
Efficient Computer Vision on Edge Devices with
Pipeline-Parallel Hierarchical Neural Networks

Abhinav Goel, Caleb Tung, Xiao Hu, George K. Thiruvathukal∗, James C. Davis, Yung-Hsiang Lu
Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN, USA

∗Loyola University Chicago, Department of Computer Science, Chicago, IL, USA

Abstract—Computer vision on low-power edge devices enables
applications including search-and-rescue and security. State-
of-the-art computer vision algorithms, such as Deep Neural
Networks (DNNs), are too large for inference on low-power
edge devices. To improve efficiency, some existing approaches
parallelize DNN inference across multiple edge devices. How-
ever, these techniques introduce significant communication and
synchronization overheads or are unable to balance workloads
across devices. This paper demonstrates that the hierarchical
DNN architecture is well suited for parallel processing on
multiple edge devices. We design a novel method that creates
a parallel inference pipeline for computer vision problems that
use hierarchical DNNs. The method balances loads across the
collaborating devices and reduces communication costs to facili-
tate the processing of multiple video frames simultaneously with
higher throughput. Our experiments consider a representative
computer vision problem where image recognition is performed
on each video frame, running on multiple Raspberry Pi 4Bs.
With four collaborating low-power edge devices, our approach
achieves 3.21× higher throughput, 68% less energy consumption
per device per frame, and a 58% decrease in memory when
compared with existing single-device hierarchical DNNs.

Index Terms—Parallel edge computing, hierarchical DNNs.

I. INTRODUCTION

Deep Neural Networks (DNNs) are the state-of-the-art
techniques to perform computer vision tasks on video streams.
Because of the significant energy and computation resource
requirements of DNNs, video stream processing is usually
performed on the Cloud [1]. However, applications with strict
throughput, privacy, or network bandwidth constraints must
be handled locally [2]. Increasing the efficiency of DNNs will
enable more low-power edge devices to process visual data
without offloading.

Existing efforts to increase DNN efficiency are largely
focused on single-device inference [3, 4]. However, low-power
edge devices are commonly deployed in a network, e.g. to
enable monitoring of multiple angles of a traffic intersection or
a construction site [5]. If these networks have spare computing
resources, then parallel inference would allow the devices to
share resources for faster data processing [6, 7]. For example,
if an edge device is not powerful enough to provide the
required response time, the device could partition the DNN,
and transmit the partitioned tasks to other devices [8].

Some existing works perform parallel DNN inference on
edge devices. These methods can be classified as (a) Data
parallelism: each collaborating edge device processes a subset
of the inputs with the assumption that each device can run the
entire DNN [7]; (b) Model parallelism: each DNN layer is par-
titioned across multiple devices, but requires extensive inter-
device communication to map inputs and reduce outputs [12];

(c) Pipeline parallelism: the DNN is partitioned into sets of
consecutive layers. Each set is run on a different device; after
one device processes a frame, the frame is passed onto another
device. This allows the first device to process the next frame
for improved throughput [13]. Pipeline parallelism is most
suitable for improving the throughput of video stream process-
ing but is currently limited because conventional DNNs have
a large variance in resource requirements across layers [14].

We observe that the recent hierarchical DNN architec-
ture [10, 9] is well suited for pipeline parallelism. This
architecture is depicted in Fig. 1(a) and detailed in Section II.
The small DNNs of the hierarchy can be partitioned to run
independently on collaborating devices without a large cross-
device resource variance, as seen in Fig. 1(b). Using this
insight, this paper proposes a novel technique to perform
pipeline-parallel inference of hierarchical DNNs. Our method
partitions hierarchical DNNs in a way that balances work-
loads and reduces communication costs. We show that, when
partitioning the hierarchy, it is advantageous to consider the
hierarchy structure and the processing time of each DNN.

To evaluate this approach, our experiments compare the
video stream processing performance of the proposed method
with state-of-the-art techniques [4, 7, 8, 13, 9] in terms of
frames per second (FPS), latency, memory and numbers of
operations, and energy consumption per device. We vary the
hierarchical DNN structures, input resolutions, video lengths,
and the number of devices to show that the proposed technique
improves throughput for different types of workloads. These
experiments are performed using standard computer vision

(a) (b)

Fig. 1: (a) Existing hierarchical DNNs: multiple small DNNs
in the form of a tree. All DNNs along a single root-leaf
path process a video frame before the next frame can be
processed [9, 10, 11]. (b) Our method: after the root DNN at
device 1 processes a frame, the frame is passed onto another
device. This allows device 1 to start processing the next frame
and creates an inference pipeline to increase throughput.



datasets. We observe a 3.21× increase in FPS, and 60%,
58%, 68% decrease in operations, memory, and energy re-
quirements, respectively. These gains are achieved when using
four collaborating Raspberry Pi 4Bs connected via Ethernet.

II. BACKGROUND AND RELATED WORK

A. Hierarchical Deep Neural Networks

Hierarchical DNNs use multiple small DNNs in the form
of a tree, as seen in Fig. 1(a) [9, 10, 11, 15]. Each small
DNN specializes in an intermediate classification between
groups of similar categories. In each level of the hierarchy,
a small DNN uses the activation map of its parent and
makes an intermediate classification into progressively smaller
groups, until a leaf DNN provides the final output (e.g. DNN4
in Fig. 1). Existing techniques consider the training [10],
design [2, 9], or applications [11] of hierarchical DNNs on
one device.

Hierarchical DNNs offer an energy-accuracy tradeoff. Since
each input is only processed by the small DNNs along one
path from the root to a leaf, hierarchical DNNs perform
inference more efficiently than conventional DNNs [2, 9],
reducing energy consumption by ∼50%. However, they also
decrease accuracy by ∼4%, because errors propagate from
parent to child DNN. As this tradeoff may be acceptable in
practice [9], we investigate improving hierarchical DNN pro-
cessing throughput by performing pipeline-parallel inference.

B. Three Categories of Parallel Edge Computing

Data parallelism: The input data is partitioned and pro-
cessed independently by the collaborating devices. Splitting
a single input frame impacts the spatial locality of objects
and lowers DNN accuracy [16]. Most data-parallel techniques
distribute activation maps to perform convolution operations in
parallel [14, 7]. MoDNN [7] divides each activation map into
overlapping grid cells. MeDNN [14] distributes the activation
channels (instead of grids) across devices to avoid repeated
operations. All data parallelism techniques assume that each
edge device has the capacity to run the entire DNN [17].

Model Parallelism: Each DNN convolution operation is
independent of all other operations in the same layer. Model
parallelism uses this intra-layer independence to split a DNN
into disjoint subsets on multiple devices [12]. Model paral-
lelism techniques usually have significant overhead in com-
municating activation maps [18]. These methods also suffer
from the straggler effect when workloads are imperfectly
balanced [16, 18]. Bhardwaj et al. [17] reduce the overhead of
model parallelism, but their technique is applicable only when
the number of devices is fixed and is known at training time.

TABLE I: Comparison of the proposed method with existing
methods. H-DNN: Hierarchical DNN.

Technique H-DNN Parallelism
Type

Load
Balance

Comm.
Efficient

Howard et al. [4] 5 None - -
Mao et al. [7] 5 Data X 5
Zhang et al. [8] 5 Pipeline 5 X
Hadidi et al. [13] 5 Pipeline + Model X 5

Goel et al. [9] X None - -

Our Method X Pipeline X X

Pipeline Parallelism: The DNN is divided into sets of
consecutive layers, and each set is deployed on a collaborating
device to improve throughput [8, 19]. Conventional DNNs
(e.g. VGG and ResNet) have been found to be ill-suited
for pipeline parallelism because there is a large variance in
resource requirements and communication costs across layers;
this results in imbalanced workloads [8]. Zhang et al. [8]
show that the inference time of the largest fully-connected
layer of VGG-16 is ∼ 15× larger than the inference time
of the smallest convolution layer on an edge-class device. To
alleviate this issue at the cost of additional overhead, Hadidi et
al. [13] combine pipeline parallelism with model parallelism
to prevent bottlenecks.

Table I presents properties of existing techniques. The
existing parallel techniques either balance loads or reduce
communication costs [7, 8, 13]. We propose the first method to
perform parallel inference of hierarchical DNNs. This method
performs efficient pipeline parallelism by balancing loads and
reducing overhead. This work enables the use of pipeline par-
allelism for improving the throughput in application contexts
where multiple edge devices operate in close proximity (e.g.
airports, traffic intersections, construction sites, etc.).

C. Our Contributions

As summarized by Table I: (1) This is the first method
to perform parallel hierarchical DNN inference to accelerate
video stream processing on low-power embedded devices.
(2) We develop a mathematical model to estimate the through-
put gains with pipelined hierarchical DNNs in different ap-
plication scenarios. (3) Using this model we present a novel
technique that partitions the hierarchical DNN for maximizing
throughput with pipeline parallelism. (4) We experimentally
measure the factors that impact the throughput of the pipelined
hierarchical DNNs.

III. PIPELINING HIERARCHICAL NEURAL NETWORKS

This section describes our pipeline parallelism scheme with
hierarchical DNNs. To create a hierarchical DNN inference
pipeline, we first identify the factors that impact the processing
time of pipeline-parallel hierarchical DNNs and create a model
to estimate the throughput with our method (Section III-A).
We then use this model to find the hierarchy partition that
maximizes the throughput (Section III-B).

A. Throughput of Pipeline-Parallel Hierarchical DNNs

In pipeline-parallel systems, the throughput depends on
(1) the number of pipeline stages, (2) the time taken to
process each stage, and (3) the communication overhead.
The processing time for F frames is given by the gen-
eral equation: Ptime = [(F + #pipeline stages − 1) ×
(max stage processing time)]+communication time [20]. The
steady-state throughput for a video stream is given by F

Ptime
.

In the proposed technique, the hierarchy structure (depth,
number of edges, etc.) and the method used to partition
the hierarchical DNN to run on collaborating devices impact
the throughput. These factors impact the number of pipeline
stages, the processing time, and the overhead.

We use seven parameters to model the throughput of the
proposed pipelined hierarchical DNNs. These parameters are



TABLE II: Symbols reference. ∗: Values are obtained after the
hierarchical DNN has been partitioned.

Symbol Definition

N Number of collaborating devices
F Number of frames
Λ Avg. DNN processing time
τ Avg. communication time between devices
K Maximum hierarchical DNN depth
H∗ Avg. number of edge cuts from root to leaf
M∗ Avg. number of DNNs running sequentially on one device

listed in Table II. The average DNN processing time, Λ,
depends on each DNN’s processing time and rate of use.
DNNs may have different rates of use, dependent on two
factors. First, the hierarchy structure affects the rate of use;
the root DNN is used most often because it processes every
video frame, while leaf DNNs (e.g. DNN7 in Fig. 1) process
only a small subset of the frames. Second, a DNN’s rate of
use is application-dependent; e.g. in an airport, people are
more common than cats, and so the DNNs responsible for
processing people will be used more often than those for cats.
In the same way, the average communication time, τ , depends
on the amount of data transferred in each hierarchy edge and
the rate at which the edges are used. Each hierarchy edge
between a parent and child is used at the same rate as the
child DNN (the edge is used only when the child is used).

In pipelined hierarchical DNNs, the hierarchy depth, K,
determines the number of stages in the pipeline. When the
pipeline is full, a DNN at every level of the hierarchy is
processing a frame. (F + K − 1) × Λ is the DNN pro-
cessing time for F frames when N = K (all stages can
run in parallel). When N < K, only N DNNs can run in
parallel. The hierarchy partition algorithm assigns DNNs to
the collaborating devices. If multiple DNNs along one root-
leaf path are assigned to the same device, then the DNNs
run sequentially on the device. In Fig. 1(b), when Device 4
runs DNN6, DNN3 must wait before it can process the next
video frame. If M is the average number of DNNs that run
sequentially on a single device, then the total DNN processing
time can be approximated as (F +N − 1)× (M × Λ).

After hierarchical DNNs are partitioned to run on collabo-
rating devices, a hierarchy edge is considered to be cut if it
spans partitions (or devices). When an edge cut is encountered,
the DNN activation map needs to be communicated between
devices. Thus, for each frame H × τ is the communication
overhead. The total communication time is F × (H × τ).

Similar to Ptime, the total time taken to process F frames is
approximately

(
(F+N−1)×(M×Λ)

)
+
(
F×(H×τ)

)
. The

estimated throughput, Tth., of our method is given in eqt. (1).

Tth. ≈
F(

(F +N − 1)× (M × Λ)
)

+
(
F × (H × τ)

) (1)

This model estimates the throughput for different hierarchy
structures, devices, and communication media. A hierarchical
DNN partition method is required to assign DNNs to devices.
The partition must find a tradeoff between the workload size
(M × Λ) and the overhead (H × τ ) to maximize Tth..

Model Assumptions: This model operates under the as-
sumption that there is no temporal relationship between

frames. For example, eqt. (1) may not accurately estimate
the throughput for a video where all frames containing cats
appear first, followed by all the frames containing trucks,
and so on. We embed this assumption into our model by
using averaged values in H and M . This assumption does
not sacrifice generality for edge applications because different
objects may appear at any time; e.g. over a day traffic cameras
see cars, bikes, etc. Furthermore, our analysis only considers
the situation when all devices have the same hardware. This
assumption suits edge-contexts where homogeneous edge de-
vices are deployed to simplify device management [21].

B. Partitioning Hierarchical DNNs for Pipeline-Parallelism

In this subsection, using examples in Fig. 2, we first show
how the partition method impacts the throughput. We then
describe our novel technique to find a hierarchy partition that
maximizes the pipeline-parallel throughput.

1) Impact of Hierarchical DNN Partitions on Throughput:
Hierarchical DNNs contain small DNNs in the form of a hier-
archy. To perform pipeline-parallel inference with hierarchical
DNNs, first, the hierarchy must be partitioned. The hierarchy
partition controls the values of H and M in eqt. (1). Each
partition is assigned to and run on a collaborating device.
Hierarchies can be partitioned in different ways.

To understand how the hierarchical DNN partition method
impacts the DNN processing time and communication over-
head, consider the example in Fig. 2 when there are three
collaborating devices. Fig. 2 (a, b) depict the hierarchical DNN
constructed for performing image recognition on images from
the CIFAR-10 dataset along with the time taken to process
images, the rate of use, the communication time for each
DNN in the hierarchy. In this example, DNN2 requires 0.036
seconds to process a frame and 0.020 seconds to communicate
its activation map. Since the costs are comparable, finding
hierarchy partitions that reduce the communication overhead
is important for obtaining higher throughput. Without loss
of generality, in this example, we assume that all the object
categories in the dataset are equally probable to appear. Thus,
because there are 10 leaves in the hierarchy and 6 of those
leaves are rooted at DNN2, the rate of use for DNN2 is 6

10 .
In other words, 60% of the input frames will be processed by
DNN2. If objects are not equally probable (e.g. in an airport),
the data must be sampled [22] to find the rate of use for each
DNN before utilizing our approach.

If only the DNN processing times in Fig. 2 are balanced,
then 〈root, DNN4〉, 〈DNN1, DNN3〉, and 〈DNN2, DNN5〉 are
assigned to the devices 1, 2, and 3, respectively, as shown
in Fig. 2(c). A hierarchy partition is balanced if the ratio of
processing times on the most and least loaded devices is min-
imized. Although the devices spend similar amounts of time
running DNNs, the devices running the DNNs that are used
more often will have larger workloads. To accurately account
for workloads we must consider the hierarchy structure; i.e. the
rate at which DNNs are used. By scaling the DNN processing
times by their rate of use, 〈root〉, 〈DNN3〉, and 〈DNN1, DNN2,
DNN4, DNN5〉 are assigned to the devices.

When only workloads are balanced, a single input frame’s
activation map may be communicated between multiple de-
vices before the output is generated. In the previously de-



Fig. 2: (a) The hierarchical DNN structure constructed for the CIFAR-10 dataset using the methods described in Goel et
al. [9]; along with (b) the time taken to process a frame (in seconds), the estimated rate of use, and the communication time
(in seconds). (c) Hierarchy partition obtained when only balancing DNN processing times. (d) Hierarchy partition obtained
when balancing workloads and reducing communication. Dotted lines highlight the partitions.

scribed hierarchy partition, a frame that is processed by the
DNNs along the path from the root to DNN4 is communicated
twice. By choosing a partition that minimizes the edge cuts,
the communication overhead can be reduced. A balanced
minimum cut graph partition is 〈root〉, 〈DNN3, DNN4〉, and
〈DNN1, DNN2, DNN5〉. This hierarchy partition is depicted in
Fig. 2(d). When performing image recognition with this parti-
tion, the expected processing time,

∑
(DNN processing time×

DNN rate of use), on the three devices are 0.038 seconds,
0.028 seconds, and 0.020 seconds, respectively. Similarly, the
expected communication overhead of the hierarchy is given by∑

(Communication time×DNN rate of use) = 0.018 seconds.
Having balanced workloads prevents bottlenecks, but may

lead to larger communication overheads. Next, we discuss how
to find hierarchy partitions that find a tradeoff between the
workload balance and communication overhead to maximize
the throughput, Tth. in eqt. (1).

2) Choosing Hierarchical DNN Partitions: In this section,
we use Di to represent the ith DNN of the hierarchy (i = 0
for root), and Ej is a set representing the DNNs assigned
to the jth collaborating edge device. L(Di) is the time taken
(latency) by a device to process DNN Di. The communication
time, Ci,j , is the time required to send an activation map
from Di to Dj , when Di and Dj are assigned to different
devices. R(Di) is the rate of use of DNN Di. Because prior
studies suggest that the largest hierarchical DNNs have only

Fig. 3: Impact of hierarchy partitions on throughput and
workload imbalance. Workload imbalance is the ratio of the
workloads on the most and least loaded devices. Configura-
tion (a) is depicted in Fig. 2 (a) for single-device inference. For
three-device inference, configurations (b) and (c) are depicted
in Fig. 2 (c) and (d), respectively. Configuration (c) achieves
the highest throughput and the most balanced loads.

∼20 DNNs [9] and our experiments consider a maximum of
4 collaborating devices, we use exhaustive search to find the
hierarchy partition that maximizes the expected throughput.
For larger hierarchies, heuristic algorithms like MeTis [23]
can be modified to find partitions without exhaustive search.

For every hierarchy partition, we first calculate the expected
processing time on each device Ej as aj =

∑
L(Di) ×

R(Di),∀Di ∈ Ej . The value aj is the amount of time device
Ej takes to process an input scaled by the rate at which
the DNNs are used. The largest expected processing time,
max(aj), is the worst-case DNN processing workload on the
devices. Having balanced workloads on devices minimizes
max(aj). We then obtain the parallel processing overhead of
the partition in terms of the expected communication cost as
b =

∑
Ci,j × R(Dj),∀ DNNs Di, Dj that have a hierarchy

edge that spans devices. Recall that the rate of use of an edge
is the same as that of its child DNN.

To evaluate each hierarchy partition, we substitute Λ×M for
max(aj), the largest expected processing time, and H × τ for
b, the expected communication cost, in eqt. (1). The estimated
throughput is represented in eqt. (2). We select the hierarchy
partition that maximizes the throughput, T .

T ≈ F(
(F +N − 1)×max(aj)

)
+
(
F × b

) (2)

In light of this analysis, we can better understand Fig. 2.
Fig. 2 (d) depicts the hierarchy partition obtained by max-
imizing T for the CIFAR-10 dataset. When max(aj) is
minimized the workloads are balanced across devices. When
b is minimized, the communication overhead is also mini-
mized. Our proposed method finds a tradeoff between the
workload balance and communication overhead to maximize
the throughput, T . Fig. 3 (c) shows this method processes
∼30 FPS with three devices collaborating over Ethernet,
thus indicating efficient pipeline parallelism. Fig. 2 (c) shows
another hierarchy partition that does not balance workloads or
maximize T . The throughput obtained with this partition is
22 FPS, as seen in Fig. 3 (b).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section experimentally evaluates the proposed method
and existing techniques. We vary the hierarchy structures, the
edge devices, and the communication medium in our tests.
The source code is available on Github [24].



A. Experimental Setup

Platform: We use up to four Raspberry Pi 4Bs in our
experiments. The devices communicate using gigabit Ethernet,
underneath the ZeroMQ [25] message passing framework. A
NETGEAR Nighthawk AC5300 router is used for networking.
The hierarchical DNNs open-sourced by Goel et al. [9] are
used in our experiments.

Metrics: We evaluate our proposed method based on five
metrics: (a) Maximum memory required by a collaborating de-
vice for a video frame, measured using the torchsummary
library; (b) Maximum number of DNN operations (FLOPs)
performed by a device for a video frame, measured using
the thop library; (c) Maximum energy consumed by a
device, measured using a Yokogawa WT310E Power Meter;
(d) Speed, as latency (inference time for one frame) and
throughput (frames per second); (e) Speedup, as the ratio
of the throughput obtained with parallel and single-device
inference.

Datasets Used: We build and train hierarchical DNNs for
three vision datasets: (1) CIFAR-10 [26], (2) SVHN [27],
and (3) The random subset of CALTECH-256 [28] used in
previous works [2, 9]. The CIFAR-10 and SVHN datasets
contain small images (32×32 pixels). Images in CALTECH-
256 range from 200×200 to 1024×768 pixels and represent
real-life images closely. The Linux ffmpeg utility converts
images from these datasets into varying-length videos for
experiments. For these datasets, the image contents, labels, and
hierarchical DNN structures vary significantly [9], allowing us
to examine different types of workloads.

B. Experiment 1 - Latency and Throughput

We measure the effect of varying datasets on the proposed
approach. Performing pipeline-parallel inference of hierarchi-
cal DNNs increases throughput, but the communication over-
head may lead to increases in latency. TABLE III shows the
impact of the input resolution and hierarchy structure on the
latency and throughput of pipeline-parallel hierarchical DNNs.
The hierarchical DNN for CALTECH-256 has a maximum
depth of 5 and accepts inputs of 224×224 pixels. SVHN
and CIFAR-10 have hierarchical DNNs with depth 2 and 3,
respectively. With two devices for CIFAR-10, our method has
50 ms latency but achieves 20 FPS because of the inference
pipeline. When using three devices, the latency increases to
64 ms and the throughput increases to 30.30 FPS. On one
device, the throughput is only 10.55 FPS. Thus, the speedups
with two and three devices are 1.90× and 2.87×, respectively.
Because the hierarchy for the SVHN dataset has a depth
of 2, the speedup is smaller. Although the communication
overhead with the CALTECH-256 hierarchy is higher due to
the larger resolution, our method achieves a 2.48× speedup
with 3 devices. This experiment indicates that the proposed
method increases hierarchical DNN throughput for varying
hierarchy structures and input resolutions.

C. Experiment 2 - Comparison with Existing Techniques

We compare the proposed approach to the state-of-the-
art, summarized in Table I: single-device edge-friendly DNN
inference [4], single-device hierarchical DNN inference [9],
and parallel DNN inference (data [14, 7], pipeline [8],

TABLE III: Latency, throughput, and speedup obtained with
the proposed pipeline-parallel hierarchical DNN method for
different datasets. C-256: CALTECH-256.

Latency (ms) Throughput (FPS) Speedup

N = 2 N = 3 N = 2 N = 3 N = 2 N = 3

CIFAR-10 50 64 20.00 30.30 1.90× 2.87×
SVHN 43 50 41.32 58.82 1.61× 2.29×
C-256 592 592 2.53 3.99 1.57× 2.48×

TABLE IV: Comparison of FLOPs (×106/frame), memory
(MB/frame), energy (J/frame), and throughput (FPS) with
different numbers of devices (N ) for the CALTECH-256
dataset. Howard et al. [4] is a single-device method so “-”
is used for N > 1. Blue font indicates the best result.

N Metric Zhang
et al. [8]

Hadidi
et al. [13]

Howard
et al. [4] Our Method

1

#Operations 15.51 4.11 0.58 1.38
Memory 528.00 98.00 16.00 6.20
Energy 27.72 14.76 13.86 3.27
Throughput 0.33 0.35 0.40 1.62

2

#Operations 9.37 2.97 - 0.92
Memory 521.00 92.00 - 5.00
Energy 19.72 8.56 - 2.12
Throughput 0.40 0.58 - 2.53

3

#Operations 6.48 2.39 - 0.55
Memory 521.00 65.00 - 3.30
Energy 11.55 8.53 - 1.36
Throughput 0.49 0.59 - 3.99

4

#Operations 6.48 1.91 - 0.55
Memory 521.00 65.00 - 2.60
Energy 10.90 8.46 - 1.04
Throughput 0.52 0.60 - 5.20

pipeline+model [13]). The results are tabulated in TABLE IV.
Goel et al. [9] is the same as our method for N =1. As
the number of devices increases from N = 2 to 4, the
memory required on a single device in Zhang et al. [8] remains
unchanged. This is because of the large variance in resource
requirements across layers; large layers are not split onto
multiple devices. Hadidi et al. [13] perform model parallelism
to split large layers. However, because of the communication
overhead, the time taken does not reduce significantly for
N > 2. As N increases, the proposed method finds hierarchy
partitions that maximize the throughput resulting in significant
reductions in processing time. With four devices, MoDNN [7]
and MeDNN [14] achieve speedups of 2.03× and 2.43×,
respectively. In comparison, our method achieves a speedup
of 3.21× with four devices, indicating more efficient paral-
lelism. Results for MoDNN and MeDNN are not reported in
TABLE IV because the data is not available. We do not report
accuracy because our method does not alter the accuracy of
the existing hierarchical DNNs, it only increases efficiency.

D. Experiment 3 - Evaluation of Theoretical Model

We evaluate the pipeline-parallel hierarchical DNN through-
put model presented in eqt. (1). We use Raspberry Pi 3B
and 4B boards in this experiment to vary values of Λ (DNN
processing times). To vary τ (communication time between
devices), we use WiFi communication along with Ethernet.
Finally, we also consider different hierarchy structures con-



Fig. 4: Evaluation of pipeline-parallel hierarchical DNN throughput model in eqt. (1). (a) Raspberry Pi 4B connected with
WiFi. (b) Raspberry Pi 3B connected with Ethernet. Raspberry Pi 4B connected with Ethernet when the number of frames are:
(c) F = 100 and (d) F = 1000. The observed results match the theoretical values closely in different application scenarios.

structed for different datasets. Due to space constraints, we
only present results for the CIFAR-10 and SVHN datasets, but
we observe similar results with CALTECH-256 as well. For
each run, first, a sample input is used to measure the values
of Λ and τ . Then, the throughput is measured experimen-
tally and compared with the theoretical value obtained with
eqt. (1). Fig. 4 shows that the observed experimental results
match closely with the theoretical analysis for four different
application scenarios.

V. CONCLUSIONS

In this paper, we present a novel method to perform
pipeline-parallel inference of a hierarchical DNN for improv-
ing the processing throughput on low-power edge devices. Our
approach partitions the hierarchical DNN and deploys each
partition on a collaborating edge device to allow the processing
of multiple frames simultaneously. Existing pipeline-parallel
DNN techniques partition conventional DNNs into sets of
consecutive layers. These techniques are limited because the
large variance in resource requirements and communication
costs across layers creates bottlenecks in the pipeline. Through
this work, we present a method that partitions hierarchi-
cal DNNs to run on multiple devices with balanced loads
and decreased communication costs. We first mathematically
model the throughput of pipeline-parallel hierarchical DNNs,
and then find a hierarchy partition that maximizes the esti-
mated throughput. Our method can find appropriate hierarchy
partitions automatically for varying hierarchical DNN struc-
tures, edge device specifications, and communication media.
Because of the hierarchy partition method, our pipeline-
parallel hierarchical DNN achieves significant improvement in
throughput with only a small increase in latency. Our experi-
ments confirm that the proposed inference strategy improves
the deployability of computer vision on edge device networks,
by decreasing the memory, energy, and number of operations
on each device.

ACKNOWLEDGEMENT

This project was supported in part by NSF CNS-1925713,
NSF OAC-2107230, NSF OAC-2104709, and NSF OAC-
2107020. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] S. Alyamkin et al. “Low-Power Computer Vision: Status, Challenges,
and Opportunities”. In: 2019 IEEE JETCAS.

[2] P. Panda et al. “FALCON: Feature Driven Selective Classification for
Energy-Efficient Image Recognition”. In: 2017 TCAD.

[3] A. Goel et al. “A Survey of Methods for Low-Power Deep Learning
and Computer Vision”. In: 2020 IEEE WF-IoT.

[4] A Howard et al. “Searching for MobileNetV3”. In: arXiv:1905.02244.
[5] S. Aghajanzadeh et al. “Camera Placement Meeting Restrictions of

Computer Vision”. In: 2020 IEEE ICIP.
[6] M. Motamedi et al. “Machine Intelligence on Resource-Constrained

IoT Devices: The Case of Thread Granularity Optimization for CNN
Inference”. In: 2017 ACM TECS.

[7] J. Mao et al. “MoDNN: Local distributed mobile computing system
for Deep Neural Network”. In: 2017 IEEE DATE.

[8] J. Zhang et al. “A Locally Distributed Mobile Computing Framework
for DNN Based Android Applications”. In: 2018 ACM Internetware.

[9] A. Goel et al. “Modular Neural Networks for Low-Power Image
Classification on Embedded Devices”. In: 2020 ACM TODAES.

[10] D. Roy et al. “Tree-CNN: A Hierarchical Deep Convolutional Neural
Network for Incremental Learning”. In: Neural Networks 121 (2020).

[11] A. Goel et al. “Low-Power Object Counting with Hierarchical Neural
Networks”. In: 2020 ACM ISLPED.

[12] J. K. Kim et al. “STRADS: A Distributed Framework for Scheduled
Model Parallel Machine Learning”. In: 2016 ACM EuroSys.

[13] R. Hadidi et al. “Toward Collaborative Inferencing of Deep Neural
Networks on Internet-of-Things Devices”. In: 2020 IEEE IoT-J.

[14] Mao et al. “MeDNN: A distributed mobile system with enhanced
partition and deployment for large-scale DNNs”. In: 2017 IEEE
ICCAD.

[15] A. Goel et al. “Low-Power Multi-Camera Object Re-Identification
using Hierarchical Neural Networks”. In: 2021 ACM ISLPED.

[16] G. Wang et al. “sensAI: ConvNets Decomposition via Class Paral-
lelism for Fast Inference on Live Data”. In: 2021 MLSys.

[17] K. Bhardwaj et al. “Memory- and Communication-Aware Model
Compression for Distributed Deep Learning Inference on IoT”. In:
2019 ACM TECS.

[18] J. Geng et al. “Horizontal or Vertical? A Hybrid Approach to Large-
Scale Distributed Machine Learning”. In: 2019 ACM ScienceCloud.

[19] Pasandi et al. “Collaborative Intelligent Cross-Camera Video Analyt-
ics at Edge: Opportunities and Challenges”. In: 2019 ACM SenSys.

[20] Patterson et al. Computer Architecture: A Quantitative Approach.
[21] Y. Yang et al. “DEBTS: Delay Energy Balanced Task Scheduling in

Homogeneous Fog Networks”. In: 2018 IEEE IoT-J.
[22] Y. Roh et al. “A Survey on Data Collection for Machine Learning:

A Big Data - AI Integration Perspective”. In: 2021 IEEE TKDE.
[23] G. Karypis et al. MeTis: Unstructured Graph Partitioning and Sparse

Matrix Ordering System, Version 4.0. 2009.
[24] URL: https://github.com/abhinavgoel95/Pipeline-Parallel-MNN-Tree.
[25] ZeroMQ. URL: https://zeromq.org/.
[26] Krizhevsky et al. Learning Multiple Layers of Features from Tiny

Images. 2009.
[27] Y. Netzer et al. “Reading Digits in Natural Images with Unsupervised

Feature Learning”. In: 2011 NeurIPS.
[28] G. Griffin et al. Caltech-256 Object Category Dataset. http://authors.

library.caltech.edu/7694. 2007.


