
Directed Acyclic Graph-based Neural Networks for Tunable
Low-Power Computer Vision

Abhinav Goel, Caleb Tung, Nick Eliopoulos, Xiao Hu, George K. Thiruvathukal∗, James C. Davis,
Yung-Hsiang Lu

Purdue University, ∗Loyola University Chicago
USA

ABSTRACT
Processing visual data onmobile devices has many applications, e.g.,
emergency response and tracking. State-of-the-art computer vision
techniques rely on large Deep Neural Networks (DNNs) that are
usually too power-hungry to be deployed on resource-constrained
edge devices. Many techniques improve DNN efficiency of DNNs
by compromising accuracy. However, the accuracy and efficiency
of these techniques cannot be adapted for diverse edge applications
with different hardware constraints and accuracy requirements.
This paper demonstrates that a recent, efficient tree-based DNN
architecture, called the hierarchical DNN, can be converted into a
Directed Acyclic Graph-based (DAG) architecture to provide tun-
able accuracy-efficiency tradeoff options. We propose a systematic
method that identifies the connections that must be added to con-
vert the tree to a DAG to improve accuracy.We conduct experiments
on popular edge devices and show that increasing the connectivity
of the DAG improves the accuracy to within 1% of the existing high
accuracy techniques. Our approach requires 93% less memory, 43%
less energy, and 49% fewer operations than the high accuracy tech-
niques, thus providing more accuracy-efficiency configurations.

CCS CONCEPTS
• Computing methodologies → Neural networks; •Hardware
→ Power and energy;

ACM Reference format:
AbhinavGoel, Caleb Tung, Nick Eliopoulos, XiaoHu, George K. Thiruvathukal∗,
James C. Davis, Yung-Hsiang Lu. 2022. Directed Acyclic Graph-based Neu-
ral Networks for Tunable Low-Power Computer Vision . In Proceedings of
ACM/IEEE International Symposium on Low Power Electronics and Design,
Boston, MA, USA, August 1–3, 2022 (ISLPED ’22), 6 pages.
https://doi.org/10.1145/3531437.3539723

1 INTRODUCTION
Deep Neural Networks (DNNs) are the state-of-the-art techniques
to process visual data [8, 7]. In many applications, visual data needs
to be processed on edge devices due to latency, privacy, or network
bandwidth constraints. However, the significant computational
requirements of DNNs limit their deployability on most resource-
constrained edge devices [10]. In such scenarios, low-power DNN
inference techniques are used to improve efficiency [19].

Most existing low-power techniques optimize DNNs to increase
efficiency at the expense of accuracy [10, 5]. In some edge appli-
cations, e.g., biometric authentication, the best possible accuracy
is required, whereas in applications like forest surveillance, long
battery life is essential. However, with the existing techniques,
the compromise between accuracy and efficiency cannot be tuned,

(a) (b)

Figure 1: Toy example highlighting the contributions of this
work. (a) Existing hierarchical DNNs: multiple small DNNs
in the form of a tree. DNNs along a single root-leaf path are
used to process an image. Amisclassification at a node cannot
be corrected by a subsequent node [5, 4, 13]. (b) Proposed
method: Additional connections (red dotted lines) to build a
Directed Acyclic Graph (DAG). With multiple root-leaf paths,
a misclassification can be corrected to improve accuracy.

thereby resulting in DNNs that are either too inaccurate or too
inefficient for the target application [17, 1].

To address the lack of flexibility of the existing low-power tech-
niques, some existing studies use gating networks to enable or
disable certain DNN layers [17, 1]. The conditional inference allows
these techniques to decrease the overhead of existing large DNNs.
These techniques cannot be applied to improve the accuracy of
existing low-power DNNs.

In this work, we present methods to provide varying accuracy-
efficiency tradeoff configurations of a recent low-power DNN ar-
chitecture, known as the hierarchical DNN [5, 6]. The hierarchical
DNN architecture (cf. Section 2.1.1) is depicted in Figure 1(a); this
technique employs a divide-and-conquer strategy to improve effi-
ciency. Each input image follows a single root-leaf path. The main
reason for the accuracy loss in hierarchical DNNs is because a
mistake by a DNN (puts image into a wrong branch) cannot be cor-
rected by its descendants. For example, in Figure 1(a), if an image
of a plane gets misclassified to Cluster 1 instead of Cluster 2, there
is no way to direct the image to the correct output.

This paper proposes a method that adds connections between
nodes of a hierarchical DNN to convert the tree into a Directed
Acyclic Graph (DAG). Because there are multiple paths from the
root to the leaves, the DAG-based methods improve the accuracy.
Figure 1(b) highlights our approach. The red dotted lines are the
new connections added to convert the tree into a DAG. For example,
planes and birds may look similar, but in Figure 1(a), if an image of
a plane is misclassified by the Root into Cluster 1, it cannot later be
corrected, whereas in Figure 1(b), it can. Adding new connections,
however, increases the memory requirement of the hierarchical

https://doi.org/10.1145/3531437.3539723

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Goel et al.

DNN. Thus, the proposed method identifies the connections that
should be added to provide the required improvement in accuracy
with only a small increase in memory. By varying the connectivity
of the DAG this method can tune the accuracy-efficiency tradeoff
provided by hierarchical DNNs.

To evaluate this approach, our experiments compare the image
classification accuracy and efficiency of the different techniques.
This paper considers different computer vision datasets with vary-
ing input resolutions and tree structures to show that this method
can vary the accuracy-efficiency tradeoff for different workload
types. We also deploy the models using popular embedded devices,
Raspberry Pi 4B and NVIDIA Jetson Nano, to compare the energy
consumption and latency. Using the proposed approach, we observe
an ∼3% improvement in accuracy when compared with hierarchical
DNNs. We find that, even with the extra connections, the memory,
FLOPs, energy, and latency are still 93%, 49%, 43%, and 43% lower
than the techniques with state-of-the-art accuracy, respectively.
Thus, this method bridges the accuracy gap between hierarchical
DNNs and the state-of-the-art DNNs.

2 BACKGROUND AND RELATEDWORK
2.1 Efficient DNN Inference

2.1.1 Hierarchical Deep Neural Networks. The hierarchical DNN
is a recently proposed tree-based DNN architecture that compro-
mises accuracy for efficiency [5, 4, 13, 12]. As seen in Figure 1(a),
hierarchical DNNs use a tree of small DNNs, where each DNN
performs an intermediate classification between clusters of similar
categories. Hierarchical DNNs are ∼50% more efficient than con-
ventional DNNs because each input gets processed by a subset of
the small DNNs.

Our prior work finds that although hierarchical DNNs are ef-
ficient, they are less accurate than conventional DNNs. They ac-
curacy decreases by ∼4% [5] because a misclassification at a node
puts the input on an incorrect branch that cannot be corrected by
the offsprings. Thus, the errors at each level of the tree compound.

2.1.2 Other DNN Optimizations. There are other DNN optimiza-
tion techniques that increase DNN efficiency [19, 18, 3]. Quantiza-
tion and pruning [10] reduce the memory requirement of DNNs.
MobileNet [14] is a DNN micro-architecture that uses bottleneck
layers to reduce the number of parameters.

In these efficient DNN inference techniques, the compromise
between accuracy and efficiency is fixed and cannot be tuned. We
propose a method to add new connections to a hierarchical DNNs
to build Directed Acyclic Graph-based DNNs. By varying the num-
ber of connections, we can tune the accuracy and efficiency of
hierarchical DNNs.
2.2 Adaptive DNNWorkloads
Some techniques re-configure the DNN structure based on the
input. In these techniques, different DNN layers and connections
are deactivated to vary the workload. The Slimmable Network [22]
is an example of one such technique; it adjusts the DNN’s width
by using a switchable batch normalization layer. GaterNet [1] is
another technique that uses a gating network to deactivate certain
DNN connections. Throttleable Neural Networks [17] use a context-
aware reinforcement learning controller that can manipulate the
DNN workload. These techniques are effective in reducing the

DNN workload while also lowering the accuracy. They cannot be
used to increase the accuracy of an existing low-power DNN, e.g.,
hierarchical DNN. Our method focuses on increasing the accuracy
of existing hierarchical DNNs.

Neural Architecture Search (NAS) uses a cost function and op-
timally tunes the DNN performance [21]. There are two ways to
use NAS to tune the accuracy and efficiency of hierarchical DNNs:
(1) convert the tree to a DAG by adding connections, and (2) build
larger DNNs for each node of the tree. This paper focuses on the
first technique, and relegates the latter to future work.

2.3 Our Contributions
(1) This is the first method to improve the accuracy of hierarchical
DNNs by converting the tree into a directed acyclic graph. (2) We
develop methods to select the connections to add to a hierarchical
DNN that results in the desired accuracy improvement with low
memory overhead. Our connection selection method does not need
to evaluate all possible combinations of connections, thus making
it feasible for large hierarchies. (3) Experiments show that our
method outperforms existing state-of-the-art techniques in terms
of memory, number of operations, and energy.

3 DIRECTED ACYCLIC GRAPH-BASED
NEURAL NETWORK

This section describes our proposed method to convert hierarchical
DNNs into Directed Acyclic Graphs (DAG).We describe our method
for identifying the new connections that should be added to existing
hierarchical DNNs for accuracy improvements with low overhead.

The tree structure is the main reason for the accuracy losses ob-
served in existing hierarchical DNNs [5]. The tree structure allows
only a single path from the root to every leaf. Thus, a misclassifica-
tion made at a node cannot be corrected by its subsequent offspring
nodes. Even with large DNNs at every node, no known solution
achieves 100% accuracy. Therefore, the test error gets compounded
deeper in the tree. Figure 2 shows a part of the tree constructed
for the EMNIST handwriting dataset, along with the percentage
(red text) of (a) lower-case n images and (b) upper-case R images,
that are classified onto different branches. When classifying images
of lower-case n, we see that 13.7% of images are classified as the
number “9”. Similarly, when classifying upper-case R images, 11.5%
of images are misclassified into Cluster 1 instead of Cluster 2.

By converting the tree into a DAG, we create multiple paths
from the root to the leaves, as depicted with red dotted lines in
Figure 2(c,d). Here, mislassifications can be corrected by subsequent
nodes to improve accuracy. For example, using the connection
depicted in Figure 2(d), the 11.5% of upper-case R images that are
classified into Cluster 1, instead of Cluster 2, can still reach the
correct output.

In this section, we present a method to find connections that
improve accuracy with only a small overhead. We first highlight
the impact of adding new connections, to the overall accuracy and
memory requirement of the hierarchical DNN. Then we present a
method that decides which connections should be added to the tree
to achieve a required accuracy improvement with low overhead.

Directed Acyclic Graph-based Neural Networks for Tunable Low-Power Computer VisionISLPED ’22, August 1–3, 2022, Boston, MA, USA

(a) (b) (c) (d)

Figure 2: Portion of the hierarchical DNN constructed (using methods in Goel et al. [5]) for the EMNIST dataset. The percentages
of (a) lower-case n and (b) upper-case R images, that are misclassified are depicted in red font. (c) Connections added to correct
misclassifications of (c) lower-case n at Cluster 4 (leaf connection) and (d) upper-case R at the Root (cluster connection).

3.1 Impact of New Connections on Accuracy
and Memory

To understand the overhead associated with adding different con-
nections, we first analyze the types of connections that can be
added to a tree. There are two types of connections, depending
on the branch where images of an object category are misclassi-
fied. (1) Leaf connections, added when images are misclassified as
another leaf in the tree. For example, in Figure 2(a), lower-case n
is often misclassified as the number “9” (a leaf of the tree). In this
case, a new cluster needs to be added to the tree, e.g., Cluster 5 in
Figure 2(c). (2) Cluster connections, added when images are misclas-
sified as another cluster. For example, in Figure 2(b), upper-case R
is misclassified into Cluster 1. Here, new clusters are not required,
e.g., the connection between Cluster 1 and R in Figure 2(d).

Adding new connections improves the accuracy of the hierar-
chical DNN. The accuracy improvement for each connection can
be estimated by analyzing the misclassifications of the object cat-
egories. The misclassification analysis, depicted in Figure 2(a,b),
identifies the frequency with which images of the different object
categories are classified onto the different branches of the tree. For
example, in Figure 2(b), 11.5% of upper-case R images are misclassi-
fied into Cluster 1. A connection between Cluster 1 and upper-case
R enables a Maximum Accuracy (𝑀𝐴) increase of 11.5% on upper-
case R images. Because upper-case R images are 2.12% of the entire
dataset, the maximum accuracy increase is 𝑀𝐴 = 2.12%×11.5% =

0.24%. The estimated accuracy improvement also depends on the
DNNAccuracy (𝐷𝐴) of the node where the new connection is being
added. This is because not all images will be classified correctly onto
the new connection. For example, if the DNN at Cluster 1 classifies
90% of images correctly (𝐷𝐴 = 90%), then we estimate the accuracy

Table 1: The average DNN model sizes (in MB) required in a
hierarchical DNN as the fan-out changes. When constructing
the hierarchical DNN, we vary the fan-out to find the rela-
tionship between the fan-out and DNNmodel size for a given
dataset. As the fan-out increases, larger models are needed
to maintain the classification accuracy.

Fan-out 2 4 8 16 32

C-256 0.20 0.25 0.34 0.45 3.00
EMNIST 0.07 0.12 0.16 0.21 1.50

improvement obtained by adding a connection between Cluster
1 and upper-case R as 0.24%×90% = 0.225%. Thus, the estimated
accuracy improvement with each connection is𝑀𝐴 × 𝐷𝐴.

Each connection offers a different accuracy improvement. Simi-
larly, as a new connection either adds a new cluster (leaf connection)
or increases the fan-out (cluster connection), the connections in-
crease the overall memory requirement by different amounts. When
a cluster is added, the overall memory requirement increases by
the new DNN’s model size. When the fan-out of a cluster increases,
the associated DNN needs to process and distinguish more images,
thus a larger DNN is required to maintain the same accuracy.

To estimate the increase in memory requirement, we calculate
the average size of DNNs constructed with different fan-outs. To
vary the fan-out, we use hierarchical K-Means Clustering [20] with
different numbers of clusters. We follow the techniques used in
prior studies and performK-Means Clustering on the feature vectors
of images extracted from a pre-trained DNN. The average model
sizes for different fan-outs obtained with the Caltech-256 (C-256)
and EMNIST datasets are presented in Table 1. For example, for
the Caltech-256 dataset, as the fan-out increases from 16 to 32,
the average DNN model size increases from 450 KB to 3 MB. This
super-linear growth follows trends in DNNs: accurately classifying
between many types of inputs requires DNNs with many layers
and channels [7].

Using the information in Table 1, we estimate the memory costs
of the different connections. For a leaf connection, the memory
requirement of the new DNN is estimated by using the fan-out
of the new cluster. When adding a cluster connection, the memory
requirement increase is estimated using the percentage by which
the average memory requirement increases with the new fan-out.

The accuracy improvement and memory requirement increase
also depend on the content of images and the position of DNN
within the hierarchy. To accelerate training, the estimates presented
in this section only consider the number of incorrectly classified
images and the fan-out. Our experiments show that these estimates
are useful for comparing candidate connections when building
DAG-based DNNs with varying accuracy-efficiency tradeoffs.

3.2 Selecting the Connections to Add
Adding connections to a hierarchical DNN converts it to a Directed
Acyclic Graph and improves accuracy. However, as discussed in the

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Goel et al.

Table 2: Mean Squared Error (MSE) between the memory requirement obtained with the different techniques when compared
with the optimal solution. Exhaustive search obtains the optimal solution by satisfying the constraint in eqt. (1), and thus
the MSE on the memory requirement with exhaustive search is zero. We show the MSE with our proposed improved greedy
search method for different values of 𝑛, where |𝐶 | is the total number of candidate connections. We also compare the number
of connection combinations that need to be evaluated with each technique.

Technique Exhaustive Greedy Proposed Improved Greedy
𝑛 = 0.2×|𝐶 | 𝑛 = 0.4×|𝐶 | 𝑛 = 0.6×|𝐶 | 𝑛 = 0.8×|𝐶 | 𝑛 = |𝐶 |

Mean Squared Error 0.000 3.523 5.710 0.041 0.026 0.006 0.000
Evaluations 3×107 625 32 1024 3×104 1×106 3×107

previous section, adding connections also increases the memory
requirement and consequently reduces the efficiency of hierarchical
DNNs. In this section, we describe and compare three methods to
decide which subset of connections should be added for a given
accuracy requirement or memory constraint: (1) exhaustive search;
(2) greedy selection; and (3) our proposed improved greedy method.

For a tree with 𝐾 nodes, there are 𝐾 × (𝐾 − 1) possible con-
nections between nodes. Candidate connections are the subset of
connections that offer a significant accuracy improvement. Given
all possible candidate connections 𝐶 , and the target accuracy re-
quirement increase Δ𝑎𝑡 , exhaustive search finds the optimal set of
connections 𝐸 ⊂ 𝐶 to add to the hierarchical DNN. The constraints
for the exhaustive search is presented in eqt. (1). Here, 𝑎𝑖 is the
estimated accuracy improvement and𝑚𝑖 is the estimated memory
increase obtained by adding connection 𝑒𝑖 ∈ 𝐸.

Minimize:
|𝐸 |∑︁
𝑖=0

𝑚𝑖 , subject to:
|𝐸 |∑︁
𝑖=0

𝑎𝑖 ≥ Δ𝑎𝑡 (1)

Exhaustive search always finds the set of connections 𝐸 that ob-
tains the required Δ𝑎𝑡 accuracy improvement with the least mem-
ory overhead. The constraint can also be modified to find the DAG
with the maximum accuracy, given a memory limit, Δ𝑚𝑡 . However,
with either optimization constraint, there are 2 |𝐶 | possible combina-
tions of connections that need to be evaluated. Thus, the exhaustive
search is feasible only for small hierarchies where the number of
candidate connections is also small. For the Caltech-256 dataset,
the tree structure has 13 nodes, and 25 candidate connections. Be-
cause of the small number of candidate connections, we use this
dataset in Table 2 to compare the relative memory overhead and
the computation costs (# Evaluations) associated with the different
techniques.

The greedy selection assigns a score, 𝑠 , to each candidate con-
nection and sorts the connections based on this score. This method
iteratively selects the connections with the highest score until the
target accuracy increase Δ𝑎𝑡 (or target memory requirement Δ𝑚𝑡)
is reached. Prior studies on greedy techniques suggest that the score
should be the ratio of the value of a connection to its associated
cost [2]. Thus, the score assigned to each candidate connection
is given by 𝑎𝑖/𝑚𝑖 . As mentioned in Section 3.1, the estimated ac-
curacy increase (𝑎𝑖) is given by the product of the connection’s
DNN accuracy and the maximum accuracy increase; the memory
requirement (𝑚𝑖) is obtained using the hierarchical DNN charac-
terization in Table 1. The greedy selection method reduces the
computational costs associated with selecting connections to add

Figure 3: Portion of the Directed Acyclic Graph constructed
for the Caltech-256 dataset with our proposed method. The
red dotted lines depict the new connections. The darker clus-
ters are new clusters added for the leaf connections.

to the hierarchical DNN, but may result in a model with a larger
memory requirement. This can be understood with the following
example, if a 0.50% accuracy improvement is needed, a connection
with a 0.90% accuracy improvement and 900 KB overhead will be
selected before a connection with 0.50% accuracy improvement and
550 KB memory overhead. Table 2 shows that the greedy technique
has lower computation costs to select connections that meet the
accuracy requirement, but generally results in larger models.

Finally, we propose an improved greedy method that uses the
connection ranking from greedy selection to reduce the overhead
of exhaustive search. Here, the greedy selection is first used to
rank the candidate connections. Instead of performing exhaustive
search on every single candidate connection, our method performs
exhaustive search on the 𝑛-highest ranked connections, where 𝑛
is a hyper-parameter. By only searching for subsets of a set 𝑁 ,
where |𝑁 | = 𝑛 and 𝑁 ⊂ 𝐶 , the computation cost decreases. As
seen in Table 2, when we consider the top ∼40% connections, the
improved greedy approach has results similar to exhaustive search,
while requiring fewer evaluations. Figure 3 shows a portion of the
DAG constructed for the Caltech-256 dataset using our method.
A combination of leaf (e.g., Cluster 5 and screen) and cluster (e.g.,
Cluster 6 and frisbee) connections are added.

4 EXPERIMENTS AND RESULTS
This section shows that a PyTorch implementation of the proposed
method improves the accuracy of existing hierarchical DNNs. Our
method offers multiple accuracy-efficiency tradeoff options.

4.1 Datasets Used
We use three image datasets to evaluate our method: Extended
MNIST (EMNIST), Caltech-256, and Tiny-ImageNet. We select these
datasets because they have varied tree structures and input reso-
lutions. The tree structure contains 13 nodes for Caltech-256, 14

Directed Acyclic Graph-based Neural Networks for Tunable Low-Power Computer VisionISLPED ’22, August 1–3, 2022, Boston, MA, USA

nodes for EMNIST, and 31 nodes for Tiny-ImageNet. We use a sub-
set of Caltech-256 to be consistent with prior work on hierarchical
DNNs [5, 9]. EMNIST contains 28×28 gray scale images of Eng-
lish characters and numbers. Caltech-256 and Tiny-ImageNet have
color images of size 224×224 and 64×64, respectively.

4.2 Experimental Setup
4.2.1 Metrics. The accuracy is the percentage of the images

classified correctly from the test set. To compare the efficiency,
we report the memory requirement (model size) and numbers of
operations (FLOPs) per image. These are found using the torchinfo
library. In the baseline hierarchical DNN and our proposed method,
we report average memory requirement and FLOPs over all test set
images, because the root-leaf paths have varying lengths. We use a
Yokogawa WT310E Power Meter to measure the energy consump-
tion of the techniques on a Raspberry Pi 4B and NVIDIA Jetson
Nano.

4.2.2 Directed Acyclic Graph-based Model Construction. We use
the methods described in Goel et al. [5] to construct and train the
efficient baseline hierarchical DNN. Our technique does not change
the DNN architecture used at each node of the tree (as described in
Section 2). During the construction of the hierarchical DNN,we vary
the fan-out and observe the changes to the model size and accuracy
of the DNNs at each node. This is used to collect the information

Table 3: Comparison of different variants of the proposed
DAG-based DNN (DAG-Net) with the hierarchical DNN base-
line (HDNN) [5] and state-of-the-art techniques.

Dataset Technique Accuracy
(%)

Model
Size (MB)

FLOPs
(×106)

EMNIST

HDNN [5] 91.20 0.25 2.13
DAG-Net 1 91.30 0.27 2.14
DAG-Net 2 91.70 0.28 2.17
DAG-Net 3 92.00 0.29 2.79
DAG-Net 4 92.14 0.32 3.21
DAG-Net 5 92.15 0.37 3.45
VGG-5 [16] 92.59 15.00 161.24
ResNet9 [7] 92.00 26.00 636.71

C-256

HDNN [5] 88.90 0.58 147.90
DAG-Net 1 90.35 0.59 148.50
DAG-Net 2 90.65 0.60 148.83
DAG-Net 3 91.10 0.61 149.19
DAG-Net 4 91.80 0.62 149.46
DAG-Net 5 92.00 0.64 149.90
DAG-Net 6 92.05 0.68 151.00
MobileNetV2 [14] 93.30 10.00 300.00

Tiny
ImageNet

HDNN [5] 47.19 0.47 11.60
DAG-Net 1 48.30 0.48 11.69
DAG-Net 2 48.90 0.49 11.74
DAG-Net 3 49.41 0.51 11.91
DAG-Net 4 49.90 0.53 12.12
DAG-Net 5 50.01 0.56 12.46
ResNet50 [15] 48.77 95.67 334.11
MobileNetV2 [14] 52.00 9.95 24.74

in Table 1 for the evaluation of the candidate connections. The
accuracy improvement and memory overhead estimates are used
to evaluate the connections to reduce the DAG construction time.
We use the improved greedy approach (Section 3.2) to select the
connections that create the DAG.

With this approach, we first use experiments to decide the num-
ber of candidate connections (𝑛) to evaluate. In most cases, we find
that 𝑛 = 40%× |𝐶 | is appropriate for finding connections. For every
new connection added, we use the PyTorch implementation of cate-
gorical cross entropy and back-propagation. Only the DNNs where
new connections are added and their corresponding sub-trees are
re-trained. The other DNNs of the tree are unchanged. We report
results of DAG-based DNNs with different numbers of connections
in Tables 3 and 4.

4.2.3 Comparison with state-of-the-art. To show that different
configurations of the Direct Acyclic Graph-based method can tune
the accuracy and efficiency of low-power computer vision, we com-
pare with representative low-power computer vision techniques
that are focused on: (1) high efficiency—hierarchical DNN [5]; and
(2) high accuracy—MobileNetV2 [14], VGG-5 [16], and ResNet [7,
15]. In particular, we compare with: VGG-5 and ResNet9 on the
EMNIST dataset; MobileNetV2 [14] on the subset of Caltech-256;
MobileNetV2 [14] and ResNet50 (as described in Jeevan et al. [15])
on the Tiny-ImageNet dataset. To maintain a fair comparison, we
use the same dataset augmentation used in prior studies [15].

4.2.4 Evaluation of Improved Greedy Technique. We create a
DAG constructed by adding connections at random to show the
value of our method to evaluate the candidate connections. The
reported results are based on an average of five runs. For each run,
different connections, selected at random, are added to the DAG.

4.3 Results
Table 3 compares the accuracy, model size, and number of oper-
ations (FLOPs) of the different techniques. We present results of
configurations (with increasing numbers of connections) of our
proposed Direct Acyclic Graph-based method (denoted “DAG-Net
𝑖” in Table 3) till the accuracy improvement saturates. When using
the Caltech-256 dataset, different configurations of our method
achieve classification accuracy in the range of 90.35% – 92.05%
with 0.59MB – 0.68MB memory requirement per image. The total
memory requirement (sum of all DNN model sizes) of our DAG-
based method ranges between 2.2MB and 5.8MB for the Caltech-
256 dataset; still considerably smaller than the 10MB required by
MobileNetV2. By having different numbers of connections in the
Direct Acyclic Graph-based method, we also vary the number of
operations performed during inference. In the EMNIST dataset, the
average numbers of operations per image performed by our method
lie in the range 2.14×106 – 3.45×106. These results show that our
proposed method provides a tunable accuracy-efficiency tradeoff
between hierarchical DNNs and the more accurate methods.

Table 4 shows the processing time and energy consumption of the
different techniques on two commonly used embedded devices. The
results are reported after averaging over all images in the testing
set. When compared with MobileNetV2 on the Raspberry Pi 4B, our
technique requires 43% (1 − 7.52

13.36) less energy and processing time.
The processing time of EMNIST dataset is higher on the NVIDIA

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Goel et al.

Table 4: Processing time (sec/img) and energy consumption
(J/img) comparison on two embedded devices.

Dataset Technique

Raspberry
Pi 4B

NVIDIA Jetson
Nano

Latency Energy Latency Energy

EMNIST

HDNN 0.053 0.28 0.320 2.46
DAG-Net 1 0.057 0.30 0.320 2.47
DAG-Net 3 0.062 0.32 0.322 2.49
DAG-Net 5 0.066 0.35 0.322 2.49
VGG-5 0.431 2.27 4.041 31.15

Tiny
ImageNet

HDNN 1.299 6.79 0.341 2.63
DAG-Net 1 1.315 6.92 0.347 2.67
DAG-Net 3 1.362 7.20 0.350 2.69
DAG-Net 5 1.425 7.52 0.355 2.72
MobileNetV2 2.501 13.36 2.007 15.43

Figure 4: Evaluation of the proposed improved greedy ap-
proach to select connections to convert a tree into a DAG.
The proposed method consistently achieves higher accuracy
than a method that selects connections at random, on the
Caltech-256 dataset. The errors bars indicate the maximum
andminimum accuracy values obtained in the random trials.

Jetson Nano because too few GPU cores are used when the input
resolution is small, thus leading to high overhead [11]. Due to
space constraints, we only present results for the EMNIST and Tiny
ImageNet datasets. We observe similar results with Caltech-256.

We evaluate the effectiveness of our improved greedy method
used to convert a hierarchical DNN to a DAG, by comparing it
with a method that selects connections at random. Figure 4 shows
the classification accuracy obtained with the two techniques for
varying memory constraints. As the memory capacity increases,
our proposed method is able to improve accuracy. The random
selection method does not always select connections that result in
substantial increases of accuracy.

5 CONCLUSIONS
Existing hierarchical DNNs use a divide-and-conquer approach to
improve the efficiency of computer vision at the expense of accu-
racy. In this paper, we present a novel method to convert existing
hierarchical DNNs to Directed Acylic Graphs (DAGs) with tunable

accuracy-efficiency tradeoff configurations. Our approach identifies
the connections to add between nodes of a hierarchical DNN, ob-
taining the required accuracy improvement with a small overhead.
This paper is among the first to develop a method that estimates
the accuracy improvement and the memory cost of each possible
additional connection in a hierarchical DNN. We then develop an
improved greedy approach that finds the combination of connec-
tions that varies the accuracy-efficiency tradeoff. This technique
does not need to evaluate every possible combination of connec-
tions, allowing our method to scale to large hierarchical DNNs.
After evaluating on different datasets, we show that our method
successfully bridges the accuracy gap between existing hierarchical
DNNs and the more accurate DNNs. Our experiments on two varied
embedded devices, Raspberry Pi 4B and NVIDIA Jetson Nano, also
confirm that the proposed method is more energy-efficient than
the existing techniques with state-of-the-art accuracy.

ACKNOWLEDGEMENT
This project was supported in part by NSF CNS-1925713, NSF OAC-
2107230, NSF OAC-2104709, and NSF OAC-2107020. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the sponsors.

REFERENCES
[1] Z. Chen et al. 2019. You look twice: gaternet for dynamic filter selection in

cnns. In IEEE CVPR.
[2] G. B. Dantzig. 1957. Discrete-variable extremum problems. In Operations Re-

search.
[3] A. Goel et al. 2020. A survey of methods for low-power deep learning and

computer vision. In IEEE WF-IoT.
[4] A. Goel et al. 2020. Low-power object counting with hierarchical neural net-

works. In ACM ISLPED.
[5] A. Goel et al. 2020. Modular neural networks for low-power image classification

on embedded devices. In ACM TODAES.
[6] D. Roy et al. 2020. Tree-CNN: A Hierarchical Deep Convolutional Neural

Network for Incremental Learning. In Neural Networks.
[7] K. He et al. 2016. Deep Residual Learning for Image Recognition. In IEEE CVPR,

770–778.
[8] K. Simonyan et al. 2014. Very Deep Convolutional Networks for Large-Scale

Image Recognition. arXiv:1409.1556 [cs], (Sept. 2014).
[9] P. Panda et al. 2017. FALCON: Feature Driven Selective Classification for

Energy-Efficient Image Recognition. In TCAD.
[10] S. Han et al. 2015. Deep Compression: Compressing Deep Neural Networks

with Pruning, Trained Quantization and Huffman Coding. In arXiv:1510.00149.
[11] B. Fu et al. 2017. Parallel video processing using embedded computers. In IEEE

GlobalSIP.
[12] A. Goel et al. 2022. Efficient computer vision on edge devices with pipeline-

parallel hierarchical neural networks. In ASP-DAC.
[13] A. Goel et al. 2021. Low-power multi-camera object re-identification using

hierarchical neural networks. In IEEE/ACM ISLPED.
[14] A. Howard et al. 2019. Searching for mobilenetv3. In IEEE ICCV.
[15] P. Jeevan et al. 2022. Wavemix: resource-efficient token mixing for images. In

arXiv 2203.03689.
[16] HM Kabir et al. 2020. Spinalnet: deep neural network with gradual input. In

arXiv 2007.03347.
[17] H. Liu et al. [n. d.] 2020 dynamically throttleable neural networks (TNN). In

arXiv 2011.02836.
[18] D. Marculescu. 2021. When climate meets machine learning: edge to cloud ml

energy efficiency. In IEEE/ACM ISLPED.
[19] G. K. Thiruvathukal et al. 2022. Low-Power Computer Vision: Improve the

Efficiency of Artificial Intelligence. In CRC Press.
[20] A. Vedaldi et al. 2010. Vlfeat: an open and portable library of computer vision

algorithms. In ACM MM.
[21] B. Wu et al. 2019. Fbnet: hardware-aware efficient convnet design via differen-

tiable neural architecture search. In IEEE CVPR.
[22] J. Yu et al. 2019. Slimmable neural networks. In ICLR.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Efficient DNN Inference
	2.2 Adaptive DNN Workloads
	2.3 Our Contributions

	3 Directed Acyclic Graph-based Neural Network
	3.1 Impact of New Connections on Accuracy and Memory
	3.2 Selecting the Connections to Add

	4 Experiments and Results
	4.1 Datasets Used
	4.2 Experimental Setup
	4.3 Results

	5 Conclusions

