
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Electrical and Computer
Engineering Faculty Publications

Department of Electrical and Computer
Engineering

2023

Improving Developers' Understanding of Regex Denial of Service Improving Developers' Understanding of Regex Denial of Service

Tools through Anti-Patterns and Fix Strategies Tools through Anti-Patterns and Fix Strategies

Sk Adnan Hassan
Virginia Tech, skadnan@vt.edu

Zainab Aamir
Stony Brook University, zaamir@cs.stonybrook.edu

Dongyoon Lee
Stony Brook University, dongyoon@cs.stonybrook.edu

James C. Davis
Purdue University, davisjam@purdue.edu

Francisco Servant
University of Malaga, fservant@uma.es

Follow this and additional works at: https://docs.lib.purdue.edu/ecepubs

 Part of the Information Security Commons, Other Computer Engineering Commons, Programming

Languages and Compilers Commons, and the Software Engineering Commons

Hassan, Sk Adnan; Aamir, Zainab; Lee, Dongyoon; Davis, James C.; and Servant, Francisco, "Improving
Developers' Understanding of Regex Denial of Service Tools through Anti-Patterns and Fix Strategies"
(2023). Department of Electrical and Computer Engineering Faculty Publications. Paper 161.
https://docs.lib.purdue.edu/ecepubs/161

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecepubs
https://docs.lib.purdue.edu/ecepubs
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=docs.lib.purdue.edu%2Fecepubs%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=docs.lib.purdue.edu%2Fecepubs%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=docs.lib.purdue.edu%2Fecepubs%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=docs.lib.purdue.edu%2Fecepubs%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=docs.lib.purdue.edu%2Fecepubs%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages

Improving Developers’ Understanding of Regex Denial of Service Tools through

Anti-Patterns and Fix Strategies

Sk Adnan Hassan∗ Zainab Aamir, Dongyoon Lee James C. Davis Francisco Servant†

Virginia Tech Stony Brook University Purdue University University of Málaga
Blacksburg, VA, USA Stony Brook, NY, USA West Lafayette, IN, USA Málaga, Spain

skadnan@vt.edu {zaamir, dongyoon}@cs.stonybrook.edu davisjam@purdue.edu fservant@uma.es

Abstract—Regular expressions are used for diverse purposes,
including input validation and firewalls. Unfortunately, they
can also lead to a security vulnerability called ReDoS (Regular
Expression Denial of Service), caused by a super-linear worst-
case execution time during regex matching. Due to the severity
and prevalence of ReDoS, past work proposed automatic tools
to detect and fix regexes. Although these tools were evaluated in
automatic experiments, their usability has not yet been studied;
usability has not been a focus of prior work. Our insight is
that the usability of existing tools to detect and fix regexes
will improve if we complement them with anti-patterns and
fix strategies of vulnerable regexes.

We developed novel anti-patterns for vulnerable regexes,
and a collection of fix strategies to fix them. We derived our
anti-patterns and fix strategies from a novel theory of regex in­
finite ambiguity — a necessary condition for regexes vulnerable
to ReDoS. We proved the soundness and completeness of our
theory. We evaluated the effectiveness of our anti-patterns, both
in an automatic experiment and when applied manually. Then,
we evaluated how much our anti-patterns and fix strategies
improve developers’ understanding of the outcome of detection
and fixing tools. Our evaluation found that our anti-patterns
were effective over a large dataset of regexes (N=209,188):
100% precision and 99% recall, improving the state of the
art 50% precision and 87% recall. Our anti-patterns were
also more effective than the state of the art when applied
manually (N=20): 100% developers applied them effectively
vs. 50% for the state of the art. Finally, our anti-patterns
and fix strategies increased developers’ understanding using
automatic tools (N=9): from median “Very weakly” to median
“Strongly” when detecting vulnerabilities, and from median
“Very weakly” to median “Very strongly” when fixing them.

Index Terms—Regular expression denial of service, Usability

1. Introduction

Regular expressions (regexes) are a tool for text pro­
cessing [1], [2]. Regexes are used across the system

∗Sk Adnan Hassan is currently employed at Walmart Inc.
†Some work performed while at Virginia Tech, U.S.A., and Universidad
Rey Juan Carlos, Madrid, Spain.

stack [3]–[6], including in security tasks such as input
validation [7], [8] and web application firewalls [9], [10].
Unfortunately, regexes can themselves cause a security vul­
nerability because of the high worst-case time complexity
of backtracking-based regex engine implementations. This
algorithmic complexity vulnerability is known as Regular
Expression Denial of Service (ReDoS) [11], [12]. For ex­
ample, ReDoS caused service outages at Stack Overflow
in 2016 [13] and at Cloudflare in 2019 [14]. Researchers
report hundreds of vulnerable regexes in the software supply
chain [2] and in live web services [15], [16].

Many approaches have been proposed to address the
ReDoS problem. Our work builds on those that try to detect
and fix regexes. In this vein, some researchers character­
ized vulnerable regexes into anti-patterns for manual use
by developers [2]. Others proposed tools to automatically
detect [17]–[26] or fix [27]–[30] vulnerable regexes. All of
these approaches have been evaluated solely via automatic
experiments. Their usability has not been studied, jeopar­
dizing their impact in practice [31] — 95% of developers
reject tools when they cannot understand the results [31].

The goal of this paper is to improve the usability of
existing ReDoS defenses. Our insight is that the usability
of existing tools to detect and fix regexes will improve if
we complement them with anti-patterns and fix strategies
of vulnerable regexes. We specifically aim to improve de­
veloper understanding of the outcome of the tools.

For this goal, we developed novel anti-patterns for vul­
nerable regexes, and a collection of fix strategies to fix them.
We derive our anti-patterns and fix strategies from our novel
theory of regex infinite ambiguity (IA). Our theory charac­
terizes a fundamental component of vulnerable regexes: their
infinitely ambiguous (IA) region. The IA region is what the
state of the art anti-patterns characterize [2], what many
detection tools detect, e.g., [18], [20], and what developers
often fix in vulnerable regexes [2]. We refer to regexes
with an IA region as IA regexes. Our anti-patterns and fix
strategies complement existing detection and fixing tools, (1)
by helping developers better understand the IA region of the
vulnerable regex detected by the tool; and (2) by providing
understandable fix strategies in addition to the ones proposed
by fixing tools.

Our evaluation proceeded in four phases: proving our

1

theory, and then running three experiments. First, we for­
mally proved the IA theory on which our anti-patterns are
based (§4 and §B). Second, since we deliberately introduced
inaccuracy in our anti-patterns in favor of simplicity, we
evaluated their effectiveness in an automatic experiment. We
compared our anti-patterns to the state-of-the-art ones over a
large dataset of regexes (§7). Third, since low usability may
lower effectiveness in manual use [31], we also evaluated
the effectiveness of our anti-patterns when applied manually.

Our paper provides a replication package [33] (see §A).

2. Background

Regular Expressions (Regexes) and Ambiguity:
Regexes. Kleene proposed regular expressions as a nota­

tion to specify a language, i.e., a set of strings [34]. With a
finite alphabet of terminal symbols, Σ, and metacharacters, rrrrWe compared our anti-patterns to the state-of-the-art ones ‘|’, ‘·’, and ‘∗’, the regular expression syntax is [35]:

in a human-subjects experiment, simulating a context in R → φ r E r R1|R2 r R1 ·R2 r R1 ∗
rrrrrrr

σ
which developers often prefer manual techniques [31], e.g.,
 where φ denotes the empty language; E is the empty string;
when tools disrupt developer workflow, such as in regex

composition or when working with simple regexes (§8).

the characters σ ∈ Σ are terminal symbols; R1|R2 alter­
nates; R1 ·R2 concatenates; and R∗ repeats. The language

Fourth, for more complex tasks, developers may prefer to
use automatic tools. So, we also evaluated how our anti-
patterns and fix strategies complement the usage of existing
automatic tools by improving their usability. In a second
human-subjects experiment (§9), we measured if our anti-
patterns improve the understanding of the outcome of tools
to (a) detect and (b) fix vulnerable regexes (§9). To the
best of our knowledge, this is the first study of the usability
of anti-patterns or tools to detect or fix vulnerable regexes
when applied by humans.

Our evaluation provided multiple findings. First, our
underlying theory of regex infinite ambiguity was sound
and complete. Second, our anti-patterns provided higher
effectiveness (100% precision, 99% recall) than the state
of the art anti-patterns [2] (50% precision, 87% recall)
over a dataset of 209,188 real-world regexes [32]. Third,
novice and intermediate developers (100% of 20 studied)
increased their effectiveness at identifying IA in regexes
over 5 different regex tasks, improving from a success rate
of 50% to a rate of 100%. Fourth, the 9 expert developers
who used our anti-patterns to complement detection tools
increased their understanding of what makes a detected
regex vulnerable: from median “Very weakly” to median
“Strongly”. Similarly, when using our fix strategies to com­
plement fixing tools, they increased their understanding of
what makes the resulting fixed regex not vulnerable: from
median “Very weakly” to median “Very strongly”.

This paper provides the following contributions:
1) A sound and complete theory of regex infinite ambiguity

(§4).
2) Derived from this theory, IA anti-patterns (§5) and IA

fix strategies (§6).
3) A quantitative evaluation of the comprehensiveness of

our IA anti-patterns over the largest dataset of real-world
regexes, showing that they capture IA effectively in a
wide proportion of them (§7).

4) The first usability evaluation of characterizations of vul­
nerable regexes, showing that our IA anti-patterns were
usable enough for novice developers to apply effectively
in the absence of tools (§8).

5) The first usability evaluation of tools to detect and fix
vulnerable regexes, showing that our IA anti-patterns and
IA fix strategies improved their usability by improving
their understanding (§9).

function L : R → 2Σ ∗
gives semantics:

L(φ) = φ L(R1|R2) = L(R1) ∪ L(R2)
L(E) = {E} L(R1 ·R2) = L(R1)·L(R2)
L(σ) = {σ} L(R∗) = L(R)∗

These semantics apply to Kleene’s regexes, and extend
to “syntax sugar” notations such as character ranges [a-c].
In practice, regexes may include non-regular features such
as lookaround assertions, backreferences, and possessive
quantifiers [36]. These features are used in less than 10% of
real-world regexes [1], [32], [37]. We therefore focus on the
common case of Kleene-regular regexes, denoted K-regexes.

Regex Ambiguity. The regex language semantics allow
membership to be checked with a parser. A regex is ambigu­
ous if there is a string in its language that can be matched by
more than one parse tree [25], [38]. For example, the regex
a|a can parse the input “a” in two ways, i.e., yielding two
parse trees, one using the left a and one the right.

For K-regexes, a regex match is equivalent to simulating
an input on a corresponding non-deterministic finite automa­
ton (NFA) [39]. To simplify discussion, we will reason about
regex ambiguity over an equivalent, ambiguity-preserving,
E-free NFA [19], [40]. From the NFA perspective, a regex
is ambiguous if there is a string that can be accepted along
multiple paths of this NFA.

Infinitely Ambiguous (IA) Regex. Regexes have vari­
ous degrees of ambiguity [41], [42]: no ambiguity; finite
(bounded regardless of input length); or infinite in input
length. Infinite ambiguity (IA) leads to super-linear time
complexity in some parsing algorithms (e.g., backtrack­
ing) [18], [20]. A regex is infinitely ambiguous if it has
an infinitely ambiguous (IA) region (equivalently, an NFA
section), i.e., a region with the infinite-degree-of-ambiguity
(IDA) property [40]. Given an E-free finite automaton A,
necessary and sufficient conditions for A to be infinitely
ambiguous are given by Weber & Seidl [40].

IDA can be of two types: (1) polynomially IDA (PDA),
and (2) exponentially IDA (EDA). Figure 1(a) illustrates
a polynomially IDA (PDA) section in a regex’s NFA. A
substring label(πi) can be matched in the loop π1 at node p,
the path π2 from p to q, or in the loop π3 at q. For example,
consider the regex a*a* for an input “aa...a” of length N .
As any two partitions of the input can be matched with the
first a* and second a*, there are N matching paths.

2

label(π1) = label(π2) = label(π3) label(π1) = label(π2)
π1π1

... p q ...
π2 ... p

π2π3

(a) PDA (or IDAd) (b) EDA
Figure 1: Illustration of Polynomial and Exponential De­
gree of Ambiguity (PDA, EDA) in the NFA [40]. We say
that (p, π2, q) is a transition from state p to state q via
label(π2) [20].

Figure 1(b) illustrates an exponentially IDA (EDA) sec­
tion in a regex’s NFA. A substring label(πi) can be matched
in either of two loops π1 or π2 at node p. Consider the
example regex (a|a)*. Each ‘a’ of the input “a...a” can
be matched by either the upper or lower loop, and thus the
total number of matching paths becomes 2N .

Regex-Based Denial of Service (ReDoS): Regex-based
Denial of Service (ReDoS) [11] is a security vulnerability —
an algorithmic complexity attack [11] by which a web ser­
vice’s computational resources are diverted from legitimate
client interactions into an expensive regex match, degrading
its quality of service. Following Davis et al. [43], ReDoS
involves three Conditions:

(C1) a backtracking regex engine used in evaluation, and
(C2) a vulnerable regex, applied to evaluate
(C3) a malign input.

C1-Backtracking Regex Engine. Many regex engines
(e.g., versions of PHP, Perl, JavaScript, Java, Python,
Ruby, and C#) use a backtracking search algorithm, e.g.,
Spencer’s [44], to answer regex queries [32], [45].

C2-Vulnerable Regex. A vulnerable regex is an IA regex
whose NFA has a prefix region, followed by an IA region
(either PDA or EDA), followed by a suffix region [20]. The
IA region is a necessary component and the root cause of
the regex’s vulnerability. The prefix must be considered to
reach this IA region, and the suffix must typically lead to a
mismatch in order to trigger backtracking.

C3-Malign Input. An attacker-controlled malign input
triggers the super-linear behavior of a vulnerable regex by
driving the backtracking engine into evaluating a polynomi­
ally or exponentially large number of possible NFA paths.
The exploration exhausts computational resources [17].

Threat model. We suppose the following threat model
for ReDoS, aligned with the common use of regexes for
input sanitization in web software [1], [20], [46]. The
victim’s regex engine uses a backtracking regex engine
(ReDoS Condition 1), which is common for many server-
side programming languages. The victim uses a regex (C2)
to sanitize attacker-controlled input (C3).

ReDoS in practice. Davis et al. reported two high-profile
examples of ReDoS affecting millions of users [43], [47].
In §C we note growing ReDoS CVEs from 2010 to present.

3. Related Work

Empirical measurements of ReDoS in practice: Although
the ReDoS attack was proposed twenty years ago by Crosby
and Wallach [11], [48], researchers have only recently at­
tempted to estimate its impact. In 2018, Davis et al. reported
that vulnerable regexes were present in many popular open-
source software modules, and that engineers struggled to
fix them [2]; in 2019, they observed that these regexes
displayed super-linear behavior in the built-in regex engines
used in most mainstream programming languages [32], [37].
Concurrently, Staicu & Pradel showed that 10% of Node.js­
based web services were vulnerable to ReDoS due to their
use of vulnerable npm modules [15]. In 2022, Barlas et
al. studied the impact of ReDoS in live web services [16].
Even in non-backtracking engines, Turoňová et al. observed
the impact of ReDoS [49]. These findings motivated further
research into the ReDoS problem.

Characterizations to Manually Detect Vulnerable
Regexes: In past work, Davis et al. characterized the IA
region of vulnerable regexes with anti-patterns, although
with a high false positive rate [2]. Brabrand & Thomsen’s
theories precisely identify unambiguous regexes, but treat
all others as suspect, including both IA regexes and merely
finitely ambiguous (i.e., non-vulnerable) regexes [38]. 1

In contrast with Davis et al.’s anti-patterns, we provide
a theoretical grounding to formally capture their limitations
(§4) and thus provide higher precision and recall (§7).
We also evaluate their usability when applied manually
by humans (§8). In contrast with Brabrand & Thomsen’s,
our theory distinguishes between finite and infinite ambi­
guity, enabling developers to distinguish between likely-
unproblematic (non-IA) and problematic (IA) regexes.

Finally, other characterizations of vulnerable regexes
exist, but they were not proposed to be applied manually by
humans. Instead, they follow the models used by automatic
detection tools, e.g., expressed as finite automata [18], [20]
(see Figure 1). Contrasting with these other characteriza­
tions, we designed ours to be consumed by humans. Our
approach uses the modality of the regex language—the
representation that developers understand best [50], [51].

Tools to Automatically Detect Vulnerable Regexes:
Berglund et al. defined a prioritized type of NFA to simulate
a backtracking engine in Java and decide if a regex could
show super-linear behavior [17]. Weideman et al. also use
a prioritized NFA to find IDA in it [18], [19]. Wustholz et
al. also looks for the IDA pattern in the NFA and computes
an attack automaton that produces attack input strings [20]
. Liu et al. adds support for modeling and analyzing less
common regex features, e.g., set operations [21]. Li et
al. prescribed five vulnerability patterns, although without
theoretical validation [52].

Others statically analyze different representations of the
regex for vulnerability. Kirrage et al. analyze an abstract

1. Finite ambiguity could cause ReDoS for complex regexes [49] or
when resources are limited (e.g., a low-power device like a Raspberry Pi).

3

evaluation tree of the regex [22]. Rathnayake et al. look
for exponential branching in the regex evaluation tree [23].
Sugiyama et al. analyzes the size of a tree transducer for
the regex [24]. Finally, Sulzmann et al. use Brzozowski
derivatives to create a finite state transducer to generate
parse trees and minimal counter-examples [25].

Still other approaches detect vulnerable regexes using
dynamic analysis. Shen et al. and McLaughlin et al. pro­
posed search algorithms to find inputs with super-linear
matching time [26] [53]. More general algorithmic com­
plexity detectors, e.g., [54]–[58], can also be extended to
detect ReDoS.

Vulnerable regex detection tools have been evaluated for
effectiveness, but not for usability. Our anti-patterns com­
plement these tools by improving developer understanding
of the outcome of their detection (§9).

Tools to Automatically Fix Vulnerable Regexes: These
approaches offer trade-offs for the fixed regex, in: semantic
similarity, (perceived) readability, and support for uncom­
mon features. Van der Merwe et al. presented a modified
flow algorithm to convert an ambiguous K-regex into an
equivalent unambiguous one [27], with perfect semantic
equivalence, but lower readability. More recently, Li et al.
proposed an approach to fix vulnerable regexes with deter­
ministic regex constraints to avoid regex ambiguity [29].
Chida & Terauchi proposed a “Programming By Exam­
ple” approach that supports K-regexes, lookarounds, capture
groups, and backreferences [59]. Both approaches use a hu­
man in the loop to provide good examples [29], [59]. Finally,
Claver et al. [30] proposed a synthesis-based approach that
they evaluate with synthetic regexes.

These tools have been evaluated for effectiveness, but
not for usability. Our fix strategies complement these tools
by improving developer’ understanding of the fix (§9).

Non-regex-based Workarounds:
Recovering From ReDoS. After a system containing a

ReDoS vulnerability is deployed, it is possible to detect
and mitigate ReDoS attacks. Bai et al. proposed a ReDoS­
specific approach, applying deep learning to detect and sand­
box attack strings [60]. Atre et al. proposed using adversarial
scheduling to mitigate adversarial complexity attacks [61].
Approaches that detect anomalous resource utilization, e.g.,
time [62], CPU [57], or application-level concepts [63], can
also mitigate ReDoS. These approaches reduce the impact
of ReDoS, but do not remove the root cause.

Changing the regex engine. There are both classic and
more recent alternatives to the exponential-time backtrack­
ing regex algorithm. The earliest published regex match­
ing algorithms, by Brzozowski in 1964 [64] and Thomp­
son in 1968 [65], offer linear-time guarantees. There are
production-grade implementations of Thompson’s approach,
notably RE2 [66] and the engines in Rust [67] and
Go [68]. Microsoft has considered Brzozowski’s approach
for .NET [69], as well as deterministic [70], [71] or hy­
brid [72] matching strategies. However, programming lan­
guage maintainers have been slow to adopt these algorithms
because of the risk of regression and the limited support for

non-regular regex features [43].

4. Theory of Regex Infinite Ambiguity

Here we introduce an existing theory of regex ambiguity
[38], discuss its limitations, and present our novel theorems.

Recalling §2, a regex with an infinite degree of am­
biguity (IA) [40] has the necessary condition for super-
linear regex behavior [2], [11], [48]. Though the NFA-level
conditions for IA regexes (namely PDA and EDA regions)
are well known [40], we lack characterizations in terms of
regex syntax and semantics. We provide such a description
to support developers assessing or composing regexes.

Preliminaries: Brabrand & Thomsen [38] developed the
state of the art description of regex-level ambiguity. They
introduced an overlap operator, ∨∩ , between two languages
L(R1) and L(R2). The set L(R1) ∨∩ L(R2) contains the
ambiguity-inducing strings that can be parsed in multi­
ple ways across L(R1) and L(R2). More formally, with
X = L(R1) and Y = L(R2),

X ∨∩ Y = {xay | x, y ∈ Σ ∗ ∧a ∈ Σ+s.t. x, xa ∈ X∧ay, y ∈ Y }

Using this operator, Theorem 0 summarizes their findings.

Theorem 0 (Brabrand & Thomsen [38]). Given unam­
biguous regexes R1 and R2:
(a)	 R1|R2 is unambiguous iff L(R1) ∩ L(R2) = φ.
(b)	 R1 ·R2 is unambiguous iff L(R1) ∨∩ L(R2) = φ.
(c)	 R1 ∗ is unambiguous iff E ∈/ L(R1) ∧

L(R1) ∨∩ L(R1 ∗) = φ.

In their implementation of this Theorem, Brabrand &
Thomsen use Møller’s BRICS library [73], and actually rely
on what we call the Møller overlap operator, Ω. We use
this operator in our theorems. The Møller overlap operator
describes only the ambiguous core “a”:

X Ω Y = {∃ x, y ∈ Σ ∗ ∧a | a ∈ Σ+s.t. x, xa ∈ X∧ay, y ∈ Y }

Limitation: Given unambiguous regex components, Theo­
rem 0 specifies when a composed regex remains unambigu­
ous. Yet not all ambiguity is harmful. For example, the regex
\w|\d is finitely ambiguous. This regex formulation may
improve readability [74]; it is not a ReDoS risk.

Regex Infinite Ambiguity Theorems: This section
presents our regex ambiguity theory for composition with
alternation (Theorem 1), concatenation (Theorem 2), and
star (Theorem 3). Here we give proof sketches, examples,
and the ReDoS implications. Full proofs are in §B.

Theorem 1 (Ambiguity of Alternation). Given unam­
biguous regexes R1 and R2,
(a)	 R1|R2 is finitely ambiguous iff L(R1) ∩ L(R2) =

φ.
(b)	 R1|R2 cannot be infinitely ambiguous.

4

Proof sketch: The theorem states that given unambiguous
regexes R1 and R2, if R1|R2 is ambiguous, then it is always
finitely ambiguous. Since R1 and R2 are both unambiguous,
for any matching input w, there is only one path through
R1 and R2. Therefore, for R1|R2 and any matching input
w, there are at most two matching paths.

Example: For regex a*|a*, consider input “a...a” of
length N . Regardless of input length, the number of ac­
cepting paths will be 2: via the first a∗ or the second a∗.

ReDoS implications: If two regexes R1 and R2 are unam­
biguous, R1|R2 is always safe (cannot form IA).

Theorem 2 (Ambiguity of Concatenation). Sup­
pose unambiguous regexes R1 and R2, and that
L(R1) ∨∩ L(R2) = φ (so R1 ·R2 is ambiguous by The­
orem 0). Then:
(a)	 R1 ·R2 is infinitely ambiguous iff L(R1) contains

the language of a regex BC*D and L(R2) contains
the language of a regex EF*G, where E /∈ L(C) ∧
E /∈ L(F) ∧ L(C) ∩ L(F) ∩ L(DE) = φ.

(b) Otherwise, R1 ·R2 must be finitely ambiguous.

Proof sketch: ⇐= : Consider the string “bcc...cdeff...fg”
∈ L(R1 · R2) where c = f = de. It can be divided into
two strings “bcc...cd” ∈ L(BC*D) ⊆ L(R1) and “eff...fg”
∈ L(EF*G) ⊆ L(R2). By hypothesis, we can repeat the
substring “de” arbitrarily many times, and the resulting
string can be matched in R1 (by C*) or in R2 (by F*). We
can choose an arbitrarily long string and obtain arbitrary
ambiguity in R1 ·R2.

=⇒ : Suppose R1 ·R2 is infinitely ambiguous. The NFA
corresponding to R1 ·R2 cannot contain the EDA structure
because this requires a self-loop — i.e., that R1 or R2
is already ambiguous. Therefore the NFA of R1 ·R2 must
contain a PDA structure, as shown in Figure 1(a). We can
map the two loops π1 and π3 with C* and F* respectively;
and the bridge π2 with DE in the regex representation, where
L(C) ∩ L(F) ∩ L(DE) = φ.

Example: For regex (a*a)(aa*) on input “aa...a” of
length N , there are N accepting computations, one for each
of the indices of the input dividing the string into a left half
consumed by R1 and a right half consumed by R2.

ReDoS implications: Though two regexes R1 and R2 are
unambiguous, R1 ·R2 could be IA, thus concatenation should
be used with care. Theorem 2(a) implies that for R1 ·R2
to be IA, there must be a star component in both R1 and
R2. In §5, we introduce three forms of concatenation anti-
patterns based on this observation.

Theorem 3 (Ambiguity of Star). Given unambiguous
regex R,
(a)	 R∗ is infinitely ambiguous iff E ∈ L(R) ∨

L(R) Ω L(R∗) = φ.
(b)	 R∗ cannot be finitely ambiguous.

Proof sketch: The theorem states that given an unambigu­
ous regex R, if R∗ is ambiguous, then it is always infinitely
ambiguous. Suppose R∗ is ambiguous. Then there is some
input w that it can match in k ways, k > 1. So there is an
input ww that it can match in k ∗ k = k2 ways. The degree
of ambiguity increases as a function of input length.

Example: For the regex (a*)*, consider input “aaa...a”
of length N . There are two ways (inner * or outer *) to
match each ‘a’, making the total number of ways to match
to be 2N .

ReDoS implications: Even though an original regex R is
unambiguous, R∗ can be IA. In §5, we give an anti-pattern
that only checks for a subset of conditions for simplicity.

Theorem 4. Given a finitely ambiguous regex R, R∗
is always infinitely ambiguous.

Proof sketch: The proof follows the logic of Theorem 3.

Example: For the regex (a|a)*, consider an input
“aaa...a” of length N . There are two ways (first a or second
a) to match each ‘a’ of the input, for 2N matches in all.

ReDoS implications: If R is finitely ambiguous, from
alternation (R = P |Q) or concatenation (R = P ·Q), R∗
is always IA. Later in §5, we introduce two anti-patterns of
the form (P |Q)∗.

5. Anti-patterns for Regex Infinite Ambiguity

This section describes anti-patterns for IA regexes (IA
anti-patterns), derived from the preceding theory of regex
infinite ambiguity. Ideal anti-patterns would be as sound
and complete as the theory, but this goal must be balanced
against usability. With this in mind, we iteratively extracted
IA anti-patterns from the theory by dropping clauses from
theorems or combining the theorems in different ways.
These anti-patterns were refined through internal discussion.
We evaluate these anti-patterns in §7 and §8.

Table 1 summarizes our IA anti-patterns. As alternation
alone does not make a regex IA (Theorem 1), there are
Concatenation anti-patterns derived from Theorem 2, and
Star anti-patterns derived from Theorems 3 and 4.

Concatenation Anti-patterns: The Concat anti-patterns
come from Theorem 2. In Theorem 2, a regex R concate­
nates regexes R1 and R2 that contain the languages BC*D
and EF*G, respectively. The theorem states that the potential
vulnerability occurs in the sub-regex C*DEF*, which we
write in simplified form as P*SQ* for our anti-patterns. We
call S the “bridge” between P* and Q*.

Concat-1. This anti-pattern, where P ∗ Q∗ is a sub-regex
of R, represents the simplest form without the bridge S.
Developers must find a string matched in both P ∗ and Q∗.

Concat-2. This anti-pattern, where P ∗SQ∗ is a sub-regex
of R, has the bridge S component. Developers must find a
string matched in all P ∗, Q∗, and S.

5

Table 1: Our proposed IA anti-patterns. Each row indicates the anti-pattern, the theorem(s) from which it was derived, a
description, and an example of how the anti-pattern leads to ambiguity.

Anti-pattern Thm. Description Example

Concat 1 2 R = ...P*Q*... (R has a sub-regex P*Q*) — The two
quantified parts P* and Q* can match some shared string s.

\w*\d* — both classes can match digits [0­
9].

Concat 2 2 R = ...P*SQ*... — The two quantified parts P* and Q*
can match a string s from the middle part S.

\w*0\d* — the repeated classes \w and \d
can match the middle part 0.

Concat 3 2 R = ...P*S*Q*... — Advanced form of Concat 1. Since
S* includes an empty string, the ambiguity between P* and
Q* can be realized.

\w*:*\d* — The classes \w and \d overlap,
and the intervening :* can be skipped.

Star 1 1, 4 R*, R= (P|Q|...) — There is an intersection between
any two alternates, i.e., both match some shared strings.

(\w|\d)* — both classes match digits [0-9].

Star 2 3 R*, R= (P|Q|...) — You can make one option of the
alternation by repeating another option multiple times or by
concatenating two or more options multiple times.

(a|b|ab)* — The 3rd option, ab, matches
combinations of the first and second options.

Star 3 3 R*, R= (...P*...) — Nested quantifiers, provided RR
follows any of the Concat anti-patterns.

Expanding R=(0?\w*)* to RR yields
0?\w*0?\w*, which is IA by Concat 3.
Similarly, R=(xy*)* yields xy*xy*; this is
not IA by any Concat anti-pattern.

Concat-3. This anti-pattern, where P ∗ S ∗ Q∗ is a sub­
regex of R, is the case with optional bridge S. Like Concat­
1, developers must find a string matched in both P ∗ and Q∗.

Gap Analysis: The Concat anti-patterns represent all possi­
ble ways that the bridge component DE (from Theorem 2)
may appear as a sub-regex of the form E, S, or S∗. Thus,
there is no gap between theory and anti-patterns.

Star Anti-patterns: The Star anti-patterns come from The­
orem 3 and Theorem 4.

Star-1 and Star-2. These anti-patterns are designed to pre­
vent (some) regexes of the form R∗ where R = (P |Q|...).
Theorem 4 states that if R is finitely ambiguous, then
R∗ becomes IA. From Theorem 1(a), alternations may
introduce finite ambiguity. The Star-1 anti-pattern describe
the condition when the subregex (P |Q|...) becomes finitely
ambiguous. The Star-2 anti-pattern describe the condition
when the non-ambiguous (P |Q|...) form IA with the help ∗
according to Theorem 3.

Gap Analysis: There is a gap between Theorem 4 and
the Star-1 anti-pattern. Star-1 does not consider all possi­
ble forms of finitely ambiguous regexes. For instance, the
concatenation may also introduce finite ambiguity (Theo­
rem 2(b)). Thus, some regexes of the form (P ·Q)∗ could be
IA as well: e.g., ((a|ab)(c|bc))*. Also, the Star-2 anti-
pattern is one of the conditions that incorporate Theorem 3.
Thus regexes under missing conditions would appear as false
negatives for these anti-patterns.

Star-3. This anti-pattern prevent (some) regexes of the
form R∗ where R has a sub-regex P ∗. Theorem 3 states
the conditions when R∗ becomes IA. considering the first
condition E ∈ L(R) is relatively trivial. Yet, the second
condition L(R)ΩL(R∗) = φ requires reasoning about a
language overlap between L(R) and an arbitrary repetition
of L(R∗), which could be tricky. Based on the common

knowledge that a nested quantifier (e.g., (P ∗)∗) is bad [75],
the Star-3 anti-pattern only considers the case where R has
a sub-regex P ∗, as a generalized form of nested quantifiers.
The Star-3 anti-pattern further simplifies the condition and
asks developers to consider the overlap between L(R) and
(twice-repeated) L(R·R), using the Concat anti-patterns.

Gap Analysis: The Star-3 anti-pattern does not incorporate
all the conditions in Theorem 3. Regexes with the missing
conditions would appear as false negatives.

6. Fix Strategies for Regex Infinite Ambiguity

This section describes five fix strategies (F1–F5) that can
be broadly applied across the different IA anti-patterns. The
fix strategies are derived from various ways of invalidating
necessary conditions of Theorem 2 and Theorem 3. The
proposed fix strategies do not always preserve semantics.

Fix strategies: Table 2 summarizes the proposed five fix
strategies along with examples for each anti-pattern. We
evaluate their effectiveness in Experiment 3 (§9).
1) The first fix strategy (F1) is to add a delimiter between

the subregexes P and Q of the anti-patterns (e.g., P*Q*,
(P|Q)*) that can match the shared string(s). More
precisely, the delimiter makes L(C) ∩ L(DE) = φ
and/or L(F) ∩ L(DE) = φ in Theorem 2(a); and
L(R) Ω L(R∗) = φ in Theorem 3(a). For instance,
consider the regex \w*\d* (Concat 1). If we add a
delimiter ‘:’, the new regex \w*:\d* becomes non-IA
because L(\w) ∩ L(:) = φ and L(\d) ∩ L(:) = φ.
Table 2 provides examples for the other anti-patterns.

2) The second fix strategy (F2) is to reduce one of the sub­
regexes P and Q so that it no longer matches any of the
shared strings. In other words, the fix F2 makes L(C) ∩
L(F) = φ in Theorem 2(a); and L(R) Ω L(R∗) = φ

6

Table 2: Fix strategies. Each strategy is illustrated with respect to each anti-pattern, within the limit of the example provided.

Concat 1 Concat 2 Concat 3 Star 1 Star 2 Star 3
Fix Description Anti-pattern: ...P*Q*... ...P*SQ*... ...P*S*Q*... (P|Q|...)* (P|Q|...)* (...P*...)* Freq.

Example: \w*\d* \w*0\d* \w*:*\d* (\w|\d)* (a|b|ab)* (0?\w*)*

Add a delimiter between the
F1	 sub-regexes P and Q that \w*:\d* \w*:0\d* \w*:+\d* (\w*|:\d)* (a:|b|ab)* (:0?\w*)* 12

can match a shared string.

Reduce one of the sub-regexes
F2	 P and Q so that it no longer [a-zA-Z]*\d* [a-zA-Z]*0\d* [a-zA-Z]*:*\d* ([a-zA-Z]|\d)* (b|ab)* (0?[a-zA-Z])* 10

matches any of the shared strings.

Reduce both the sub-regexes

P and Q so that they no longer

match any of the shared strings,

F3	 and add the shared string(s) in a \w* N/A N/A \w* (a|b)* \w* 3
disjunction. In many cases, this
will resemble making a superset
of the two sub-regexes.

Reduce or remove repetition in at
F4	 least one of the sub-regexes \w{,10}\d{,10} \w{,10}0\d{,10} \w{,10}:*\d{,10} (\w|\d){,10} (a|b|ab){,10} (0?\w{,10}){,10} 13

P and Q that match a shared string.

Remove or substantially modify add logic to add logic to add logic to	 add logic to
F5	 the sub-regexes P and Q and catch non-digits catch non-digits catch non-digits \w*|\d* a+|b+|(ab)+ catch 0, then 16

add logic for the semantic changes. then use \d* then use 0\d* then use :*\d* use \w*

in Theorem 3(a). For instance, refer to the same regex
\w*\d* (Concat 1). If we reduce \w to [A-Za-z_]
so that it does not overlap with \d, the new regex
[A-Za-z_]*\d* is not IA since L([A-Za-z_]) ∩
L(\d) = φ.

3) The third fix strategy (F3) is to reduce the subregexes P
and Q so that they no longer match any of the shared
strings, and add the shared string(s) in a disjunction.
In many cases, this will resemble making a superset
of the two sub-regexes. Effectively, the fix F3 has the
same effect as F2 that excludes any shared string(s), yet
it additionally keeps the shared string(s) in a disjunc­
tion, making the fix semantic-preserving. For example,
consider (\w|\d)* (Star 1). Suppose we reduce \w
to [A-Za-z_] and reduce \d to null so that they no
longer match the shared string(s) [0-9]. Then we add
the subregex [0-9] in a disjunction. Finally, we get
([A-Za-z_]|[0-9])*, which is equivalent to \w*.
Note that \w is a superset of \w and \d, and the old
and new regexes match the same language.

4) The fourth fix	 strategy (F4) is to reduce or remove
repetition in at least one of the subregexes P and Q
so that the shared string(s) cannot be matched infinitely.
Both Theorem 2 and Theorem 3 require an unbounded
repetitions (a star quantifier). The fix F4 in effect turns
unbounded repetitions to bounded ones. For example in
Star 1 anti-pattern, we can replace the regex (\w|\d)*
with (\w|\d){0,10} permitting only up to 10 repe­
titions.

5) The fifth fix	 strategy (F5) is to remove or substan­
tially modify the subregexes P and Q and handle se­
mantic changes elsewhere. The fix F5 capture general
non-systematic fixes that may introduce more semantic
changes than the other fixes. For example, the regex
(\w|\d)* can be fixed to \w*|\d*.

Evaluation of Practical Relevance: We analyzed the 54
developer-created regex fixes reported by Davis et al. [2].
We classified each fix into one of these five strategies. The
last column in Table 2 reports the frequency of each fix
strategy. We also observed that developers value simplicity
in the fix. To preserve the original (vulnerable) regex’s
structure, they introduced semantic changes (51/54 = 94%).

7. Experiment 1: Effectiveness of Anti-patterns

Our proposed IA anti-patterns (§5) were derived from
our theory (§4), but we deliberately introduced inaccuracy in
favor of simplicity. In this section, we evaluate the impact of
these deviations over the largest available regex corpus [32].
We measured effectiveness using precision and recall.

7.1. Experimental Design

Studied Techniques: Our IA anti-patterns. We detected
each anti-pattern using static analysis. We parsed regexes
in PCRE format [36] using an ANTLR 4 grammar and
parser [76]. We used the BRICS [73] tool to check whether
multiple sub-regex parts can generate any shared string.

We implemented our IA anti-patterns to support the
common case of K-regexes, i.e., regexes that use only
Kleene-regular regexes (cf. §2). Our prototype also ex­
cludes extended POSIX and Unicode character classes for
simplicity. These limitations are consistent with past ap­
proaches [17]–[20], [22]–[25].

State-of-the-art (SOA) anti-patterns. For comparison, we
also executed the state-of-the-art (SOA) anti-patterns that
characterize IA regexes [2]. We used the automatic detector
provided by Davis et al. [2]. These anti-patterns lack a

7

Table 3: State of the art IA anti-patterns, as described by
Davis et al. [2]. Each row indicates the anti-pattern, its
description. and an example.

Anti-pattern Description

QOA The two quantified \w* nodes overlap, and
(Quantified are adjacent because one can be reached from
Overlapping the other by skipping the optional octothorpe.
Adjacency) From each node we walk forward looking

for a reachable quantified adjacent node with
Example: an overlapping set of characters, stopping at
/\w*#?\w*/ the earliest of: a quantified overlapping node

(QOA), a non-overlapping non-optional node
(no QOA), or the end of the nodes (no QOA).

QOD Here we have a quantified disjunction

(Quantified (/(...|...)+/), whose two nodes overlap

Overlapping in the digits, 0-9.

Disjunction)

Example:
/(\w|\d)+/

Star height >1 To measure star height, we traverse the regex
and maintain a counter for each layer of

Example: nested quantifier: +, *, and check if the counter
/(a+)+/ reached a value higher than 1. In such cases,

the same string can be consumed by an inner
quantifier or the outer one, as is the case for
the string “a” in the regex /(a+)+/.

theoretical basis, so we expect them to perform worse. Davis
et al. described three anti-patterns, listed in Table 32

Ground Truth: We assessed ground truth for whether a
regex is IA using Weideman et al.’s detector [18], [19].
This detector tests if a regex is IA by analyzing its NFA
(Figure 1). Since the Weideman tool uses automata theory
instead of regex semantic theory, it provides an independent
check on the anti-patterns (and our underlying theory).

Metrics: The standard metrics of precision and recall [77].

Dataset: We evaluated the studied anti-patterns in the
largest available dataset of real-world regexes [32] (537,806
regexes). This dataset has been used by previous studies for
measuring ReDoS [32], fixing ReDoS [43], [78], and mea­
suring general characteristics of regexes [37]. We analyzed
209,188 regexes from this dataset — one order of mag­
nitude larger than the evaluation of past ReDoS-detection
approaches (15,000–30,000 regexes [18], [19], [21], [26]).

We curated the dataset for this experiment: (1) We
removed the 295,151 regexes that were not supported by
the ground truth tool [19]).3 According to our ground truth,
32,005 of our studied regexes were IA. (2) We discarded
32,413 additional regexes that were not supported by the

2. As might be expected, these anti-patterns resemble those presented
in Table 1. The main difference is in the nuanced definition of “overlap”
available from our IA theory.

3. While our implementation of our IA anti-patterns supported a larger
percentage of the dataset, we discarded those for which we could not collect
ground truth.

Table 4: Comparison of Precision and Recall between our
IA anti-patterns and SOA anti-patterns.

Anti-patterns Precision Recall
Our IA anti-patterns 100% 99%

SOA anti-patterns [2] 50% 87%

BRICS library [73] used in our anti-pattern prototype. (3)
We discarded 1,054 additional regexes with POSIX or Uni­
code character classes not supported by our implementation.

The implementation of our IA anti-patterns supports
450,753 regexes (83.8%) of the dataset (10.2% had advanced
or non-regular features; 6% unsupported by BRICS). This
level of completeness is comparable to prior research pro­
totypes for regex analysis [20], [23], [43].

Finally, we measured regex generalizability metrics [37]
in the regexes that we kept and filtered out. We found that
they were similar in median: length (18 vs. 19), paths (1 vs.
1), features (3 vs. 4), and ratio of IA regexes flagged by our
anti-patterns (15% vs. 15.8%).

7.2. Results

How Effective were Our IA Anti-patterns Compared to
the SOA Anti-patterns?. In Table 4, we report the results
for our studied anti-pattern families. It shows that our pro­
posed IA anti-patterns provided a substantial improvement
in both precision (100% compared to 50%) and recall (99%
compared to 87%) when compared to the SOA anti-patterns.
Our IA anti-patterns addressed many of the false positives
of the SOA. For example, the Star height > 1 anti-pattern
can produce many false positives e.g., the non-IA regex
/(b*c)*/ has Star height = 2. Our IA anti-patterns also
reduced the number of false negatives of the SOA, e.g., for
regexes like (a|b)*(ab)* and (a|b|ab)*. The SOA
anti-patterns find no overlap between (a|b) and (ab) and
would not label them as IA. In contrast, our Concat 1 and
Star 2 anti-patterns, respectively, would label both as IA.

We note that we observed higher precision and recall
achieved by the SOA anti-patterns than was reported by their
original study [2]. We suggest two reasons: we studied a
different dataset, and we assumed full match for unanchored
regexes (e.g., converting a+ to /ˆ.*?a+$/) [32]), which
reveals more IA regexes in the dataset.

Finally, we also performed a deeper investigation into
the root cause of the false negatives of our IA anti-patterns
(the 1% of IA regexes that they did not flag as IA). The
false negatives in our experiment were mainly regexes with
constructions that were too complex for our current anti-
pattern scripts to detect for the limitation of Star anti-
patterns discussed in §5. While this limitation of our im­
plementation caused a few false negatives (affecting only
1% of IA regexes), our implementation is still sound for
our studied dataset — it caused no false positives.

How Prevalent was each of our IA Anti-patterns?. Table 5
shows the prevalence of each of our proposed IA anti-
patterns in our studied dataset, i.e., the ratio of IA regexes
that were detected by each IA anti-pattern. Note that the

8

Table 5: Prevalence of each of our proposed IA anti-patterns
within the studied dataset. As some regexes fit multiple IA
anti-patterns, the final row eliminates double-counting.

IA Anti-pattern # Regexes Prevalence
Concat 1 17,349 54%
Concat 2 12,419 39%
Concat 3 414 1%

Star 1 192 <1%
Star 2 639 2%
Star 3 1,133 4%

All anti-patterns 31,537 99%

prevalence ratios do not add up to 100%, since some IA
regexes may contain multiple anti-patterns.

We make multiple observations in this table. First, all our
IA anti-patterns as a group provided high recall (99%); false
negatives are rare. Second, we observed wide variations in
the prevalence of each individual anti-patterns. This means
that our set of anti-patterns could be further simplified and
still obtain very high recall altogether. Somebody wanting
to learn only a single anti-pattern could learn only Concat
1 and still cover 54% of IA regexes — adding Concat 2,
one would cover the large majority (> 90%) of IA regexes,
and so on. This confirms past research that found that poly­
nomial regexes were much more prevalent than exponential
ones [62]. We believe that this does not mean that developers
are already good at avoiding some anti-patterns, but instead
that the kinds of problems that would require a Concat
regex are more common than those that would require a
Star one. However, future work would be needed to answer
this question. Finally, before considering ignoring the less
common (lower prevalence) IA anti-patterns, one should
also consider their risk. While the star anti-patterns are less
common (about 6% of all IA regexes), they are riskier —
our theory shows that they lead to exponential ambiguity.

Summary for Experiment 1: Our IA anti-patterns correctly
identified IA regexes with substantially higher effectiveness
(100% precision, 99% recall) than the SOA anti-patterns
(50% precision, 87% recall).

8. Experiment 2: Effectiveness when Applied
by Humans

Our IA anti-patterns can identify IA regexes with high
precision and recall (§7), but their effectiveness may be
reduced when applied manually [31]. Here we report on
a human-subjects experiment evaluating the effectiveness of
our IA anti-patterns when applied manually.

8.1. Experimental Design

Overview: We asked 20 software developers to perform 5
regex composition tasks. To study a context in which devel­
opers may prefer to apply IA anti-patterns manually [31],
we studied simple regex composition tasks. We followed a
within-subjects approach: each subject applied both our IA

anti-patterns and the state-of-the-art (SOA) ones. Among 20
participants, half (10) used our anti-patterns first, and the
other half used the SOA ones first. We measured whether
subjects correctly identified IA in their regexes.

Treatments: We showed subjects our IA anti-patterns
as described in Table 1 and the SOA anti-patterns using
verbatim text from Davis et al.’s original description of
the anti-pattern, and of how it should be applied (described
in Table 3). Note that we did not study a control group that
used no anti-patterns. Experiment 1 already answers what
a control group would show: when developers are given no
support, they write thousands of vulnerable regexes (§7).

Tasks: Table 9 shows the 5 tasks of Experiment 2. Task
1 was an easy warm-up task, to familiarize subjects with
the structure of the experiment. The next three tasks (Tasks
2, 3, 4) evaluated limitations that we identified in the three
SOA anti-patterns, to learn if our IA anti-patterns were more
effective in those scenarios. In task 2, Star height > 1 may
produce a false positive, assessing the regex as IA. In task
3, QOA may produce a false negative, assessing the regex
as non-IA. In task 4, QOD may produce a false negative.
Finally, task 5 evaluated a scenario in which the SOA anti-
patterns are successful, to learn if our IA anti-patterns are
comparable in such a scenario. We expected both sets of
anti-patterns to perform equally in tasks 1 and 5, and our
IA anti-patterns to be more effective in tasks 2, 3, and 4.

Within-Subjects Protocol: Our protocol had three steps:
(1) Training: We shared background information in: (i)
regex syntax and useful terminology, so that they knew
correct regex syntax; and (ii) regex ambiguity and ReDoS,
so that they understood the practical utility of the task and
thus increase their engagement. (2) First set of anti-patterns:
We taught subjects one set of anti-patterns. They completed
the 5 regex composition tasks, producing a regex that is
not IA, using the given anti-patterns. (3) Second set of anti-
patterns: We taught subjects the other set of anti-patterns.
They performed the same 5 tasks, in the same order, using
the other anti-patterns.

We let subjects ask clarifying questions. We asked them
to think aloud. The experiment took ∼1 hour per subject.
Subjects were compensated with a $15 gift card.

Subjects: Subjects were recruited via posts on Twitter,
Reddit (r/regex), and our institutional mailing lists. We
asked subjects to report their years of professional soft­
ware development and their experience with regexes (self­
reported, based on popular regex features following Michael
et al. [46]). We had 27 respondents, and kept the 21 respon­
dents who reported some experience in both categories. Af­
ter performing the experiment, we discarded one additional
subject who composed incorrect regexes for 70% of the
tasks (they did not match the example inputs provided in the
specification). Thus, in total, we analyzed the performance
of 20 subjects. We list their demographics in Table 7.

Metrics: For each studied task and anti-pattern set, we mea­
sured success using Detection Effectiveness: the percentage
of subjects that correctly identified whether their composed

9

Table 6: Regex composition tasks studied in Experiment 2.

Typical Task Description solution
1	 Write a regex to match one or more non-IA:

‘b’ followed by a single ‘c’. Example b+c
matching strings: bc, bbc, bbbbc, bbbbbc,
bbbbbbbbbbbbbbbbbbbbbc

2	 Write a regex to match one or more non-IA:
repetitions of the following: one or more (b+c)+
‘b’ followed by a single ‘c’. Example
matching strings: bcbc, bbcbbcbbc, bbbb­
bcbbbbbc, bbbbbbbbbbbbbbbbbbbb­
bcbbbbbbbbbbbbbbbbbbbbbc

3	 Write a regex to match one or more IA:
‘a’ or ‘b’, followed by one or more (a|b)+(ab)+
repetitions of ‘ab’. Example matching
strings: aab, bab, aaab, aaaaab, bab, bb­
bab, aaaabababab, bbbbababababab

4	 Write a regex to match one or more oc- IA:
currences of the strings ‘a’, ‘b’, or ‘ab’. (a|b|ab)+
Example matching strings: aaaaaaaaaa,
bbbbbbbbbbbb, ababababababababab

5	 Write a regex to match one or more IA:
‘a’ followed by an optional ‘b’ followed (a+b?a+)
by one or more ‘a’. Example matching
strings: aaaabaa, aaaaa, abaaaa

Table 7: Demographics of Experiment 2: subjects’ experi­
ence with software development, and with regexes.

Years Prof. Soft. Dev. Exp. with Regexes
< 1 1-2 3-5 Novice Interm. Expert

Subjects 7 7 6 9 11 0

regex was IA. We used the same approach for ground truth
as in Experiment 1 (§7.1). Note that we did not measure
whether subjects fixed the IA section in their regex, if any;
we measured the effectiveness of anti-patterns following the
goal of the original SOA anti-patterns — to identify IA.

Statistical Tests: We validated our results using hypothesis
testing and power analysis.

Hypothesis testing. We used the null hypothesis: H0: sub­
jects using our IA anti-patterns achieve as much detection
effectiveness as those using the SOA anti-patterns. We tested
H0 using a Wilcoxon signed rank test [79] (since we cannot
assume a normal distribution of results, and our observations
are paired) over the IA assessments produced by our IA anti-
patterns and the SOA ones for all tasks and orders. If this
test returned a low p-value (p < 0.05), we rejected H0.

Power analysis. We used power analysis to determine if
our sample size was sufficient to support a statistically sig­
nificant expected effect size in detection effectiveness [80].
We looked for standard power of 0.8, standard statistical
significance of p < 0.05, with our observed effect size (i.e.,
the difference in detection effectiveness using our IA anti-
patterns vs. using the SOA anti-patterns for all tasks and
orders).

Table 8: Performance of subjects in Experiment 2: per­
centage of subjects correctly using each anti-pattern set to
identify if their composed regex was IA.

SOA first, IA after IA first, SOA after All orders
(N = 10) (N = 10) (N = 20)

Task SOA IA SOA IA SOA IA
1 100% 100% 100% 100% 100% 100%
2 10% 100% 0% 100% 5% 100%
3 20% 100% 20% 100% 20% 100%
4 30% 100% 20% 100% 25% 100%
5 100% 100% 100% 100% 100% 100%

All 52% 100% 48% 100% 50% 100%

8.2. Results

Table 8 summarizes our results for each order of application,
by each set of anti-patterns, for each task.
•	 Considering all tasks and treatment orders, subjects using

our IA anti-patterns achieved 100% detection effective­
ness, improving on the SOA anti-patterns (50%).

•	 Our hypothesis test showed a statistically significant im­
provement (p < .00001).

•	 Our observed effect size was 50%, comparing the final
columns in the bottom row of Table 8. Our power analysis
indicated that we studied a sufficient number of subjects:
we needed 11 and studied 20.

As we expected (§8.1), the SOA anti-patterns showed their
limitations in tasks 2, 3, and 4 — regardless of the ordering.
Also as expected, both sets of anti-patterns achieved 100%
detection effectiveness for tasks 1 and 5, also regardless
of ordering. We conclude that our IA anti-patterns are as
effective as the SOA ones when they are not limited, and
much more effective than them when they are.

Summary for Experiment 2: Our IA anti-patterns outper­
formed the SOA anti-patterns when applied manually (100%
vs. 50% effectiveness).

9. Experiment 3: Usability when Complement­
ing Existing Tools

Experiments 1 and 2 showed that our anti-patterns are
effective over a wide variety of regexes (§7), and can be
applied manually by humans (§8). However, developers may
prefer automatic tools, e.g., for complex regexes.

In Experiment 3, we studied whether our anti-patterns
and fix strategies complement automatic tools for real-world
regexes. Our goal is not to replace existing automatic tools
(we hope developers use them!), but to complement them,
to increase developer understanding of the task outcome.

9.1. Experimental Design

Overview: We asked 9 software developers to perform real-
world ReDoS detection and fixing. They performed tasks
over their own regexes from open-source projects. They first

10

used only an automatic tool, and then the tool combined
with our anti-patterns (for detection) and our fix strategies
(for fixing). Our design was within-subjects. We fixed the
order so we could measure their (hypothesized) increase in
understanding after adding our approach.

Treatments: For detection, our subjects first used a rep­
resentative detection tool (Weideman et al.’s [19]), and
then complemented it with our anti-patterns. We studied
Weideman et al.’s approach because they provide a mature
implementation with many stars in GitHub. For fixing, our
subjects first used a representative fixing approach (van der
Merwe et al.’s [27]), and then complemented it with our
anti-patterns and fix strategies. We studied van der Merwe et
al.’s approach because it is the only existing fixing approach
that does not modify the language accepted by the regex.4

To help these tools to perform their best, we trained our
subjects. For detection, we trained them on the purpose and
workings of Weideman’s detection tool, including the NFA-
based characterizations of IA that it detects in the regex (see
Figure 1). For fixing, we trained them on the purpose and
workings of Van Der Merwe’s algorithm, i.e., that it converts
the regex’s NFA to an equivalent unambiguous DFA, then
back to an equivalent regex. We also explained our anti-
patterns (Table 1) and fix strategies (Table 2).

Tasks: Table 9 shows the tasks of Experiment 3.
Detection Task. We asked our subjects to detect vulnera­

bility in 3 regexes, in a random order: a PDA regex, an EDA
regex, and a non-IA regex (see Figure 1). One of the PDA or
EDA regexes was the vulnerable one that we took from the
subject’s software project. For the other two regexes, we
used the same randomly chosen regexes from the dataset
studied in Experiment 1 (§7.1). For each regex, we showed
our subjects the output of Weideman’s detection tool, and
asked them how strongly they understood the vulnerability
in the regex. Then, we also showed them our anti-patterns,
asked them to identify the anti-pattern(s) that each regex fits
(to prompt them to use the anti-patterns), and asked them
the same question again.

Fixing Task. We asked our subjects to fix the vulnerability
in the regex that we took from their code. We showed them
their regex in the context of their project, and asked them
how strongly they understand it (to refresh their memory).
Then, we showed them the output of van der Merwe’s
approach: a non-IA version of their regex. We let them write
their own fix or take/adapt van der Merwe’s, and we asked
them our understanding questions. Then, we also showed
them our anti-patterns and fix strategies, again let them
modify their fix if they choose to, and again asked them
our understanding questions.

Within-Subjects Protocol: Our protocol had three steps:
(1) Training: This training was more in-depth than Ex­
periment 2 because the subjects had greater expertise. We
taught the technical details of ReDoS attacks (following [2]),
and showed the participants how the detection [19] and

4. The algorithm of van der Merwe et al. does not include an open-source
implementation. Our implementation is included in our artifact.

Table 9: Tasks of Experiment 3. Italics denote changing text
with each subject. Brackets denote subject answers.

Detection Task
Output of auto­
matic detection
tool

How strongly
you understand
makes this
vulnerable?

do
what
regex

Explain
your
rea­
soning

PDA
regex

Output of Weide­
man’s detection
tool [19]

[Very strongly, Strongly,
Neutral, Weakly, Very
weakly, Not Vulnerable]

[. . .]

EDA
regex

Output of Weide­
man’s detection
tool [19]

[Very strongly, Strongly,
Neutral, Weakly, Very
weakly, Not Vulnerable]

[. . .]

Non-IA
regex

Output of Weide­
man’s detection
tool [19]

[Very strongly, Strongly,
Neutral, Weakly, Very
weakly, Not Vulnerable]

[. . .]

Fixing Task
Output of auto­
matic fixing tool

How
you
what

strongly do
understand

makes the

Explain
your
rea­

resulting fixed
not vulnerable?

regex soning

Their
vulnera­
ble regex
in context

Output of van
der Merwe’s fix­
ing tool [27]

[Very strongly, Strongly,
Neutral, Weakly, Very
weakly, Not Vulnerable]

[. . .]

fixing [27] tools work. (2) Detection: We asked subjects
to detect IA in a set of regexes, first using only existing
automatic tools, and then combining them with our anti-
patterns. (3) Fixing: We asked subjects to fix an IA regex
that they wrote in their codebase to make it non-IA, first
using only existing automatic tools, and then combining
them with our anti-patterns and fix strategies.

We let subjects ask clarifying questions. We asked them
to think aloud. To simulate real-world conditions, we let
them use external resources, and showed them some re­
sources: a web interface for the studied tools, and two
websites for regex understanding (www.regex101.com and
www.regexper.com). The experiment took ∼1 hour per sub­
ject. Subjects were compensated with a $40 gift card.

Subjects: We recruited software developers that had writ­
ten a vulnerable regular expression in the PyPi [81] and
NPM [82] software ecosystem. To increase response rate,
we scanned ∼200K PyPi projects and ∼40K NPM projects
with some popularity (at least 1 star) and with recent activity
(at least one commit since January 2020). We extracted their
regexes; discarded any in test files or dependencies; and
identified vulnerable regexes using Davis et al.’s ensemble
of ReDoS detectors [32], This process resulted in 120 vul­
nerable regexes (99 from PyPI, 21 from NPM). We disclosed
these potential vulnerabilities to the 120 software developers
who last modified them. We invited those developers to
participate in our experiment. 9 of them agreed (8% response
rate) — demographics are in Table 10.

Metrics: We measured the success of our anti-patterns
or fix strategies as the increase in understanding that our

11

www.regex101.com
www.regexper.com

Table 10: Demographics of Experiment 3: subjects’ experi­
ence with software development, and with regexes.

Years Prof. Soft. Dev. Exp. with Regexes
3-5 6-10 > 10 Interm. Expert

Subjects 1 1 7 1 8

E[isting tools onl\
Anti-patterns and e[isting tools

Ver\
Zeakl\

Weakl\ NeXtral Strongl\
Ver\

strongl\

P1
P2
P3
P4
P5
P6
P7
P8
P9

AVG

Figure 2: Detection Task: Subjects consistently reported
stronger understanding of what makes their regex vulnerable
when using our anti-patterns to complement existing tools.

subjects reported after applying them. We asked our subjects
the same question twice, once after applying each treatment.
We also asked them to explain their reasoning (see Table 9).

For detection, we asked them how strongly they un­
derstood what makes the regex vulnerable, using a Likert
scale of: “Very strongly”, “Strongly”, “Neutral”, “Weakly”,
and “Very weakly” understand, and “Not vulnerable”. For
fixing, we asked them how strongly they understood what
makes the resulting fixed regex not vulnerable, using the
same scale. Finally, we asked them how helpful they found
the anti-patterns or fix strategies for their future overall.

Statistical Tests: We validated our results using hypothesis
testing and power analysis (as in §8.1).

Hypothesis testing. We set two null hypotheses. For
detection, H0: Subjects using our IA anti-patterns in com­
bination with existing tools report the same understanding
strength of what makes the regex vulnerable as those using
existing tools only. For fixing, H0: Subjects using our fix
strategies in combination with existing tools report the same
understanding strength of what makes the fixed regex not
vulnerable as those using existing tools only. We tested the
null hypothesis for each task using a Wilcoxon signed rank
test [79] (since we cannot assume a normal distribution of
results, and our observations are paired) over the reported
understanding scores for each treatment.

Power analysis. We again looked for standard power
of 0.8, standard statistical significance of p < 0.05, and
measured effect size as the increase in mean reported un­
derstanding for each task.

9.2. Results

Detection Task: We focus on how strongly subjects under­
stood what makes their own regex vulnerable (see Figure 2).
•	 Subjects using our anti-patterns to complement existing

tools reported median “Strongly” understanding the vul­

nerability, improving over using existing tools only (me­
dian “Very weakly”).

•	 Our hypothesis test showed a statistically significant im­
provement (p < 0.05).

•	 Our observed effect size was mean 2.1 Likert points —
bottom bar in Figure 2. Our power analysis indicated that
we studied a sufficient number of subjects: we needed 4
and studied 9.

Subjects also reported that the anti-patterns will be “Help­
ful” (N = 4) or “Very helpful” (N = 5) for their future
detection efforts. The following quote describes their most
common sentiment: “I will use the tool to see if there is
something wrong, and with the anti-patterns I can try to
understand why there is a problem”.

E[iVWing WoolV onl\
AnWi-paWWernV, fi[VWraWegieV, and WoolV

Ver\
Zeakl\

Weakl\ NeXWral SWrongl\
Ver\

VWrongl\

P1
P2
P3
P4
P5
P6
P7
P8
P9

AVG

Figure 3: Fixing Task: Subjects consistently reported
stronger understanding of what makes their resulting fixed
regex not vulnerable when they used our anti-patterns and
fix strategies to complement existing tools.

Fixing Task: Figure 3 shows our subjects’ reported under­
standing of what makes the fixed regex not vulnerable.
•	 Subjects using our anti-patterns and fix strategies to com­

plement existing tools reported median “Very strongly”
understanding, improving over using existing tools only
(median “Very weakly”).

•	 Our hypothesis test showed a statistically significant im­
provement (p < 0.05).

•	 Our observed effect size was mean 2.9 Likert points —
bottom bar in Figure 3. Our power analysis indicated that
we studied a sufficient number of subjects: we needed 2
and studied 9.

Subjects also reported that the anti-patterns and fix strategies
will be “Neutral” (N = 1), “Helpful” (N = 2), or “Very
helpful” (N = 6) for their future detection efforts. As an
example quote, one subject regarded the fixing tool as: “The
output does not make a whole lot of sense to me”. Another
said of the fix resulting from our fix strategies: “I understand
why this is ambiguous and how the change fixes it”. Finally,
almost all subjects (N = 8) were more comfortable fixing
their codebase with the fix produced using our fix strategies
than with the one produced by the existing tool (Figure 5
in Appendix).

Summary for Experiment 3: Subjects using our IA anti-
patterns and fix strategies to complement existing tools

12

reported much higher understanding, from median “Very
weakly” to median “Strongly” for detection, and to median
“Very strongly” for fixing.

10. Threats to Validity

Internal Validity: We took multiple measures to increase
internal validity. In Experiment 1 (§7), we tested the imple­
mentation scripts of our anti-patterns over small samples of
the dataset. We also curated our studied dataset to prepare it
for our experiments. We also used existing implementations
of tools where possible, viz. the SOA anti-patterns by Davis
et al. [2] and Weidemann et al.’s detector [19], to avoid
errors if implementing them ourselves.

In Experiment 2 (§8), we used best practices in human-
subject experiment methodologies in its design, e.g., [83],
[84]. We piloted the protocol on 3 pilot studies, which
helped us clarify the language describing the tasks (pilot
1) and the technical terms in the training (pilot 2). Pilot
3 showed that our script was adequate. To reduce social
desirability bias, we did not disclose who created any of
the anti-patterns, and we referred to them in the third person
(Anti-patterns 1 and 2). To avoid expertise bias, we asked
subjects to apply the given anti-patterns irrespective of their
perception of their correctness. To avoid learning bias, 10
random subjects used the SOA anti-patterns first, and the
other 10 used our IA anti-patterns first.

In Experiment 3 (§9) we likewise used best practices in
design. We piloted the protocol on 3 subjects. After pilot 1,
we adjusted the number of tasks to reduce the experiment
duration. After pilots 2 and 3, we clarified some terms in
the training. To reduce social desirability bias, we did not
disclose who created any of the tools or supplementary
approaches (even if we were asked); we referred to them
only as “Treatment 1” etc. Further, we separately and in­
dependently asked subjects their understanding using one
treatment and then using the other (as opposed to asking
them to compare treatments). Having subjects individually
decide and assign a specific score to each treatment reduces
the possibility of them unconsciously preferring the last
treatment. To reduce expertise bias (e.g., higher understand­
ing reported by more experienced subjects), all subjects
used both treatments. To reduce learning bias, subjects
used first the treatment that we anticipated would provide
lower understanding, i.e., the existing tools. If subjects used
first the treatment that truly provided higher understanding
(and second the one that truly produced lower), they would
misleadingly report higher understanding for the second
treatment; they cannot forget what they learned. Having the
combination of our anti-patterns, fix strategies, and existing
tools as the last treatment may have unconsciously nudged
subjects to report higher understanding for them. However,
subjects reported much higher understanding for this last
treatment with statistical significance, i.e., more likely due
to a real effect than to chance.

External Validity: We also took multiple measures to in­
crease external validity.

In Experiment 1 (§7), we evaluated the largest available
dataset of regexes [32].

In Experiment 2 (§8), our subjects had diverse levels
of professional software development experience. Their ex­
perience with regexes was at the novice and intermediate
levels, but we studied regex experts in Experiment 3. We
studied simple composition tasks to represent situations
when developers may choose to apply anti-patterns man­
ually, but they represented diverse scenarios. Furthermore,
our subjects composed solutions that were only slightly less
complex than typical real-world regexes according to [37].
For example, they had length 6-11 (median regex length
in Java: 15) and used 2-3 operators (Java: median 3). We
report the most common solution observed for each task in
Table 6. We also studied more complex real-world regexes
in Experiment 3.

In Experiment 3 (§9), we studied mostly regex experts
and complex real-world regexes to complement Experiment
2. We also made this experiment as realistic as possible by
having developers work with their own regexes, and giving
them free access to online resources.

Finally, both Experiment 2 and 3 studied a limited num­
ber of subjects (N = 20 and N = 9). However, we observed
large effect sizes in our results, we did so consistently, they
were statistically significant, and power analysis revealed
that fewer subjects would have been sufficient.

11. Conclusions
To secure software systems, developers need approaches

that are both sound and understandable. Prior to this pa­
per, the approaches to address regular expression security
problems provided theoretical guarantees, but were difficult
for developers to understand. Our goal was to complement
these existing approaches with understandable regex security
anti-patterns and fix strategies. To that end, we developed a
novel theory of regex infinite ambiguity that characterizes
vulnerable regexes to ReDoS, and a set of anti-patterns and
fix strategies derived from it. Our evaluation showed that
our IA anti-patterns identified vulnerable regexes with much
higher effectiveness than the state-of-the-art anti-patterns,
both when applied automatically and manually. Our anti-
patterns and fix strategies also substantially increased de­
veloper understanding when used alongside existing tools
to detect and fix vulnerable regexes. In the future, we plan
to apply this methodology to similar security problems in
domain-specific languages (e.g., in GraphQL [85]).

Research Ethics
Our human subjects experiments were overseen by the

appropriate Institutional Review Board (IRB).

Acknowledgments
We thank the reviewers for their constructive feed­

back. We thank Charles M. Sale for developing the www.
regextools.io platform for our experiment. Lee and Davis ac­
knowledge support from NSF award #2135156, and Servant
from URJC award C01INVESDIST.

13

www.regextools.io
www.regextools.io

Appendix A.
Replication Package

We have made our data and code publicly available for
replication [33].

It contains, for Experiment 1: i) the dataset used (§7.1),
ii) our implementation of Weideman’s detection tool [19]
used as ground truth (§7.1), and iii) the implementation of
our anti-patterns (§7.1). For Experiments 2 and 3: iv) the full
protocol used (§8.1 and §9.1), and v) our implementation
of van der Merwe’s fixing tool [27] (§9.1). Finally, vi) the
analysis of prevalence of our fix strategies (§6).

Appendix B.

Proofs of the Theorems

B.1. Definitions

We define the operators used in Theorems 2 and 3:

B.1.1. ∨∩ . Brabrand & Thomsen [38] introduced an overlap
operator, ∨∩ , between two languages L(R1) and L(R2).
The set L(R1) ∨∩ L(R2) contains the ambiguity-inducing
strings that can be parsed in multiple ways across L(R1) and
L(R2). More formally, with X = L(R1) and Y = L(R2),

X ∨∩ Y = {xay | x, y ∈ Σ ∗ ∧a ∈ Σ+s.t. x, xa ∈ X∧ay, y ∈ Y }

B.1.2. Ω. Brabrand & Thomsen use Møller’s BRICS li­
brary [73] for the implementation of their theorems, and
actually use what we call the “Møller overlap operator”, Ω.
We use this operator in our theorems. The Møller overlap
operator describes only the ambiguous core “a”:

X Ω Y = {∃ x, y ∈ Σ ∗ ∧a | a ∈ Σ+s.t. x, xa ∈ X∧ay, y ∈ Y }

B.2. Assumptions

In our theorems and proofs, we assume that we can
convert regexes to their equivalent, ambiguity-preserving, E-
free NFAs [19], [40].

B.3. Theorems & proofs

Brabrand & Thomsen’s Theorem 0 [38] provides the
conditions for unambiguity. Our proofs consider the effect
of negating the unambiguity condition, and distinguish the
conditions that lead to finite or infinite ambiguity.

B.3.1. Theorem 0: Brabrand & Thomsen’s [38] Theo­
rem. Given unambiguous regexes R1 and R2,
(a)	 R1|R2 is unambiguous iff L(R1) ∩ L(R2) = φ.
(b)	 R1 ·R2 is unambiguous iff L(R1) ∨∩ L(R2) = φ.
(c)	 R1 ∗ is unambiguous iff E ∈/ L(R1) ∧

L(R1) ∨∩ L(R1 ∗) = φ.

B.3.2. Theorem 1: Ambiguity of Alternation. Given un­
ambiguous regexes R1 and R2,
(a) R1|R2 is finitely ambiguous iff L(R1) ∩ L(R2) = φ.
(b)	 R1|R2 cannot be infinitely ambiguous.

The components of Theorem 1 follow from Lemma 1.

Lemma 1. Given unambiguous R1 and R2, if R1|R2 is
ambiguous it is always finitely ambiguous.

Proof. A string s may be matched against R1|R2 in four
ways: s may be matched by R1, by R2, by both, or by
neither. In any case, since R1 and R2 are unambiguous,
there are at most two ways for R1|R2 to match s.

B.3.3. Theorem 2: Ambiguity of Concatenation.
Suppose unambiguous regexes R1 and R2, and that
L(R1) ∨∩ L(R2) = φ (so R1 ·R2 is ambiguous by Theo­
rem 0). Then:
(a)	 R1 ·R2 is infinitely ambiguous iff L(R1) contains the

language of a regex BC*D and L(R2) contains the
language of a regex EF*G, where E ∈/ L(C) ∧ E ∈/
L(F) ∧ L(C) ∩ L(F) ∩ L(DE) = φ.

(b) Otherwise, R1 ·R2 must be finitely ambiguous.
2(a) is an iff so we need to prove:
⇐= : If L(R1) contains the language of a regex BC*D

and L(R2) contains the language of a regex EF*G, where
E /∈ L(C) ∧ E /∈ L(F) ∧ L(C) ∩ L(F) ∩ L(DE) = φ, then
R1 · R2 is infinitely ambiguous.

Proof. Consider a string q = bcmd ∈ L(BC*D) where b, d ∈
Σ∗ , c ∈ Σ+ , b ∈ L(B), c ∈ L(C), and d ∈ L(D). By
hypothesis, L(BC*D) ⊆ L(R1), so q ∈ L(R1). Similarly,
consider another string r = efng ∈ L(EF*G) where e, g ∈
Σ∗ , f ∈ Σ+ , e ∈ L(E), f ∈ L(F), and g ∈ L(G). By
hypothesis, L(EF*G) ⊆ L(R2), so r ∈ L(R2). As L(C) ∩
L(F) ∩ L(DE) = φ, suppose c = f = de.

Consider the new string p = qr = bcmdefng ∈
L(R1)·L(R2) = L(R1 ·R2). In other words, R1 ·R2 should
include the following NFA accepting p.

... v1 v2 v3 ... b d e g
c f

For m = 2 and n = 2, p = bccdeffg. There are (m ×
n) + 1 = (2 × 2) + 1 = 5 ways to match. Ignoring prefix b
and suffix g, the five cases to match the middle ccdeff are:

v1 →(de=c) =c) =de)•	 v1 →c v1 →c v1 →(f v1 →(f v3
v1 →(de=c) =de)• v1 →c v1 →c v1 →(f v3 →f v3

•	 v1 →c v1 →c v1 →d v2 →e v3 →f v3 →f v3
v1 →(c=de) v3 →(de=f)•	 v1 →c v3 →f v3 →f v3

v1 →(c=de) v3 →(de=f)• v3 →c=f v3 →f v3 →f v3
where the superscript of an arrow represents the (input
observed = path taken) pair.

The degree of ambiguity grows for each larger m and
n. It can be shown that for an input string p = bcmdefng,
there will be (m × n)+1 ways to match. Here ambiguity is

14

a function of the input length. Therefore, R1 ·R2 is infinitely
ambiguous.

=⇒ : If R1 · R2 is infinitely ambiguous, then L(R1)
contains the language of a regex BC*D and L(R2) contains
the language of a regex EF*G, where E /∈ L(C)∧E /∈ L(F)∧
L(C) ∩ L(F) ∩ L(DE) = φ.

Proof. We will reason over an equivalent, ambiguity-
preserving, E-free NFA [40]. The NFA of an infinitely
ambiguous regex should include either a Polynomial or an
Exponential Degree of Ambiguity (PDA, EDA) section [40],
as shown in Figure 1.

We first show that if R1 · R2 is infinitely ambiguous,
then the NFA of R1 · R2 must contain a PDA (Figure 1(a)).
R1 and R2 are unambiguous, so none of them should have a
full EDA. Concatenating two regexes R1 · R2 cannot create
a new self loop of EDA. Thus, R1 ·R2 must contain a PDA.

Consider the two nodes p with the loop π1 and q with the
loop π3 in Figure 1(a). As R1 and R2 are unambiguous, nei­
ther R1 nor R2 can include both nodes p and q — because
then they would be infinitely ambiguous (not unambiguous).
Therefore, R1 and R2 each should have a part of PDA;
and the partition will appear somewhere along the path π2
as the loops π1 and π3 cannot be newly introduced via
concatenation.

Each partition of PDA consists of a prefix, a loop, and a
suffix, which can be mapped to a regex of the form PQ*R.
As a PDA is a part of the whole NFA, more generally,
we can conclude that (1) L(R1) contains the language of a
regex BC*D and (2) L(R2) contains the language of a regex
EF*G: i.e., L(BC*D) ⊆ L(R1) and L(EF*G) ⊆ L(R2)
where E /∈ L(C) ∧ E /∈ L(F).

After concatenation, the full PDA can be represented by
a language of the form BC*DEF*G, where C* is mapped
to the first loop π1, DE to the path π2, and F* to the
second loop π3. Let s be the string that meets the PDA
path conditions: label(π1) = label(π2) = label(π3). Then,
s ∈ L(C) (by label(π1)), s ∈ L(DE), and s ∈ L(F). And
thus L(C) ∩ L(F) ∩ L(DE) = φ.

Theorem 2(b) follows from elimination with Theorem 0.

B.3.4. Theorem 3: Ambiguity of Star. Given unambiguous
regex R,
(a)	 R∗ is infinitely ambiguous iff E ∈ L(R) ∨

L(R) Ω L(R∗) = φ.
(b)	 R∗ cannot be finitely ambiguous.

The components of Theorem 3 follow from Lemma 2.

Lemma 2. If R* is ambiguous, it is always infinitely am­
biguous.

Proof. We prove this by induction. From the contrapositive
of Theorem 0(c), if R∗ is ambiguous, L(R) ∨∩ L(R∗) = φ.
There exists an input string s = xay such that 1) x, y ∈ Σ∗ ,
2) a ∈ Σ+, 3) x, xa ∈ L(R), 4) y, ay ∈ L(R∗). In other

words, there are at least 2 = 21 ways to parse s (i.e., x ∈
L(R) then ay ∈ L(R∗); or xa then y).

' 'Now consider ss = (xay)(xay). Let x = x, a =
'	 ' ' 'a, y = yxay then, ss = x a y . Then the following

'	 ' Σ∗ ' Σ∗conditions are true: (1) x , y ∈ , (2) a ∈ , (3)
'	 ' ' 'x , x a' ∈ L(R), and (4) y , a y' ∈ L(R ∗ RR∗) ⊂ L(R∗).

For each xay there are at least 2 accepting paths. Therefore,
for ss there are at least 4=22 accepting paths, and the degree
of ambiguity grows for each additional concatenation of an
s. Therefore, R∗ is infinitely ambiguous.

B.3.5. Theorem 4: Finite to Infinite. Given a finitely
ambiguous regex R, R∗ is always infinitely ambiguous.

Proof. If R is finitely ambiguous by definition there exists
an input string s for which there will be at least 2 accepting
paths. For R∗, we can increase the length of input string
as much as we want because of the ∗. Now for input string
ss, there will be at least 4 = 22 accepting paths as we have
at least 2 options for each s. By the same logic, for input
string sss.... where length of the input string is n, there will
be at least 2n accepting paths.

Therefore, R∗ is infinitely ambiguous.

B.4. Limitations

Our theorems do not cover the cases when R1 and
R2 are finitely ambiguous. In such scenario, our expec­
tation is that Alternation (R1|R2) would always yield a
finitely ambiguous regex. We also expect that Concatena­
tion (R1 · R2) would still yield an infinitely ambiguous
regex if L(R1) contains the language of a regex BC*D
and L(R2) contains the language of a regex EF*G, where
E /∈ L(C) ∧ E /∈ L(F) ∧ L(C) ∩ L(F) ∩ L(DE) = φ. However,
whether this is the only case is less clear. Still, despite this
limitation, our theorems allowed us to derive anti-patterns
(§5) and fix strategies (§6) that substantially improved the
effectiveness of the SOA ones (§7, §8), and the usability of
existing automatic detection and fixing tools (§9).

Appendix C.
Other Figures

C.1. CVEs Increasing Year by Year

We observe annual growth in ReDoS CVEs from 2010
to the present. Figure 4 shows the trend of ReDoS CVEs
since 2010. The incidence of ReDoS CVEs grew from 2 in
2010 to 20 in 2021.

C.2. Fix Acceptance

We asked the participants of Experiment 3 (§9) how
comfortable they were replacing the vulnerable regex in their
codebase with the fixes provided by each repair treatment.
As shown in Figure 5, almost all subjects were more com­
fortable with the fix produced using our anti-patterns and
fix strategies.

15

Figure 4: The data were obtained by a two-step process: a
preliminary labeling of the CVE database using key words
and phrases (e.g., “ReDoS” or “extremely long time” with
a reference to regular expressions), followed by a manual
inspection for accuracy.

Using aXWomaWic repair Wool
Using anWi-paWWern fi[sWraWegies

Ver\
 XncomforWable

UncomforWable
NeXWral

ComforWable Ver\
comforWable

P1
P2
P3
P4
P5
P6
P7
P8
P9

AVG

Figure 5: Fixing Task: How comfortable our subjects re­
ported being with fixing their codebase with the fix produced
by each treatment.

References

[1]	 C. Chapman and K. T. Stolee, “Exploring regular expression usage
and context in Python,” International Symposium on Software Testing
and Analysis (ISSTA), 2016.

[2]	 J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The Impact
of Regular Expression Denial of Service (ReDoS) in Practice: an
Empirical Study at the Ecosystem Scale,” in The ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2018.

[3]	 Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V.
Jagadish, “Regular expression learning for information extraction,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP 08), 2008, pp. 21–30. [Online].
Available: http://dl.acm.org/citation.cfm?id=1613715.1613719

[4]	 V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch,
“Hare: Hardware accelerator for regular expressions,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct 2016, pp. 1–12.

[5]	 L. Chiticariu, V. Chu, S. Dasgupta, T. W. Goetz, H. Ho,
R. Krishnamurthy, A. Lang, Y. Li, B. Liu, S. Raghavan, F. R. Reiss,
S. Vaithyanathan, and H. Zhu, “The systemt ide: An integrated
development environment for information extraction rules,” in
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data (SIGMOD 11), 2011, pp. 1291–1294. [Online].
Available: http://doi.acm.org/10.1145/1989323.1989479

[6] S. Efftinge and M. Völter, “oaw xtext: A framework for textual dsls,”
in Workshop on Modeling Symposium at Eclipse Summit, vol. 32,
2006, p. 118.

[7]	 D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in web applications,” in IEEE Sym­
posium on Security and Privacy (IEEE S&P), 2008, pp. 387–401.

[8]	 G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Proceedings of the 30th International Conference
on Software Engineering (ICSE ’08), 2008, p. 171–180. [Online].
Available: https://doi.org/10.1145/1368088.1368112

[9]	 “Owasp modsecurity core rule set,,” https://coreruleset.org/.

[10]	 N. L. Or, X. Wang, and D. Pao, “Memory-based hardware archi­
tectures to detect clamav virus signatures with restricted regular
expression features,” IEEE Transactions on Computers, vol. 65, no. 4,
pp. 1225–1238, 2016.

[11]	 S. Crosby, “Denial of service through regular expressions,” USENIX
Security work in progress report, 2003.

[12]	 A. Roichman and A. Weidman, “VAC - ReDoS: Regular Expression
Denial Of Service,” Open Web Application Security Project (OWASP),
2009.

[13]	 S. Exchange, “Outage postmortem,” http://web.archive.org/
web/20180801005940/http://stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016, 2016.

[14] Graham-Cumming, John, “Details of the cloudflare outage on july
2, 2019,” https://web.archive.org/web/20190712160002/https://blog.
cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/.

[15]	 C.-A. Staicu and M. Pradel, “Freezing the Web: A Study
of ReDoS Vulnerabilities in JavaScript-based Web Servers,”
in USENIX Security Symposium (USENIX Security), 2018.
[Online]. Available: https://www.npmjs.com/package/safe-regexhttp:
//mp.binaervarianz.de/ReDoS TR Dec2017.pdf

[16]	 E. Barlas, X. Du, and J. C. Davis, “Exploiting input sanitization for
regex denial of service,” in Proceedings of the 44th International
Conference on Software Engineering (ICSE ’22), 2022, p. 883–895.
[Online]. Available: https://doi.org/10.1145/3510003.3510047

[17]	 M. Berglund, F. Drewes, and B. Van Der Merwe, “Analyzing
Catastrophic Backtracking Behavior in Practical Regular Expression
Matching,” EPTCS: Automata and Formal Languages 2014, vol.
151, pp. 109–123, 2014. [Online]. Available: https://arxiv.org/pdf/
1405.5599.pdf

[18]	 N. Weideman, B. van der Merwe, M. Berglund, and B. Watson, “An­
alyzing matching time behavior of backtracking regular expression
matchers by using ambiguity of NFA,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 9705, 2016, pp. 322–334.

[19]	 N. H. Weideman, “Static Analysis of Regular Expressions,” MS
Thesis, no. December, 2017.

[20]	 V. Wustholz, O. Olivo, M. J. H. Heule, and I. Dillig, “Static Detection
of DoS Vulnerabilities in Programs that use Regular Expressions,” in
International Conference on Tools and Algorithms for the Construc­
tion and Analysis of Systems (TACAS), 2017.

[21]	 Y. Liu, M. Zhang, and W. Meng, “Revealer: Detecting and exploiting
regular expression denial-of-service vulnerabilities,” in 2021 2021
IEEE Symposium on Security and Privacy (SP), may 2021, pp.
1468–1484. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/SP40001.2021.00062

[22]	 J. Kirrage, A. Rathnayake, and H. Thielecke, “Static Analysis for
Regular Expression Denial-of-Service Attacks,” Network and System
Security, vol. 7873, pp. 35–148, 2013.

[23]	 A. Rathnayake and H. Thielecke, “Static Analysis for Regular Expres­
sion Exponential Runtime via Substructural Logics,” CoRR, 2014.

16

http://dl.acm.org/citation.cfm?id=1613715.1613719
http://doi.acm.org/10.1145/1989323.1989479
https://doi.org/10.1145/1368088.1368112
https://coreruleset.org/
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://doi.org/10.1145/3510003.3510047
https://arxiv.org/pdf/1405.5599.pdf
https://arxiv.org/pdf/1405.5599.pdf
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00062
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00062

[24]	 S. Sugiyama and Y. Minamide, “Checking Time Linearity of Reg­
ular Expression Matching Based on Backtracking,” Information and
Media Technologies, vol. 9, no. 3, pp. 222–232, 2014.

[25]	 M. Sulzmann and K. Z. M. Lu, “Derivative-Based Diagnosis of
Regular Expression Ambiguity,” International Journal of Foundations
of Computer Science, vol. 28, no. 5, pp. 543–561, 4 2017. [Online].
Available: http://arxiv.org/abs/1604.06644

[26]	 Y. Shen, Y. Jiang, C. Xu, P. Yu, X. Ma, and J. Lu, “Rescue:
Crafting regular expression dos attacks,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 18), 2018, p. 225–235. [Online]. Available:
https://doi.org/10.1145/3238147.3238159

[27]	 B. Van Der Merwe, N. Weideman, and M. Berglund, “Turning Evil
Regexes Harmless,” in South African Institute of Computer Scientists
and Information Technologists (SAICSIT), 2017. [Online]. Available:
https://doi.org/10.1145/3129416.3129440

[28]	 B. Cody-Kenny, M. Fenton, A. Ronayne, E. Considine, T. McGuire,
and M. O’Neill, “A search for improved performance in regular
expressions,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 17), 2017, p. 1280–1287.
[Online]. Available: https://doi.org/10.1145/3071178.3071196

[29]	 Y. Li, Z. Xu, J. Cao, H. Chen, T. Ge, S.-C. Cheung, and H. Zhao,
“Flashregex: deducing anti-redos regexes from examples,” in 2020
35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2020, pp. 659–671.

[30]	 M. Claver, J. Schmerge, J. Garner, J. Vossen, and J. McClurg, “Regis:
Regular expression simplification via rewrite-guided synthesis,” arXiv
preprint arXiv:2104.12039, 2021.

[31]	 B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?” in
2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 672–681.

[32]	 J. C. Davis, L. G. Michael IV, C. A. Coghlan, F. Servant, and D. Lee,
“Why aren’t regular expressions a lingua franca? an empirical study
on the re-use and portability of regular expressions,” in The ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2019.

[33]	 S. A. Hassan, “Improving Developers’ Understanding of Regex
Denial of Service Tools through Anti-Patterns and Fix Strategies,”
Dec. 2022. [Online]. Available: https://zenodo.org/badge/latestdoi/
575922405

[34]	 S. Kleene, “Representation of events in nerve nets and finite au­
tomata,” RAND PROJECT AIR FORCE SANTA MONICA CA,
Tech. Rep., 1951.

[35]	 M. Sipser, Introduction to the Theory of Computation. Thomson
Course Technology Boston, 2006, vol. 2.

[36]	 J. E. Friedl, Mastering regular expressions. O’Reilly Media, Inc.,
2002.

[37]	 J. C. Davis, D. Moyer, A. M. Kazerouni, and D. Lee, “Testing Regex
Generalizability And Its Implications: A Large-Scale Many-Language
Measurement Study,” in IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019.

[38]	 C. Brabrand and J. G. Thomsen, “Typed and unambiguous pattern
matching on strings using regular expressions,” in Proceedings of
the 12th international ACM SIGPLAN symposium on Principles and
practice of declarative programming (PPDP 10), 2010, pp. 243–254.

[39]	 M. O. Rabin and D. Scott, “Finite automata and their decision
problems,” IBM journal of research and development, vol. 3, no. 2,
pp. 114–125, 1959.

[40]	 A. Weber and H. Seidl, “On the degree of ambiguity of finite
automata,” Theoretical Computer Science, vol. 88, no. 2, pp. 325–
349, 1991.

[41]	 C. Allauzen, M. Mohri, and A. Rastogi, “General algorithms for
testing the ambiguity of finite automata,” in International Conference
on Developments in Language Theory. Springer, 2008, pp. 108–120.

[42]	 R. E. Stearns and H. B. Hunt III, “On the equivalence and containment
problems for unambiguous regular expressions, regular grammars and
finite automata,” SIAM Journal on Computing, vol. 14, no. 3, pp.
598–611, 1985.

[43]	 J. C. Davis, F. Servant, and D. Lee, “Using selective memoization
to defeat regular expression denial of service (redos),” in 2021 IEEE
Symposium on Security and Privacy (SP), Los Alamitos, CA, USA,
2021, pp. 543–559.

[44]	 H. Spencer, “A regular-expression matcher,” in Software solutions in
C, 1994, pp. 35–71.

[45]	 R. Cox, “Regular Expression Matching Can Be Simple And Fast
(but is slow in Java, Perl, PHP, Python, Ruby, ...),” 2007. [Online].
Available: https://swtch.com/∼rsc/regexp/regexp1.html

[46]	 L. G. Michael IV, J. Donohue, J. C. Davis, D. Lee, and F. Ser­
vant, “Regexes are Hard : Decision-making, Difficulties, and Risks
in Programming Regular Expressions,” in IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2019.

[47]	 J. C. Davis, “On the impact and defeat of regular expression denial
of service,” Ph.D. dissertation, Virginia Tech, 2020.

[48]	 S. A. Crosby and D. S. Wallach, “Denial of Service via Algorithmic
Complexity Attacks,” in USENIX Security, 2003.

[49]	 L. Turoňová, L. Holı́k, I. Homoliak, O. Lengál, M. Veanes, and
T. Vojnar, “Counting in regexes considered harmful: Exposing
ReDoS vulnerability of nonbacktracking matchers,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 4165–4182. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/turonova

[50]	 G. R. Bai, B. Clee, N. Shrestha, C. Chapman, C. Wright, and
K. T. Stolee, “Exploring tools and strategies used during regular
expression composition tasks,” in 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). IEEE, 2019, pp.
197–208.

[51]	 P. Wang, G. R. Bai, and K. T. Stolee, “Exploring regular expression
evolution,” in 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2019, pp.
502–513.

[52]	 Y. Li, Z. Chen, J. Cao, Z. Xu, Q. Peng, H. Chen, L. Chen, and S.-C.
Cheung, “{ReDoSHunter}: A combined static and dynamic approach
for regular expression {DoS} detection,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 3847–3864.

[53]	 R. McLaughlin, F. Pagani, N. Spahn, C. Kruegel, and G. Vigna,
“Regulator: Dynamic analysis to detect ReDoS,” in 31st USENIX
Security Symposium (USENIX Security 22), Boston, MA, Aug.
2022, pp. 4219–4235. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/mclaughlin

[54]	 T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “SlowFuzz: Au­
tomated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities,” in Computer and Communications Security (CCS),
2017. [Online]. Available: https://arxiv.org/pdf/1708.08437.pdf

[55]	 J. Wei, J. Chen, Y. Feng, K. Ferles, and I. Dillig, “Singularity:
Pattern fuzzing for worst case complexity,” in Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engi­
neering (ESEC/FSE 18), 2018, pp. 213–223.

[56]	 Y. Noller, R. Kersten, and C. S. P˘ areanu, “Badger: complexity as˘
analysis with fuzzing and symbolic execution,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 18), 2018, pp. 322–332.

[57]	 W. Meng, C. Qian, S. Hao, K. Borgolte, G. Vigna, C. Kruegel,
and W. Lee, “Rampart: Protecting web applications from cpu­
exhaustion denial-of-service attacks,” in 27th USENIX Security Sym­
posium (USENIX Security 18), 2018, pp. 393–410.

17

http://arxiv.org/abs/1604.06644
https://doi.org/10.1145/3238147.3238159
https://doi.org/10.1145/3129416.3129440
https://doi.org/10.1145/3071178.3071196
https://zenodo.org/badge/latestdoi/575922405
https://zenodo.org/badge/latestdoi/575922405
https://swtch.com/~rsc/regexp/regexp1.html
https://www.usenix.org/conference/usenixsecurity22/presentation/turonova
https://www.usenix.org/conference/usenixsecurity22/presentation/turonova
https://www.usenix.org/conference/usenixsecurity22/presentation/mclaughlin
https://www.usenix.org/conference/usenixsecurity22/presentation/mclaughlin
https://arxiv.org/pdf/1708.08437.pdf

[58]	 W. Blair, A. Mambretti, S. Arshad, M. Weissbacher, W. Robertson,
E. Kirda, and M. Egele, “Hotfuzz: Discovering algorithmic denial-of­
service vulnerabilities through guided micro-fuzzing,” arXiv preprint
arXiv:2002.03416, 2020.

[59]	 N. Chida and T. Terauchi, “Repairing dos vulnerability of real-world
regexes,” in 2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 2022, pp. 2060–2077.

[60]	 Z. Bai, K. Wang, H. Zhu, Y. Cao, and X. Jin, “Runtime recovery
of web applications under zero-day redos attacks,” in 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1575–
1588.

[61]	 N. Atre, H. Sadok, E. Chiang, W. Wang, and J. Sherry, “Surge­
protector: Mitigating temporal algorithmic complexity attacks using
adversarial scheduling,” in Proceedings of the 2022 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM),
New York, NY, USA, 2022.

[62]	 J. C. Davis, E. R. Williamson, and D. Lee, “A sense of time for
javascript and node. js: First-class timeouts as a cure for event handler
poisoning,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 343–359.

[63]	 H. M. Demoulin, I. Pedisich, N. Vasilakis, V. Liu, B. T. Loo, and
L. T. X. Phan, “Detecting asymmetric application-layer denial-of­
service attacks in-flight with finelame,” in 2019 USENIX Annual
Technical Conference (USENIX ATC), 2019, pp. 693–708.

[64]	 J. A. Brzozowski, “Derivatives of regular expressions,” Journal of the
ACM (JACM), vol. 11, no. 4, pp. 481–494, 1964.

[65]	 K. Thompson, “Regular Expression Search Algorithm,” Communica­
tions of the ACM (CACM), 1968.

[66]	 R. Cox, “Regular Expression Matching in the Wild,” 2010. [Online].
Available: https://swtch.com/∼rsc/regexp/regexp3.html

[67]	 T. R. P. Developers, “regex - rust,” https://docs.rs/regex/1.1.0/regex/.

[68] Google, “regexp - go,” https://golang.org/pkg/regexp/.

[69]	 O. Saarikivi, M. Veanes, T. Wan, and E. Xu, “Symbolic regex
matcher,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2019, pp. 372–
378.

[70]	 L. Hol´ al, O. Saarikivi, L. Turoˇ a, M. Veanes, and ık, O. Leng´	 nov´
T. Vojnar, “Succinct determinisation of counting automata via sphere
construction,” in Asian Symposium on Programming Languages and
Systems. Springer, 2019, pp. 468–489.

[71]	 L. Turoˇ a, L. Hol´ al, O. Saarikivi, M. Veanes, and nov´ ık, O. Leng´
T. Vojnar, “Regex matching with counting-set automata,” in Object-
oriented Programming, Systems, Languages, and Applications
(OOPSLA 20), Virtual, November 2020. [Online]. Available:
https://doi.org/10.1145/3428286

[72]	 S. Sung, H. Cheon, and Y.-S. Han, “How to settle the redos problem:
Back to the classical automata theory,” in Implementation and Appli­
cation of Automata, P. Caron and L. Mignot, Eds. Cham: Springer
International Publishing, 2022, pp. 34–49.

[73]	 A. Møller, “dk. brics. automaton–finite-state automata and regular
expressions for java,” 2010.

[74]	 A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
principles, techniques and tools, 2020.

[75]	 substack and Davis, “safe-regex,” https://www.npmjs.com/package/
safe-regex, 2013.

[76]	 “antlr-pcre,” https://web.archive.org/web/20210826063830/https:
//github.com/bkiers/pcre-parser.

[77]	 K. M. Ting, Precision and Recall. Boston, MA: Springer US,
2010, pp. 781–781. [Online]. Available: https://doi.org/10.1007/
978-0-387-30164-8 652

[78]	 N. Chida and T. Terauchi, “Automatic repair of vulnerable regular
expressions,” arXiv preprint arXiv:2010.12450, 2020.

[79]	 F. Wilcoxon, “Individual comparisons by ranking methods,” in Break­
throughs in statistics. Springer, 1992, pp. 196–202.

[80]	 P. D. Ellis, The essential guide to effect sizes: Statistical power,
meta-analysis, and the interpretation of research results. Cambridge
university press, 2010.

[81] “Pypi – the python package index,” https://pypi.python.org/pypi.

[82] “npm,” https://www.npmjs.com.

[83]	 B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in
Guide to advanced empirical software engineering. Springer, 2008,
pp. 63–92.

[84]	 J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Mea­
suring and modeling programming experience,” Empirical Software
Engineering, vol. 19, no. 5, pp. 1299–1334, 2014.

[85]	 A. Cha, E. Wittern, G. Baudart, J. C. Davis, L. Mandel, and J. A.
Laredo, “A principled approach to graphql query cost analysis,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Soft­
ware Engineering (ESEC/FSE 20), 2020, pp. 257–268.

18

https://swtch.com/~rsc/regexp/regexp3.html
https://docs.rs/regex/1.1.0/regex/
https://golang.org/pkg/regexp/
https://doi.org/10.1145/3428286
https://www.npmjs.com/package/safe-regex
https://www.npmjs.com/package/safe-regex
https://web.archive.org/web/20210826063830/https://github.com/bkiers/pcre-parser
https://web.archive.org/web/20210826063830/https://github.com/bkiers/pcre-parser
https://doi.org/10.1007/978-0-387-30164-8_652
https://doi.org/10.1007/978-0-387-30164-8_652
https://pypi.python.org/pypi
https://www.npmjs.com

	Improving Developers' Understanding of Regex Denial of Service Tools through Anti-Patterns and Fix Strategies
	

	Introduction
	Background
	Related Work
	Theory of Regex Infinite Ambiguity
	Anti-patterns for Regex Infinite Ambiguity
	Fix Strategies for Regex Infinite Ambiguity
	Experiment 1: Effectiveness of Anti-patterns
	Experimental Design
	Results

	Experiment 2: Effectiveness when Applied by Humans
	Experimental Design
	Results

	Experiment 3: Usability when Complementing Existing Tools
	Experimental Design
	Results

	Threats to Validity
	Conclusions
	Appendix A: Replication Package
	Appendix B: Proofs of the Theorems
	Definitions
	toto
	

	Assumptions
	Theorems & proofs
	Theorem 0: Brabrand & Thomsen's brabrand2010typed Theorem
	Theorem 1: Ambiguity of Alternation
	Theorem 2: Ambiguity of Concatenation
	Theorem 3: Ambiguity of Star
	Theorem 4: Finite to Infinite

	Limitations

	Appendix C: Other Figures
	CVEs Increasing Year by Year
	Fix Acceptance

	References

