112], we
used the apis. guru directory [7] to obtain OpenAPI documents.

4.2 RQ1: Input Sanitization Regexes

In this part of the study, our goal is to measure how frequently web
services include regexes as part of their client-side input sanitiza-
tion. To do this, we build a list of live web services and the regexes
they use in their client-visible input sanitization. As depicted in Fig-
ure 1, software engineers can impose similar input sanitization
using the two interface types. The mechanism for specifying this
sanitization differs by interface type.

HTML Form Interfaces: For HTML forms, regexes may occur
in two places (Table 1). First, in the relevant form field, the string
language of valid input can be described by a JavaScript-dialect
regex using the HTML5 pattern attribute. Second, JavaScript logic
can be applied to form fields, e.g., on data entry or button press
events. This logic can impose constraints including regex tests.

Table 1: Regex-based sanitization in browser interfaces [81].
Figure 1a also shows both types of HTML Form regexes.

Type Functions
HTML attribute pattern attribute
JS: String String.{match, matchAll, search}
JS: RegExp RegExp.{test, exec}

The HTML forms that comprise a web service’s browser interface
may occur on any page. We used the Apify web crawler [12] to crawl
each website from its homepage and identify forms. To balance
our desire for detailed crawls with the need to not take resources

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

from real users, we used a maximum crawl depth of 500 and fully
crawled 66% of the crawled web sites.

After identifying each form, we determine the regexes it uses in
its client-side sanitization. We define this set as: “any regex that is
applied to any form field prior to sending form content to the server”.
We statically extract the regexes given as form attributes. We use
a simple dynamic taint analysis to identify regex constraints in
JavaScript logic. First, we monkey-patch the client-side JavaScript
regex functions (Table 1) to log each regex-string pair. This is done
by modifying those functions’ definitions in the browser so that,
each time the functions are called, we have access to their input
parameters. Then, we drive a web browser via OpenWPM [80],
which is a software that can control browsers programmatically,
to populate form fields with unique values and simulate a button
press. The forms and buttons are detected by parsing the HTML
code of each webpage. We use a proxy to discard the resulting form
traffic so that we do not spam the web service. Then, inspecting the
monkey patch traces, we identify the regexes applied to each form
field. This may be a subset of the desired set — our approach omits
any regexes that are applied to the substrings of form fields, e.g.,
logic that splits an email and checks a property on the username.

Unsatisfactory form field values may lead the browser to reject
our form before our program instrumentation is triggered. To reduce
these cases, we solve the constraints encoded within HTML form
attributes, e.g., integer constraints directly and regex constraints
using Z3 [50], although JavaScript-based constraints may still fail.

APIs: For API-based interfaces we have the same goal: to identify
the set of regexes that constrain client input. For such an interface,
client input can appear in HT TP headers, endpoints, query strings,
and request bodies. In typical API schema definition languages,
including OpenAP], engineers can set regex-based constraints on
string inputs. We parse a schema and identify the regex(es) that con-
strain any string inputs referred to by at least one request schema.

4.3 RQ2: Super-Linear Sanitization Regexes

Our next goal is to measure the proportion of client-side input
sanitization regexes that present a potential ReDoS vector. We lack
knowledge of a web service’s server-side implementation, including
its choice of regex engine. A regex is a potential ReDoS vector if it
has super-linear worst-case behavior in some regex engine.

To identify a super-linear regex, we apply the ensemble of state-
of-the-art super-linear regex analyses supported by Davis et al.’s
tool, vuln-regex-detector [3, 46]. These analyses vary in their
soundness and completeness, so we dynamically test any potentially
super-linear regex in a representative unsafe regex engine. Davis
et al. found the Java, JavaScript, and Python regex engines were in
the most unsafe class of engines [46]. Although the Java [106] and
JavaScript-V8 [28] regex engines have recently been optimized, the
Python regex engine has not. We therefore tested regexes in the
Python regex engine (Python v3.8.10).

We define a regex as super-linear using the definition from algo-
rithmic complexity theory [39]: when it exhibits a more-than-linear
increase in match time in the input length |w| as we increase the
number of “pumps” of the attack input strings. We further dis-
tinguished the degree as “high-complexity” and “low-complexity”

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Attempt to create valid

request via interaction

with local proxy server » Run probe sequence
¥

Send the same request
to live web service

v

Response time

Record obtained status deviations?

code

No

Service uses unsafe
regex engine

Valid initial
requests?

Yes

Service uses safe
engine or diff.
sanitization

Inconclusive
results

Figure 5: Measurement process for ReDoS Condition 3. We
begin with a web service interface, a client input field, and a
super-linear regex applied to that input on the client side. As
areachability check, we seek a valid status code from a proxy
and then from the live web service. After a probe sequence
of treatment and control requests, a decision tree follows.

depending on the number of pumps necessary to yield substantial
matching times, similar to Davis et al. [46].

4.4 RQ3: Use of Unsafe Regex Engine

By now we have identified interfaces in live web services that
publish a super-linear regex used on client input. Our next goal
is to understand the proportion of these regexes that are actual
ReDoS vectors, i.e., testing whether the server uses these regexes
in an unsafe regex engine.

4.4.1 Measurement algorithm. As depicted in Figure 5, our mea-
surement algorithm attempts to (1) reach the relevant logic in the
interface’s server-side implementation; and then (2) identify linear
vs. super-linear regex behavior on the server-side while (3) avoiding
actually conducting a denial of service attack.

We assume that these live web services follow standard HTTP
semantics [59], in particular that if a web service responds to a
client request with a success return code (2XX) then the request was
legitimate. We assume such a request has passed all server-side
sanitization. If the Consistent Sanitization Assumption holds, then
this means that any client-side regexes were also applied to the
relevant input field(s) on the server side. Requests can then be sent
to determine whether these regexes exhibit super-linear behavior.

It is possible that the target regex can be reached even without a
successful baseline request, but it depends on the cause of the failure.
For example, the target regex constraint might be applied before
the failing condition. Thus, if no successful request can be crafted,
super-linear behavior may still be observed; but if we observe linear-
time behavior, the results are inconclusive. If we cannot identify a
valid request, we use an invalid one.

Efe Barlas, Xin Du, and James C. Davis

4.4.2 Crafting a valid client request: HTML Form Interfaces: For
HTML form interfaces, we identified and satisfied the constraints
embedded in HTML form attributes as part of RQ1 (§4.2). To test
constraint validity for these interfaces, if a request reaches our
HTTP proxy, then we conclude that it passed the client-side san-
itization. We send requests to the web service using the Python
requests [92] module.

APIs: For APIs, the first problem is reaching the target endpoint.
For example, reaching an endpoint like /home/{USER_ID}/photos
requires dynamic information (a USER_ID) obtained from the web
service. After this, we must satisfy the constraints associated with
the fields of the endpoint in question — among other limitations,
RESTler’s fuzzing strategy may not satisfy the regex constraint that
is present for these endpoints. For reachability, we implemented
our API analysis as a “checker” plug-in within Microsoft’s state-
of-the-art REST API fuzzer, RESTler, version v7.4.0 [18]. RESTler
uses API conventions to determine dependency relationships be-
tween endpoints, with a simple fuzzing dictionary to attempt to
satisfy each endpoint’s constraints. Once RESTler reaches the target
endpoint, our plug-in is called to populate the request fields. We
use json-schema-faker [8] for this purpose, and then populate the
ReDoS-relevant field in the endpoint of interest.

To test constraint satisfaction for APIs using RESTler with our
plug-in, we use the Prism mock server tool v4.2.6 [4] to validate
requests and generate mock responses according to the OpenAPI
specification of interest. Prism returns codes in the 4XX range if
any constraints are missing. We treat other codes as an indicator of
satisfied constraints.

4.4.3 Ethical ReDoS probing. We send probe requests by inject-
ing probe strings into a previously-sent valid request, or an invalid
request if no valid status codes were obtained during the prob-
ing experiment. These probe strings are assembled from templates
produced by the regex analysis component. The templates con-
tain three strings: a prefix, suffix, and a pump. A probe string is a
concatenation of the prefix, one or more repetitions of the pump,
and the suffix, and triggers the worst-case behavior of a regex dur-
ing a mismatch. Each additional pump increases the match time
super-linearly in an unsafe regex engine.

We devise a five-stage probing experiment based on that of Staicu
& Pradel [99]. Our overall goal is to identify “treatment” input
strings that yield a > 1 second increase in response time relative
to a comparable “control” string — without causing substantial
slowdowns for normal clients. To that end: (1) We identify an initial
set of treatment input strings with a range of matching times (200ms
to 3s) using the performance of the “maximally unsafe” Python
regex engine on our workstation. These input strings should yield a
small but measurable time difference in an unsafe regex engine. (2)
We send 3 (preferably valid) warm-up requests to address response
time noise caused by first-time operations, such as cache filling.
These use a valid request if we identified one, else an invalid one. (3)
For each timing configuration, we send an experiment sequence of
5 requests with the vulnerable field populated with a probe string,
and a control sequence of 5 requests with that field populated with
randomly generated strings of the same lengths (these run in linear
time). (4) Both groups of requests are expected to fail at the same

Exploiting Input Sanitization for Regex Denial of Service

stage of validation, viz. the regex constraint. If the median round-
trip response time in the treatment group is substantially larger
than in the control group, we conclude that the web service being
probed uses an unsafe regex engine. Specifically, we look for a
1-second increase in the median round-trip time for the treatment
group. (5) If the service is using an unsafe regex engine, its server
hardware or runtime timeouts may affect the actual response time
relative to our predication. If we observe a 5XX response code or a
response time greater than 5 seconds, we halt the experiment to
avoid harm and consider the regex engine unsafe. Conversely, if
the treatment group exhibits deviations but below the 1-second
threshold, we manually explore a longer probe sequence.

We identified three known mitigations that can mask unsafe
regex engine behavior under this protocol. First, server-side rate lim-
iting could delay our probes regardless of their content. Although
rate limiting would presumably not cause the treatment-control
deviations that we measure, we sent no more than 1 request per
second to account for this possibility. Second, caching — either of
the validation outcome, or of end-to-end results — could cause only
the initial query at each probe size to be slow. We manually ob-
served one case of this form. Third, a recent approach can identify
the signatures of anomalously slow regex input [21], although we
are not aware of applications of this technique in practice.

4.5 RQ4: ReDoS Mitigation

In this part of the study, our goal was to understand the perspective
of the web service engineering community on the use of super-
linear regexes in server-side input validation. We assessed this
constructively (proposed mitigation), as well as in a responsibly
destructive manner (vulnerability identification and disclosure).

Constructively, we assessed the state of ReDoS mitigations in
OpenAPI-based automatic client sanitization libraries. We found an
absence of mitigations, proposed one, and report on our findings.

“Destructively”, we contacted the owners of live web services
for which ReDoS Conditions 1-3 held: cases where our experi-
ments identified super-linear regex performance in live web ser-
vices. Since ReDoS is a security problem, we disclosed such is-
sues to web service engineers using their documented route, e.g.,
the security@domain.com email for major companies. We informed
them of a super-linear regex in their client-side input sanitization,
presented the attack format, and gave a minimal example. We asked
whether they considered this a security vulnerability in their ser-
vice, and what mitigations they had in place.

4.6 Automating RQ1-RQ3

We automated most parts of this measurement process, using exist-
ing tools as indicated. We manually intervened when this automa-
tion failed. This was particularly notable for the APIs; these services
vary in the accuracy of the semantics that they encode in the Ope-
nAPI schema. We intervened to repair schema syntax, authenticate,
and supply values RESTler could not obtain (e.g., some resource ID
values or under-documented constraints). Some interventions were
guided by a service’s error messages.

For one web service with a particularly complex API, we used
the official client SDK, documentation, and browser interface to
craft valid requests to endpoints with super-linear regexes.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

5 RESULTS AND ANALYSIS

For security measurement purposes, we are interested in under-
standing the extent to which a given web service is potentially vul-
nerable to ReDoS attacks. The attack surfaces in question are clear —
individual HTML forms and API endpoints. However, services may
employ the same sanitization policy across multiple surfaces. We
present results aggregated by web domain, as well as aggregated
by subdomains where appropriate.

5.1 RQ1: Published Sanitization Information

Finding 1: Web services frequently use regexes to sanitize
input on the client side. 272 of the 696 reachable HTML form
domains do so, as do 83 of the 475 studied API domains.

Table 2: Use of regexes in client-side input sanitization. Do-
mains and sub-entities: For HTML forms, we report the num-
ber of web domains and web pages that apply client-side
regexes to any form fields. For APIs, we report by domain
and subdomain.

Interface type # Domains # Sub-entities

HTML form 272 (39.1%) 30895 (20.6%)
API 83 (17.4%) 322 (30.4%)

HTML Forms: We crawled 1,000 domains sampled randomly from
the Tranco Top 1M list. Through web crawling, we found at least
one web page for 696 of those web sites. Our crawler failed on the
remainder, e.g., blocked by the service, and we omit them from the
following statistics. Among the crawled 696 domains, the median
number of pages per domain was 104, and the median number of
forms per domain was 33.

APIs: We obtained 2231 documents from apis.guru. 549 documents
contained at least one operation with a regex validation constraint.
These documents corresponded to 83 web services with unique
domain names, out of 475 web services. The median number of
documents per domain and per subdomain are 1.

Analysis: We observed substantial variation in the number of
unique regexes amongst the input sanitization regexes. For HTML
form’s pattern attribute regexes, there were 4966 total regex uses
but only 33 unique regexes. Substantial regex re-use across web-
sites is consistent with the findings of Hodovan et al. [66], who
examined the regexes parsed during browsing sessions. This repe-
tition may be the result of client-side library or framework re-use,
with the regexes originating in web frameworks or JavaScript li-
braries rather than independently authored by many engineers.
In marked contrast to the duplication of regexes in HTML forms,
in the API documents there were 2681 total regex uses and 1841
unique regexes.

For HTML forms, we also note that most regexes were employed
in JavaScript logic which was used by 265 domains. Only 31 of
domains used the HTMLS5 pattern attribute in any form.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

N=6

- 100% g Low Complexity
§ 80% HigRjEflmplexity N=41
Q
o 8 60% g
53
2 g 40%
8
3 20%
o

0%

API - Domain API - HTML Forms
Subentity - Domain

Figure 6: Among the web services with super-linear client-
side regexes: the percent of web services with any low- and
any high-complexity regexes. N refers to the total number of
web services indicated by the lines pointing to the columns.

5.2 RQ2: Super-Linear Regexes

Finding 2: Super-linear regex usage varies widely by in-
terface type. Among the 272 domains with regexes in their
HTML forms, only 6 (2%) use a super-linear regex. Meanwhile,
among the 83 regex-using API domains, 11 domains (13%) use
a super-linear regex in at least one constraint.

HTML Forms: We identified 6 super-linear regexes on 6 distinct
web services. Each vulnerable regex appears on exactly one service.
Three web services had a super-linear regex on one page each, and
the other used a super-linear regex on 106 distinct pages.

APIs: We found super-linear regexes on documents associated with
11 domains, spanning 41 subdomains.

Analysis: Since high-complexity regexes are more severe than low-
complexity regexes, these service providers are exposed to different
degrees of risk. Figure 6 shows the distribution of super-linear
regexes by time complexity, grouped by interface type.

5.3 RQ3: Live Unsafe Regex Engines

Finding 3: The presence of ReDoS vulnerabilities varies
widely by interface type. Our black-box methodology did not
identify any ReDoS vulnerabilities from our analysis of HTML

Efe Barlas, Xin Du, and James C. Davis

forms. From the API analysis, we identified 6 domains (15
subdomains) that meet ReDoS Conditions 1-3: they apply
untrusted input to a super-linear regex in an unsafe regex
engine on the server side.

Despite our automation, the probing experiments required sub-
stantial manual intervention. We chose to consider two kinds of
equivalence classes: domains and subdomains. Following the algo-
rithm from Figure 5, once we reached a conclusive result in one
of these equivalence classes, we did not attempt other possibilities
within the class. We did this in two distinct phases — once at the
level of domains, and once at the level of subdomains.

We probed each domain and subdomain aiming to reach a con-
clusive result for some super-linear regex in their interface. We
began with 17 candidate domains (45 subdomains). In two domains
with unsafe regexes in their HTML forms, we weren’t able to obtain
enough information for running probing experiments. We identi-
fied zero ReDoS-vulnerable domains via HTML form analysis, and
six ReDoS-vulnerable domains through API analysis.

Table 3 summarizes our findings for the APIs with super-linear
client-side regexes. We reached a conclusive outcome (safe or un-
safe regex engine) on at least one probing experiment from 10
domains (32 subdomains). The remaining five domains either did
not respond to requests, or required a paid subscription. On 5 do-
mains (12 subdomains), at least one of our probe experiments were
inconclusive.

We measured response time deviations (i.e., ReDoS vulnerabili-
ties) for at least one super-linear regex in 6 domains (15 subdomains).
Notably, 2 of these domains are on the Tranco Top 1000 list and are
major tech companies.

Following our algorithm, we concluded that there were 16 safe
services by subdomain — these subdomains have at least one super-
linear client-side regex but we did not measure response time devi-
ations on the server side. However, 13 of these subdomains belong
to domain A, which also has subdomains which had measurable
response time deviations. A large company could have distinct
policies at the organizational level [38], which may manifest by
subdomain as we observed.

Length-Based Mitigation: Davis et al. reported that input length
checks are a common safety measure for low-complexity regexes [45].
We observed this during our experiments. The A domain had many
subdomains whose only super-linear regexes were low-complexity.
Of the 13 conclusively safe subdomains of A in Table 3, 11 used

Table 3: Findings from our study of the APIs with super-linear regexes in their client-visible sanitization logic. Columns
represent anonymized domains. Service provider A has subdomains with varying properties. We measured response time
deviations in 6 domains (15 subdomains). We did not attempt to probe web services which had response time deviations
indicating ReDoS caused by high time complexity regexes. SL: super-linear. N/A: Domain does not have a regex of this type.

Metric A B C D E F G

Number of subdomains 31 1 1 1 1 1 1

Subdomains with SL behavior 10 1 1 0 1 1 1

Subdomains with high-complexity SL behavior 6 N/A 1 Failed experiment 1 1 1
Subdomains with low-complexity SL behavior 5 1 Did not attempt 0 N/A N/A N/A

Conclusively safe subdomains 13 0

0 0 0 0 0

Exploiting Input Sanitization for Regex Denial of Service

only low-complexity regexes. The error messages from these sub-
domains indicated that our probe strings were too long.

5.4 ROQ4: ReDoS Mitigation

Finding 4: The maintainers of OpenAPI middleware tools
are concerned about ReDoS and interested in eliminating
this possibility. It is unclear whether individual web service
providers consider the vulnerability a threat.

5.4.1 ReDoS Mitigation for OpenAPI. All of the ReDoS vulnera-
bilities we identified through our black-box methodology came
from APIs, not web forms. We therefore investigated a mitigation
for the OpenAPI ecosystem. One benefit of API specifications is
that client- and server-side code can be generated automatically. In
OpenAPI, two popular code generation tools are swagger-codegen
and openapi-generator, in use by dozens of companies (Table 4).
Among other features, these tools can generate server stubs, with
input validation code followed by a “fill in the blank” for the busi-
ness logic. Their generated code — which includes regex checks — can
expose their dependents to ReDoS.

Table 4: Popular code generators and input validation tools
for OpenAPI-based APIs. Data as of February 2022. GH Stars:
the number of GitHub stars.

Name # GH Stars [29] # Contributors
swagger-codegen 14K 1K
openapi-generator 11.2K 2K

These tools do not address the risk of ReDoS for their depen-
dents. Their documentation does not discuss how the code for regex
patterns is generated. According to our tests, these tools generate
code in the target programming language and use the default (often
unsafe [46]) regex engine in that language. One tool’s documen-
tation mentions the risk of ReDoS, but places the burden on the
specification engineer to avoid or mitigate such regexes. They do
not allow users to tune this logic, e.g., to choose a safe regex engine.

To eliminate this risk, we proposed a patch to the Ajv tool. Ajv
is used by openapi-generator to validate requests, and has several
million dependent packages according to GitHub.

Our goal was to allow software engineers to choose the safe
regex engine RE2 [41] instead of the built-in programming language
regex engine. Ajv is sometimes used in client-side contexts, so the
engineering team prioritizes a small binary. Adding the Node.js
bindings for RE2 in Ajv’s dependencies would more than double
Ajv’s unpacked binary size, from 1.02MB to 2.31MB. Our patch
therefore used the Factory pattern [61], allowing users to inject
another regex engine as a dependency at runtime. The Ajv engi-
neering team reviewed our patch and included it in release v8.8,
along with documentation outlining how the patch should be used
to eliminate risk of ReDoS caused by input sanitization. Our patch
will allow the millions of Ajv dependents to eliminate this form of
ReDoS in their applications.

5.4.2 Responses to ReDoS Vulnerability Disclosures. As described
in §4.5, we disclosed possible ReDoS vulnerabilities to live web
service providers who met ReDoS conditions 1-3.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

To summarize the responses: (1) Four service providers did not
respond; (2) One major technology company acknowledged and
repaired the disclosed vulnerability; (3) One major technology com-
pany initially told us that they did not perceive a vulnerability,
but after several months have informed us that they have patched
the unsafe regexes. Ultimately, both Microsoft and Amazon Web
Services made changes to repair their unsafe regexes. Overall, the
sample size is too small for comment.

6 DISCUSSION

Should web service providers prioritize ReDoS mitigations?
Several research communities have investigated the ReDoS prob-
lem, including from empirical software engineering [45-47], sys-
tems [41, 49, 85], cybersecurity [48, 99], and theory [89, 93,111, 114].
This research investment has somewhat shaky motivation: Crosby’s
proposal of ReDoS [42], case studies of regex-induced service out-
ages [57, 65], and three empirical measurement studies [45, 99, 114].
Our study provides a new perspective: large-scale black-box mea-
surements of ReDoS risks using a weak threat model (§5.2, §5.3).
Our findings establish the first systematic and empirical evaluation
of ReDosS risks of web services, without an assumption of their
frameworks.

Our measurements indicate that many web services are safe from
ReDoS under this threat model. In particular, for web services whose
interfaces are traditional HTML forms, few sanitization regexes
are revealed on the client side, and these regexes are not super-
linear (§5.1, §5.2). In contrast, web services that publish APIs face
more risk of ReDoS. In publishing API specifications, web services
are choosing to reveal more about their server-side sanitization
logic. However, the cause is unclear. We conjecture two explana-
tions for further examination. First, the choice may be deliberate.
Software engineers may be providing a fuller definition of their
input validation constructs in their API specifications, so that code
generation tools can be used to automatically handle input valida-
tion. Alternatively, it may be accidental. Software engineers may
be using tools which generate API specifications from code (similar
to model extraction), rather than writing specifications first and
then generating code from them. This process may be inadvertently
exposing internally-used regexes, which could explain the greater
regex variety and greater incidence of ReDoS among API regexes.

A visibility-security tradeoff: Our measurements indicate a trade-
off between visibility and security (§5.3). Web service providers
who promote usability by specifying the nature of valid input may
expose themselves to ReDoS. Although this class of attacks could
be mitigated by hiding the sanitization rules, software engineers
should not seek security through obscurity [13]. Indeed, describing
the characteristics of valid input is necessary to enable commu-
nication. Software engineers should not need to choose between
visibility and security.

Rather than obscuring input formats, the software engineer-
ing community would benefit from principled solutions to ReDoS.
Davis et al. described several sound solutions, and they concluded
that making regex engines safe seemed like the most natural mitiga-
tion [48]. Further research into adopting safe regex engines [41, 110]
or retrofitting existing unsafe engines [48] will improve the safety
of software engineering practice. Middleware for input sanitization

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

can use a level of indirection to select a safe regex engine. In our
mitigation study (§4.5), we found that middleware providers were
happy to accept such a change. However, they were concerned with
introducing an external dependency on a safe regex engine, indi-
cating that improving the safety of programming language regex
engines should be an area of focus for a long-term solution.

Using API specifications has many advantages from a software
engineering standpoint. Specific to ReDoS, the standardization they
provide allows engineers to use specification-compatible middle-
ware tools. Hence, any security patches to these tools can protect
many web services at once. We took advantage of this centraliza-
tion to provide ReDoS mitigations to the numerous dependents of
such middleware tools. The same property that lends itself to easy
exploitation also lends itself to a centralized repair.

Mismatch between OpenAPI SDL and needs in practice: Ide-
ally, an interface specification should describe everything necessary
for successful communication. However, during our measurements
we observed that most OpenAPI documents were underspecified.
Our requests, which passed the specified validation constraints ac-
cording to the Prism tool, were still invalid according to the server.
We identified several causes of these underspecifications. One of
these causes is well known — the OpenAPI syntax cannot indicate
dependencies between requests. Although RESTler [18] attempts to
infer these dependencies using heuristics, it cannot handle all cases.
We encountered several more causes during our experiments. Some
API documents indicate the full set of possible payload variables,
but actually accept subsets of those variables. Some parameters
are interdependent/coupled, e.g., including one optional parameter
requires including others [2]. Some parameters of “string” type
are actually type-aliased within the web service, e.g., strings that
represent a comma-separated numeric sequence. These various
missing semantics are of practical utility, and the maintainers of
API specification languages should consider supporting them.

7 RELATED WORK

Our work descends from two lines of research: web service vulner-
ability scanning, and regular expression engineering.

We employed a black-box probing methodology to scan web ser-
vices for a specific class of security vulnerability. Other researchers
have employed grey-box and white-box methodologies for this vul-
nerability [99, 114]. Researchers and commercial tools offer black-
box and grey-box scanning for diverse vulnerabilities [25, 52, 53],
including algorithmic complexity vulnerabilities [31, 72, 87], service
crashes [18, 19, 62], cross-site scripting (XSS) [24, 55, 103], and SQL
injection [78]. Notably, some researchers have pursued the opposite
of our Consistent Sanitization Assumption to identify cases where
backend sanitization appears problematically inconsistent [71, 84].

While our study focuses on regex cybersecurity, researchers
have considered other aspects of the regex engineering lifecycle.
Michael et al. reported that many software engineers find regex
engineering difficult [79]. To assist the engineering community
in this domain, researchers have recently described regex engi-
neering practices related to composition [20], comprehension [33],
and testing [109]; identified common regex bug patterns and tax-
onomies [56, 70, 108]; and proposed tools to support regex compre-
hension [26], testing [69, 98], and repair [76, 86]. There has also

Efe Barlas, Xin Du, and James C. Davis

been a longstanding effort to automatically compose regexes, with
diverse approaches including formal methods [16, 17, 35, 51, 63, 75],
evolutionary algorithms [22, 23, 37], optimization [74, 91], crowd-
sourcing [36], natural-language translation [34], and human-in-the-
loop interactive development [54, 115].

8 THREATS TO VALIDITY

This paper describes a substantial web measurement study covering
two distinct interface types. We acknowledge a variety of threats
to the validity of our findings, and note mitigating factors.

Construct validity: The primary threat here is in our definition
of a browser-based web interface: via HTML forms. While HTML
forms appeared in 80% of the web services whose HTML form in-
terfaces we crawled, trends such as Single-Page Applications [82]
process user input without form submissions. This is also a threat
to external validity, as we cannot comment on the risk of ReDoS for
such web services. Beyond this construct, we relied on definitions
of super-linear regexes and regex-based denial of service. These
concepts are well established in the research literature, and we mea-
sured them with state-of-the-art tools and probing methodologies.

Internal validity: Our methodology does not let us measure the
degree of a ReDoS vulnerability. We identified super-linear regexes
that are applied to user input in an unsafe regex engine on the
server side. However, we cannot assess ReDoS Condition 4 (ReDoS
mitigations §2), without either having server-side knowledge or
launching a full-scale denial of service attack. To shed light on
this threat, in §5.4 we discussed perspectives from the web service
engineering community.

There are three potential sources of under-reporting in our prob-
ing methodology. First, as noted in §4.4, some web services cache
end-to-end results, and this caching will mask worst-case behavior
when we use identical worst-case probe strings. Second, we conser-
vatively chose input lengths for our probes based on the slowdowns
observed on a workstation-grade machine. If a web service provider
processes input on a server-class machine, the response time de-
viation induced by our probes may not be observable. Finally, our
decision tree yielded inconclusive results in 12 cases (Figure 5).

External validity: Our goal was to measure the extent of ReDoS
vulnerabilities in live web services. The populations we used may
have biased our results. We probed web services that were listed
in directories of live web services — from the Tranco Top 1M di-
rectory [88] for HTML form interfaces, and from apis.guru for
OpenAPI interfaces. For HTML forms, we randomly sampled from
the top 1 million web domains for HTML forms. We expect these
results to generalize to other popular websites; popularity may be
correlated with a certain caliber of engineering (in order to service
the client load) and so our results may not generalize to less popular
websites. A related bias is that 3.4% of HTML form services rejected
our connections outright because we were using VMs from Google
Cloud Platform for our experiments. For APIs, we considered all
API specifications from apis.guru. This directory only contains
OpenAPI specifications from 475 distinct domains (1,059 distinct
subdomains). Different results may emerge from studying other API
specification directories, e.g., SwaggerHub or by mining GitHub. We
performed a preliminary analysis on SwaggerHub specifications,
and found that often they are simpler and are not associated with a

Exploiting Input Sanitization for Regex Denial of Service

live web service URL. Echoing Wittern et al. [112], we suggest that
the results we obtained from apis. guru may be more representative
of engineered OpenAPI specifications.

Beyond limitations in our sampling, generalizability is threat-
ened by our black-box methodology. Our approach depends on the
Consistent Sanitization Assumption: that web services are consistent
in their input sanitization, i.e., that client-visible input sanitization
is also applied on the back-end. This assumption permits a scalable
black-box approach. However, without full knowledge of server-
side logic, we may omit server-side regex evaluations that are not
exposed to clients. Web services may apply additional or alternative
sanitization on the back-end. For example, the ReDoS vulnerabili-
ties identified by Staicu & Pradel [99] would likely not have been
discovered using our methodology, since they targeted regexes
that would only be used server-side in HTTP header processing.
Conversely, client-side sanitization gives us insight into “business
logic” regexes that might not be visible through examination only
of the open-source software supply chain, as Davis et al. [45] and
Staicu & Pradel [99] did. Our findings thus complement the prior
empirical studies of the risks of ReDoS in practice.

9 FUTURE WORK

Transferring ReDoS vulnerabilities: Software engineers solve
similar problems in similar ways [68]. A general version of the
Consistent Sanitization Assumption is possible: that web services
validate similar content in similar ways, so sanitization logic revealed
by one service may be transferred to another. For example, suppose
two web services use an accessibility feature like ARIA labels [107]
to label a form field as an email. If one service provides client-side
sanitization logic, similar logic might be in use by the other.

Why are API practices more dangerous? In answering each
research question, there were marked differences between ReDoS
risks in traditional HTML forms as compared to the emerging
approach of API specification. We conjectured two causes (§6):
providing detailed API specifications to ease the development of
input validation logic, and inadvertent exposure resulting from
API extraction from server-side code. We believe this finding bears
further investigation.

Improved tooling: Although we chose RESTler to help us reach
endpoints in complex APIs, we eventually performed manual inter-
vention for most of the 32 APIs we probed. In practice, API specifi-
cations underspecify valid interactions. When we intervened, we
consulted API documentation as well as the service error messages.
Incorporating NLP techniques into automated API interactions is a
natural direction for improved black-box web service testing [62].

Regex dataset: Previous researchers have collected regex datasets
from open-source software repositories [32, 47], with applications
including improved regex usability tools and safer regex engines [48,
105]. To complement this effort, we contribute a dataset of web
input sanitization regexes. This dataset contains the ~ 1850 unique
regexes identified during our experiments.

10 CONCLUSIONS

Regex-based denial of service (ReDoS) has received much recent
attention. Web service providers are curious about the degree to

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

which ReDoS threatens them, and regex engine maintainers wonder
whether they should prioritize optimizations to ameliorate ReDoS.
In light of this interest, we report the results of the first black-box
measurement study of ReDoS vulnerabilities on live web services.
Our method is based in the observation that server-side input sani-
tization may be mirrored on the client-side as part of usability en-
gineering. We therefore examined the extent to which super-linear
regexes on the client side can be exploited as ReDoS vulnerabili-
ties on the server side. We compared two common interface types:
HTML forms (N = 1,000 domains) and APIs (N = 475 domains).
We report that although client-visible regexes are common in both
types of interfaces, super-linear regexes are only common in APIs.
We identified ReDoS vulnerabilities in the APIs of 6 domains (15
subdomains) including in services operated by major technology
companies. Our findings add weight to the concerns of researchers
about the risks of ReDoS in practice. Specifically, we show that the
movement toward API specification development provides leverage
for ReDoS attacks.

ACKNOWLEDGMENTS

We thank A. Kazerouni and the anonymous referees for their crit-
icisms. Barlas and Du acknowledge support from Purdue Univer-
sity’s Summer Undergraduate Research Fellowship program (SURF)
and the Purdue University Center for Programming Principles and
Software Systems (PurPL).

RESEARCH ETHICS

Our methodology could be construed as conducting denial of ser-
vice attacks against live web services. Attacking web services is
unethical. We did not do so! As discussed in §4, we imitated Staicu
& Pradel [99] by using ReDoS probes instead of attacks. Prior re-
searchers have contributed theoretical and empirical understanding
of worst-case regex performance, enabling us to accurately predict
the worst-case performance of a problematic regex. This predic-
tion allows us to size the probes to minimize the risk to the service
provider. Our method could introduce a user-perceivable slowdown
comparable to a network hiccup, yet still demonstrates the possi-
bility of a ReDoS attack by a malicious actor. We believe this cost is
an acceptable price for the data we have collected. However, as a
consequence of our ethical probing methodology, we are limited in
what we can claim about the vulnerability of web services (§6).

DATA AVAILABILITY

An artifact is available at https://doi.org/10.5281/zenodo.5916441.
The artifact has a dataset and our vulnerability identification tools.
Dataset: We provide a list of regexes found in web forms and API
specifications and their analysis reports per vuln-regex-detector.
We also share the list of web services with regexes in their API spec-
ifications, and the list of all web services with API specifications.
Vulnerability identification tools: We share one tool for browser-
based interfaces, and one tool for APIs (OpenAPI). The browser-
focused tool crawls web services for regex use in web forms and
JavaScript files. It produces OpenAPI specifications for endpoints
which are using vulnerable regexes in the front-end. The API-
focused tool parses OpenAPI specifications for vulnerable regexes

https://doi.org/10.5281/zenodo.5916441

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

and endpoints. It also probes the web services to assess whether

each vulnerable regex is exploitable for ReDoS.

Efe Barlas, Xin Du, and James C. Davis

REFERENCES

(1]
(2]

—
—
—_

[13
[14]

[15

[16]

[7

[18

[19

[20]

[21

[22

[23

[24]

[25

[26

[27

[28

[29

[30]

[31

[32

2014. Documentation | API Blueprint. https://apiblueprint.org/documentation/
2015. Support interdependencies between query parameters - Issue #256 -
OAI/OpenAPI-Specification. https://github.com/OAI/OpenAPI-Specification/
issues/256

2019. GitHub - davisjam/vuln-regex-detector: Detect vulnerable regexes in your
project. https://github.com/davisjam/vuln-regex-detector

2019. Prism | Open-Source HTTP Mock and Proxy Server. https://stoplight.io/
open-source/prism

2020. About RAML. https://raml.org/about-raml

2021. Alexa - Top sites. https://www.alexa.com/topsites

2021. Browse APIs - APIs.guru. https://apis.guru/

2021. json-schema-faker/json-schema-faker. https://github.com/json-schema-
faker/json-schema-faker

2021. OpenAPI Specification Version 3.0.3. https://swagger.io/specification/.
2022. https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
2022. https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
2022. https://apify.com/

2022. Security Through Obscurity. https://en.wikipedia.org/wiki/Security_
through_obscurity

AV Aho, Monica S Lam, R Sethi, and JD Ullman. 2013. Compilers: Pearson New
International Edition: Principles, Techniques, and Tools. Pearson.

Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi. 2008. General Algorithms
for Testing the Ambiguity of Finite Automata. In International Conference on
Developments in Language Theory.

Rene Alquezar and A Sanfeliu. 1999. Incremental Grammatical Inference From
Positive and Negative Data Using Unbiased Finite State Automata. (1999).
Dana Angluin. 1978. On the complexity of minimum inference of regular sets.
Information and Control 39, 3 (1978), 337-350.

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler:
Stateful REST API Fuzzing. In International Conf. on Software Engineering (ICSE).
Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking
Security Properties of Cloud Service REST APIs. International Conference on
Software Testing, Verification and Validation (ICST) (2020), 387-397. https:
//doi.org/10.1109/ICST46399.2020.00046

Gina R. Bai, Brian Clee, Nischal Shrestha, Carl Chapman, Cimone Wright, and
Kathryn T. Stolee. 2019. Exploring tools and strategies used during regular
expression composition tasks. In IEEE International Conference on Program
Comprehension (ICPC). IEEE.

Zhihao Bai, Ke Wang, Hang Zhu, Yinzhi Cao, and Xin Jin. 2021. Runtime Recov-
ery of Web Applications under Zero-Day ReDoS Attacks. In IEEE Symposium
on Security and Privacy (SP).

Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Marco Mauri, Eric Med-
vet, and Enrico Sorio. 2012. Automatic generation of regular expressions from
examples with genetic programming. In International Conference on Genetic and
Evolutionary Computation Companion (GECCO). 1477-1478.

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016.
Inference of Regular Expressions for Text Extraction from Examples. IEEE
Transactions on Knowledge and Data Engineering 28, 5 (2016), 1217-1230.
Daniel Bates, Adam Barth, and Collin Jackson. 2010. Regular expressions con-
sidered harmful in client-side XSS filters. In The Web Conference (WWW).
Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. 2010. State of the art:
Automated black-box web application vulnerability testing. In IEEE Symposium
on Security and Privacy. 332-345. https://doi.org/10.1109/SP.2010.27

Fabian Beck, Stefan Gulan, Benjamin Biegel, Sebastian Baltes, and Daniel
Weiskopf. 2014. RegViz: Visual Debugging of Regular Expressions. In Com-
panion Proceedings of the 36th International Conference on Software Engineering
(ICSE). https://doi.org/10.1145/2591062.2591111

Martin Berglund, Frank Drewes, and Brink Van Der Merwe. 2014. Analyzing
Catastrophic Backtracking Behavior in Practical Regular Expression Matching.
EPTCS: Automata and Formal Languages 2014 151 (2014), 109-123.

Martin Bidlingmaier. 2021. An Additional Non-Backtracking RegExp Engine.
https://v8.dev/blog/non-backtracking-regexp

Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Un-
derstanding Repository Starring Practices in a Social Coding Platform. Journal
of Systems and Software 146 (2018), 112-129. https://linkinghub.elsevier.com/
retrieve/pii/S0164121218301961

Claus Brabrand and Jakob G. Thomsen. 2010. Typed and unambiguous pattern
matching on strings using regular expressions. Symposium on Principles and
Practice of Declarative Programming (PPDP) (2010).

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and
Jim A. Laredo. 2020. A Principled Approach to GraphQL Query Cost Analysis.
In European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE).

Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage
and context in Python. In International Symposium on Software Testing and
Analysis (ISSTA). https://doi.org/10.1145/2931037.2931073

https://apiblueprint.org/documentation/
https://github.com/OAI/OpenAPI-Specification/issues/256
https://github.com/OAI/OpenAPI-Specification/issues/256
https://github.com/davisjam/vuln-regex-detector
https://stoplight.io/open-source/prism
https://stoplight.io/open-source/prism
https://raml.org/about-raml
https://www.alexa.com/topsites
https://apis.guru/
https://github.com/json-schema-faker/json-schema-faker
https://github.com/json-schema-faker/json-schema-faker
https://swagger.io/specification/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://apify.com/
https://en.wikipedia.org/wiki/Security_through_obscurity
https://en.wikipedia.org/wiki/Security_through_obscurity
https://doi.org/10.1109/ICST46399.2020.00046
https://doi.org/10.1109/ICST46399.2020.00046
https://doi.org/10.1109/SP.2010.27
https://doi.org/10.1145/2591062.2591111
https://v8.dev/blog/non-backtracking-regexp
https://linkinghub.elsevier.com/retrieve/pii/S0164121218301961
https://linkinghub.elsevier.com/retrieve/pii/S0164121218301961
https://doi.org/10.1145/2931037.2931073

Exploiting Input Sanitization for Regex Denial of Service

(33]

[34

(35

[36

N
=

=
&

S
=t

™~
2

[46

[47

(49

[50

[51

(52]

o
3

‘5
&

‘o
&

Carl Chapman, Peipei Wang, and Kathryn T Stolee. 2017. Exploring Regular
Expression Comprehension. In Automated Software Engineering (ASE).
Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-
modal synthesis of regular expressions. In Programming Language Design and
Implementation (PLDI). 487-502. https://doi.org/10.1145/3385412.3385988
Nariyoshi Chida and Tachio Terauchi. 2020. Automatic Repair of Vulnerable
Regular Expressions. (2020). http://arxiv.org/abs/2010.12450

Robert A. Cochran, Loris D’Antoni, Benjamin Livshits, David Molnar, and
Margus Veanes. 2015. Program boosting: Program synthesis via crowd-sourcing.
In Principles of Programming Languages (POPL), Vol. 50. 677-688.

Brendan Cody-Kenny, Michael Fenton, Adrian Ronayne, Eoghan Considine,
Thomas McGuire, and Michael O’Neill. 2017. A search for improved perfor-
mance in regular expressions. In Proceedings of the Genetic and Evolutionary
Computation Conference. 1280-1287.

Melvin E Conway. 1968. How do committees invent. Datamation 14, 4 (1968).
Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
2009. Introduction to algorithms. MIT press.

Russ Cox. 2007. Regular Expression Matching Can Be Simple And Fast (but is
slow in Java, Perl, PHP, Python, Ruby, ...).

Russ Cox. 2010. Regular Expression Matching in the Wild. https://swtch.com/
~rsc/regexp/regexp3.html

Scott Crosby. 2003. Denial of service through regular expressions. In USENIX
Security work in progress report.

Scott A Crosby and Dan S Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In USENIX Security.

James C. Davis. 2020. On the Impact and Defeat of Regular Expression Denial of
Service. Ph.D. Dissertation. Virginia Tech.

James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The Impact of Regular Expression Denial of Service (ReDoS) in Practice: an
Empirical Study at the Ecosystem Scale. In European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. 2019. Why aren’t regular expressions a lingua franca? an
empirical study on the re-use and portability of regular expressions. In The
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE).

James C Davis, Daniel Moyer, Ayaan M Kazerouni, and Dongyoon Lee. 2019. Test-
ing Regex Generalizability And Its Implications: A Large-Scale Many-Language
Measurement Study. In Automated Software Engineering (ASE).

James C. Davis, Francisco Servant, and Dongyoon Lee. 2021. Using Selective
Memoization to Defeat Regular Expression Denial of Service (ReDoS). In IEEE
Security and Privacy (S&P).

James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A Sense of Time
for JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In USENIX Security Symposium (USENIX Security).

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver.
In International conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 337-340.

Frangois Denis. 2001. Learning regular languages from simple positive examples.
Machine Learning 44, 1-2 (2001), 37-66.

Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.
2012. Enemy of the State: A State-Aware Black-Box Web Vulnerability Scanner.
In USENIX Security. 523-538. https://doi.org/10.1007/BF03325089

Serdar Dogan, Aysu Betin-Can, and Vahid Garousi. 2014. Web application
testing: A systematic literature review. Journal of Systems and Software 91, 1
(2014), 174-201. https://doi.org/10.1016/].jss.2014.01.010

Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani.
2020. Wrex: A Unified Programming-by-Example Interaction for Synthesizing
Readable Code for Data Scientists. In Computer-Human Interaction (CHI).
Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz. 2014.
KameleonFuzz: Evolutionary Fuzzing for Black-Box XSS Detection. In ACM
conference on Data and application security and privacy (CODASPY).

Aryaz Eghbali and Michael Pradel. 2020. No Strings Attached : An Empirical
Study of String-related Software Bugs. In Automated Software Engineering (ASE).
Stack Exchange. 2016. Outage Postmortem. http://stackstatus.net/post/
147710624694/outage-postmortem-july-20-2016.

Christopher Ferris and Joel Farrell. 2003. What are web services? Commun.
ACM 46, 6 (2003), 31.

Roy T Fielding and Richard N Taylor. 2000. Principled design of the modern
Web architecture. In International Conference on Software Engineering (ICSE).
Jeffrey EF Friedl. 2002. Mastering regular expressions. O’Reilly Media, Inc.
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design Patterns.
1995. Elements of reusable object-oriented software. Addison-Wesley Reading,
Massachusetts.

Patrice Godefroid, Bo Yuan Huang, and Marina Polishchuk. 2020. Intelligent
REST API data fuzzing. European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE) (2020).

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72

73

[74

[75

[76

[77

[78

[79

[80
[81

[82

[83

[84]

[85

[86

[87

[88

[89

[90

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

E. Mark Gold. 1978. Complexity of automaton identification from given data.
Information and Control 37,3 (1978), 302-320. https://doi.org/10.1016/S0019-
9958(78)90562-4

Jan Goyvaerts. 2016. A list of popular tools, utilities and programming languages
that provide support for regular expressions, and tips for using them. https:
//www.regular-expressions.info/tools.html

Graham-Cumming, John. [n.d.]. Details of the Cloudflare outage on July 2,
2019. https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/
details-of- the-cloudflare-outage-on-july-2-2019/.

Renata Hodovén, Zoltan Herczeg, and Akos Kiss. 2010. Regular expressions on
the web. In International Symposium on Web Systems Evolution (WSE).

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2006. Automata theory,
languages, and computation. Vol. 24. 19 pages.

John C. Knight and Nancy G. Leveson. [n.d.]. An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming. SE-12, 1 ([n. d.]),
96-109. https://doi.org/10.1109/TSE.1986.6312924

Eric Larson. 2018. Automatic Checking of Regular Expressions. In Source Code
Analysis and Manipulation (SCAM).

Eric Larson and Anna Kirk. 2016. Generating Evil Test Strings for Regular
Expressions. In International Conference on Software Testing, Verification and
Validation (ICST). https://doi.org/10.1109/ICST.2016.29

Nuo Li, Tao Xie, Maozhong Jin, and Chao Liu. 2010. Perturbation-based user-
input-validation testing of web applications. Journal of Systems and Software
83, 11 (2010), 2263-2274. https://doi.org/10.1016/j.js5.2010.07.007

Pengui Li, Yinxi Liu, and Wei Meng. 2021. Understanding and Detecting Perfor-
mance Bugs in Markdown Compilers. In IEEE/ACM International Conference on
Automated Software Engineering (ASE).

Xiaowei Li and Yuan Xue. 2014. A Survey on Server-Side Approaches to Securing
Web Applications. ACM Comput. Surv. 46, 4, Article 54 (March 2014), 29 pages.
https://doi.org/10.1145/2541315

Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and H. V. Jagadish. 2008. Regular expression learning for
information extraction. In Conference on Empirical Methods in Natural Language
Processing (EMNLP). 21-30. https://doi.org/10.3115/1613715.1613719

Yeting Li, Shuaimin Li, Zhiwu Xu, Jialun Cao, Zixuan Chen, Yun Hu, Haiming
Chen, and Shing-Chi Cheung. 2020. TransRegex: Multi-modal Regular Expres-
sion Synthesis by Generate-and-Repair. (2020). http://arxiv.org/abs/2012.15489
Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen, Tingjian Ge, Shing-Chi Cheung,
and Haoren Zhao. 2020. FlashRegex: Deducing Anti-ReDoS Regexes from
Examples. In Automated Software Engineering (ASE). 659-671.

Yinxi Liu, Mingxue Zhang, and Wei Meng. [n.d.]. Revealer: Detecting and
Exploiting Regular Expression Denial-of-Service Vulnerabilities. In 2021 IEEE
Symposium on Security and Privacy (SP) (2021-05). IEEE.

Michael Martin and Monica S Lam. 2008. Automatic Generation of XSS and SQL
Injection Attacks with Goal-Directed Model Checking. In USENIX Security.
Louis G Michael IV, James Donohue, James C Davis, Dongyoon Lee, and Fran-
cisco Servant. 2019. Regexes are Hard : Decision-making, Difficulties, and Risks
in Programming Regular Expressions. In IEEE/ACM International Conference on
Automated Software Engineering (ASE).

Mozilla. 2021. https://github.com/mozilla/OpenWPM

Microsoft Developer Network. 2021. HTML: HyperText Markup Language.
https://developer.mozilla.org/en-US/docs/Web/HTML

Microsoft Developer Network. 2021. SPA (Single-page application).
//developer.mozilla.org/en-US/docs/Glossary/SPA

Michael Nieles, Kelley Dempsey, and Victoria Yan Pillitteri. 2017. An Introduction
to Information Security. Number NIST SP 800-12r1. https://doi.org/10.6028/
NIST.SP.800-12r1

Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. 2004. Bypass testing of
web applications. Proceedings - International Symposium on Software Reliability
Engineering, ISSRE (2004), 187-197. https://doi.org/10.1109/ISSRE.2004.13
Andres Ojamaa and Karl Duuna. 2012. Assessing the security of Node.js platform.
In International Conference for Internet Technology and Secured Transactions.
Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. 2019. Automatic re-
pair of regular expressions. In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA). https://doi.org/10.1145/3360565

Theoolos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complex-
ity Vulnerabilities. In Computer and Communications Security (CCS).

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. Network and Distributed System
Security Symposium (NDS)) (2019). arXiv: 1806.01156.

Asiri Rathnayake and Hayo Thielecke. 2014. Static Analysis for Regular Expres-
sion Exponential Runtime via Substructural Logics. Technical Report.

Eric S. Raymond. 2000. The Cathedral and the Bazaar. Number July 1997. 1-35
pages. https://doi.org/10.1007/s12130-999-1026-0

https:

https://doi.org/10.1145/3385412.3385988
http://arxiv.org/abs/2010.12450
https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html
https://doi.org/10.1007/BF03325089
https://doi.org/10.1016/j.jss.2014.01.010
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://www.regular-expressions.info/tools.html
https://www.regular-expressions.info/tools.html
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://doi.org/10.1109/TSE.1986.6312924
https://doi.org/10.1109/ICST.2016.29
https://doi.org/10.1016/j.jss.2010.07.007
https://doi.org/10.1145/2541315
https://doi.org/10.3115/1613715.1613719
http://arxiv.org/abs/2012.15489
https://github.com/mozilla/OpenWPM
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://doi.org/10.6028/NIST.SP.800-12r1
https://doi.org/10.6028/NIST.SP.800-12r1
https://doi.org/10.1109/ISSRE.2004.13
https://doi.org/10.1145/3360565
https://doi.org/10.1007/s12130-999-1026-0

ICSE

[o1

[92

[93

(94

o
2

[96

[97

[98

[99

[100

[101

[102

[103

[104

[105]

[106

[107

[108

[109

[110

[111

[112

[113

[114

[115

’22, May 21-29, 2022, Pittsburgh, PA, USA

Thomas Rebele, Katerina Tzompanaki, and Fabian M. Suchanek. 2018. Adding
missing words to regular expressions. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining.

Kenneth Reitz. 2020. requests: Python HTTP for Humans. https://requests.
readthedocs.io

Olli Saarikivi, Margus Veanes, Tiki Wan, and Eric Xu. 2019. Symbolic regex
matcher. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS).

Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018.
ReScue: Crafting Regular Expression DoS Attacks. In Automated Software Engi-
neering (ASE).

Mor Sides, Anat Bremler-Barr, and Elisha Rosensweig. 2015. Yo-Yo Attack: vul-
nerability in auto-scaling mechanism. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. 103-104.

Gaurav Somani, Manoj Singh Gaur, Dheeraj Sanghi, Mauro Conti, Muttukr-
ishnan Rajarajan, and Rajkumar Buyya. 2017. Combating DDoS attacks in
the cloud: requirements, trends, and future directions. IEEE Cloud Computing
(2017).

Henry Spencer. 1994. A regular-expression matcher. In Software solutions in C.
35-71.

Eric Spishak, Werner Dietl, and Michael D. Ernst. 2012. A type system for
regular expressions. In Workshop on Formal Techniques for Java-like Programs.
Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study
of ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium (USENIX Security).

Satoshi Sugiyama and Yasuhiko Minamide. 2014. Checking Time Linearity of
Regular Expression Matching Based on Backtracking. Information and Media
Technologies 9, 3 (2014), 222-232.

Martin Sulzmann and Kenny Zhuo Ming Lu. 2017. Derivative-Based Diagnosis of
Regular Expression Ambiguity. International Journal of Foundations of Computer
Science 28, 5 (4 2017), 543-561. https://doi.org/10.1142/S0129054117400068
Ken Thompson. 1968. Regular Expression Search Algorithm. Communications
of the ACM (CACM) (1968).

Omer Tripp, Omri Weisman, and Lotem Guy. 2013. Finding your way in the
testing jungle: a learning approach to web security testing. In International
Symposium on Software Testing and Analysis (ISSTA). https://doi.org/10.1145/
2483760.2483776

Lenka Turoriova, Lukas Holik, Ondiej Lengal, Olli Saarikivi, Margus Veanes, and
Tomas Vojnar. 2020. Regex matching with counting-set automata. Proceedings
of the ACM on Programming Languages 4, OOPSLA (2020), 1-30.

Lenka Turonova, Lukas Holik, Ondfej Lengal, Olli Saarikivi, Margus Veanes,
and Tomas Vojnar. 2020. Regex Matching with Counting-Set Automata. In
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).
Brink van der Merwe, Jacobie Mouton, Steyn van Litsenborgh, and Martin
Berglund. 2021. Memoized Regular Expressions. In International Conference on
Implementation and Application of Automata. Springer, 39-52.

W3C. 2017. Accessible Rich Internet Applications (WAI-ARIA) 1.1. https:
//www.w3.0org/TR/wai-aria

Peipei Wang, Chris Brown, Jamie A Jennings, and Kathryn T Stolee. 2020. An
Empirical Study on Regular Expression Bugs. In Mining Software Repositories
(MSR).

Peipei Wang and Kathryn T Stolee. 2018. How well are regular expressions
tested in the wild?. In Foundations of Software Engineering (FSE).

Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu
Hu, and Heqing Zhu. 2019. Hyperscan: A Fast Multi-pattern Regex Matcher for
Modern CPUs. In Networked Systems Design and Implementation (NSDI).
Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce Watson.
2016. Analyzing matching time behavior of backtracking regular expression
matchers by using ambiguity of NFA. In International Conference on Implemen-
tation and Application of Automata. Springer, 322-334.

Erik Wittern, Alan Cha, James C. Davis, Guillaume Baudart, and Louis Mandel.
2019. An Empirical Study of GraphQL Schemas. In International Conference on
Service-Oriented Computing (ICSOC).

Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the
dynamics of the JavaScript package ecosystem. In International Conference on
Mining Software Repositories (MSR). https://doi.org/10.1145/2901739.2901743
Valentin Wiistholz, Oswaldo Olivo, Marijn J H Heule, and Isil Dillig. 2017. Static
Detection of DoS Vulnerabilities in Programs that use Regular Expressions.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS).

Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. 2020.
Interactive Program Synthesis by Augmented Examples. In ACM Symposium on
User Interface Software and Technology (UIST).

Efe Barlas, Xin Du, and James C. Davis

https://requests.readthedocs.io
https://requests.readthedocs.io
https://doi.org/10.1142/S0129054117400068
https://doi.org/10.1145/2483760.2483776
https://doi.org/10.1145/2483760.2483776
https://www.w3.org/TR/wai-aria
https://www.w3.org/TR/wai-aria
https://doi.org/10.1145/2901739.2901743

	Abstract
	1 Introduction
	2 Background
	2.1 Web Services and Web Interfaces
	2.2 Regexes and Regex-based Denial of Service
	2.3 Prior Empirical Studies on ReDoS

	3 Attack and Research Questions
	4 Methodology
	4.1 Web Service Selection
	4.2 RQ1: Input Sanitization Regexes
	4.3 RQ2: Super-Linear Sanitization Regexes
	4.4 RQ3: Use of Unsafe Regex Engine
	4.5 RQ4: ReDoS Mitigation
	4.6 Automating RQ1–RQ3

	5 Results and Analysis
	5.1 RQ1: Published Sanitization Information
	5.2 RQ2: Super-Linear Regexes
	5.3 RQ3: Live Unsafe Regex Engines
	5.4 RQ4: ReDoS Mitigation

	6 Discussion
	7 Related Work
	8 Threats to Validity
	9 Future Work
	10 Conclusions
	References

