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Abstract—Regular expressions are used for diverse purposes, 
including input validation and firewalls. Unfortunately, they 
can also lead to a security vulnerability called ReDoS (Regular 
Expression Denial of Service), caused by a super-linear worst-
case execution time during regex matching. Due to the severity 
and prevalence of ReDoS, past work proposed automatic tools 
to detect and fix regexes. Although these tools were evaluated in 
automatic experiments, their usability has not yet been studied; 
usability has not been a focus of prior work. Our insight is 
that the usability of existing tools to detect and fix regexes 
will improve if we complement them with anti-patterns and 
fix strategies of vulnerable regexes. 

We developed novel anti-patterns for vulnerable regexes, 
and a collection of fix strategies to fix them. We derived our 
anti-patterns and fix strategies from a novel theory of regex in­
finite ambiguity — a necessary condition for regexes vulnerable 
to ReDoS. We proved the soundness and completeness of our 
theory. We evaluated the effectiveness of our anti-patterns, both 
in an automatic experiment and when applied manually. Then, 
we evaluated how much our anti-patterns and fix strategies 
improve developers’ understanding of the outcome of detection 
and fixing tools. Our evaluation found that our anti-patterns 
were effective over a large dataset of regexes (N=209,188): 
100% precision and 99% recall, improving the state of the 
art 50% precision and 87% recall. Our anti-patterns were 
also more effective than the state of the art when applied 
manually (N=20): 100% developers applied them effectively 
vs. 50% for the state of the art. Finally, our anti-patterns 
and fix strategies increased developers’ understanding using 
automatic tools (N=9): from median “Very weakly” to median 
“Strongly” when detecting vulnerabilities, and from median 
“Very weakly” to median “Very strongly” when fixing them. 

Index Terms—Regular expression denial of service, Usability 

1. Introduction 

Regular expressions (regexes) are a tool for text pro­
cessing [1], [2]. Regexes are used across the system 

∗Sk Adnan Hassan is currently employed at Walmart Inc. 
†Some work performed while at Virginia Tech, U.S.A., and Universidad 
Rey Juan Carlos, Madrid, Spain. 

stack [3]–[6], including in security tasks such as input 
validation [7], [8] and web application firewalls [9], [10]. 
Unfortunately, regexes can themselves cause a security vul­
nerability because of the high worst-case time complexity 
of backtracking-based regex engine implementations. This 
algorithmic complexity vulnerability is known as Regular 
Expression Denial of Service (ReDoS) [11], [12]. For ex­
ample, ReDoS caused service outages at Stack Overflow 
in 2016 [13] and at Cloudflare in 2019 [14]. Researchers 
report hundreds of vulnerable regexes in the software supply 
chain [2] and in live web services [15], [16]. 

Many approaches have been proposed to address the 
ReDoS problem. Our work builds on those that try to detect 
and fix regexes. In this vein, some researchers character­
ized vulnerable regexes into anti-patterns for manual use 
by developers [2]. Others proposed tools to automatically 
detect [17]–[26] or fix [27]–[30] vulnerable regexes. All of 
these approaches have been evaluated solely via automatic 
experiments. Their usability has not been studied, jeopar­
dizing their impact in practice [31] — 95% of developers 
reject tools when they cannot understand the results [31]. 

The goal of this paper is to improve the usability of 
existing ReDoS defenses. Our insight is that the usability 
of existing tools to detect and fix regexes will improve if 
we complement them with anti-patterns and fix strategies 
of vulnerable regexes. We specifically aim to improve de­
veloper understanding of the outcome of the tools. 

For this goal, we developed novel anti-patterns for vul­
nerable regexes, and a collection of fix strategies to fix them. 
We derive our anti-patterns and fix strategies from our novel 
theory of regex infinite ambiguity (IA). Our theory charac­
terizes a fundamental component of vulnerable regexes: their 
infinitely ambiguous (IA) region. The IA region is what the 
state of the art anti-patterns characterize [2], what many 
detection tools detect, e.g., [18], [20], and what developers 
often fix in vulnerable regexes [2]. We refer to regexes 
with an IA region as IA regexes. Our anti-patterns and fix 
strategies complement existing detection and fixing tools, (1) 
by helping developers better understand the IA region of the 
vulnerable regex detected by the tool; and (2) by providing 
understandable fix strategies in addition to the ones proposed 
by fixing tools. 

Our evaluation proceeded in four phases: proving our 
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theory, and then running three experiments. First, we for­
mally proved the IA theory on which our anti-patterns are 
based (§4 and §B). Second, since we deliberately introduced 
inaccuracy in our anti-patterns in favor of simplicity, we 
evaluated their effectiveness in an automatic experiment. We 
compared our anti-patterns to the state-of-the-art ones over a 
large dataset of regexes (§7). Third, since low usability may 
lower effectiveness in manual use [31], we also evaluated 
the effectiveness of our anti-patterns when applied manually. 

Our paper provides a replication package [33] (see §A). 

2. Background 

Regular Expressions (Regexes) and Ambiguity: 
Regexes. Kleene proposed regular expressions as a nota­

tion to specify a language, i.e., a set of strings [34]. With a 
finite alphabet of terminal symbols, Σ, and metacharacters, rrrrWe compared our anti-patterns to the state-of-the-art ones ‘|’, ‘·’, and ‘∗’, the regular expression syntax is [35]: 

in a human-subjects experiment, simulating a context in R → φ r E r R1|R2 r R1 ·R2 r R1 ∗ 
rrrrrrr

σ 
which developers often prefer manual techniques [31], e.g.,
 where φ denotes the empty language; E is the empty string; 
when tools disrupt developer workflow, such as in regex
 
composition or when working with simple regexes (§8).
 

the characters σ ∈ Σ are terminal symbols; R1|R2 alter­
nates; R1 ·R2 concatenates; and R∗ repeats. The language 

Fourth, for more complex tasks, developers may prefer to 
use automatic tools. So, we also evaluated how our anti-
patterns and fix strategies complement the usage of existing 
automatic tools by improving their usability. In a second 
human-subjects experiment (§9), we measured if our anti-
patterns improve the understanding of the outcome of tools 
to (a) detect and (b) fix vulnerable regexes (§9). To the 
best of our knowledge, this is the first study of the usability 
of anti-patterns or tools to detect or fix vulnerable regexes 
when applied by humans. 

Our evaluation provided multiple findings. First, our 
underlying theory of regex infinite ambiguity was sound 
and complete. Second, our anti-patterns provided higher 
effectiveness (100% precision, 99% recall) than the state 
of the art anti-patterns [2] (50% precision, 87% recall) 
over a dataset of 209,188 real-world regexes [32]. Third, 
novice and intermediate developers (100% of 20 studied) 
increased their effectiveness at identifying IA in regexes 
over 5 different regex tasks, improving from a success rate 
of 50% to a rate of 100%. Fourth, the 9 expert developers 
who used our anti-patterns to complement detection tools 
increased their understanding of what makes a detected 
regex vulnerable: from median “Very weakly” to median 
“Strongly”. Similarly, when using our fix strategies to com­
plement fixing tools, they increased their understanding of 
what makes the resulting fixed regex not vulnerable: from 
median “Very weakly” to median “Very strongly”. 

This paper provides the following contributions: 
1) A sound and complete theory of regex infinite ambiguity 

(§4). 
2) Derived from this theory, IA anti-patterns (§5) and IA 

fix strategies (§6). 
3) A quantitative evaluation of the comprehensiveness of 

our IA anti-patterns over the largest dataset of real-world 
regexes, showing that they capture IA effectively in a 
wide proportion of them (§7). 

4) The first usability evaluation of characterizations of vul­
nerable regexes, showing that our IA anti-patterns were 
usable enough for novice developers to apply effectively 
in the absence of tools (§8). 

5) The first usability evaluation of tools to detect and fix 
vulnerable regexes, showing that our IA anti-patterns and 
IA fix strategies improved their usability by improving 
their understanding (§9). 

function L : R → 2Σ ∗ 
gives semantics: 

L(φ) = φ L(R1|R2) = L(R1) ∪ L(R2) 
L(E) = {E} L(R1 ·R2) = L(R1)·L(R2) 
L(σ) = {σ} L(R∗) = L(R)∗ 

These semantics apply to Kleene’s regexes, and extend 
to “syntax sugar” notations such as character ranges [a-c]. 
In practice, regexes may include non-regular features such 
as lookaround assertions, backreferences, and possessive 
quantifiers [36]. These features are used in less than 10% of 
real-world regexes [1], [32], [37]. We therefore focus on the 
common case of Kleene-regular regexes, denoted K-regexes. 

Regex Ambiguity. The regex language semantics allow 
membership to be checked with a parser. A regex is ambigu­
ous if there is a string in its language that can be matched by 
more than one parse tree [25], [38]. For example, the regex 
a|a can parse the input “a” in two ways, i.e., yielding two 
parse trees, one using the left a and one the right. 

For K-regexes, a regex match is equivalent to simulating 
an input on a corresponding non-deterministic finite automa­
ton (NFA) [39]. To simplify discussion, we will reason about 
regex ambiguity over an equivalent, ambiguity-preserving, 
E-free NFA [19], [40]. From the NFA perspective, a regex 
is ambiguous if there is a string that can be accepted along 
multiple paths of this NFA. 

Infinitely Ambiguous (IA) Regex. Regexes have vari­
ous degrees of ambiguity [41], [42]: no ambiguity; finite 
(bounded regardless of input length); or infinite in input 
length. Infinite ambiguity (IA) leads to super-linear time 
complexity in some parsing algorithms (e.g., backtrack­
ing) [18], [20]. A regex is infinitely ambiguous if it has 
an infinitely ambiguous (IA) region (equivalently, an NFA 
section), i.e., a region with the infinite-degree-of-ambiguity 
(IDA) property [40]. Given an E-free finite automaton A, 
necessary and sufficient conditions for A to be infinitely 
ambiguous are given by Weber & Seidl [40]. 

IDA can be of two types: (1) polynomially IDA (PDA), 
and (2) exponentially IDA (EDA). Figure 1(a) illustrates 
a polynomially IDA (PDA) section in a regex’s NFA. A 
substring label(πi) can be matched in the loop π1 at node p, 
the path π2 from p to q, or in the loop π3 at q. For example, 
consider the regex a*a* for an input “aa...a” of length N . 
As any two partitions of the input can be matched with the 
first a* and second a*, there are N matching paths. 
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label(π1) = label(π2) = label(π3) label(π1) = label(π2) 
π1π1 

... p q ...
π2 ... p ...... ...... ... 

π2π3 

(a) PDA (or IDAd) (b) EDA 
Figure 1: Illustration of Polynomial and Exponential De­
gree of Ambiguity (PDA, EDA) in the NFA [40]. We say 
that (p, π2, q) is a transition from state p to state q via 
label(π2) [20]. 

Figure 1(b) illustrates an exponentially IDA (EDA) sec­
tion in a regex’s NFA. A substring label(πi) can be matched 
in either of two loops π1 or π2 at node p. Consider the 
example regex (a|a)*. Each ‘a’ of the input “a...a” can 
be matched by either the upper or lower loop, and thus the 
total number of matching paths becomes 2N . 

Regex-Based Denial of Service (ReDoS): Regex-based 
Denial of Service (ReDoS) [11] is a security vulnerability — 
an algorithmic complexity attack [11] by which a web ser­
vice’s computational resources are diverted from legitimate 
client interactions into an expensive regex match, degrading 
its quality of service. Following Davis et al. [43], ReDoS 
involves three Conditions: 

(C1) a backtracking regex engine used in evaluation, and 
(C2) a vulnerable regex, applied to evaluate 
(C3) a malign input. 

C1-Backtracking Regex Engine. Many regex engines 
(e.g., versions of PHP, Perl, JavaScript, Java, Python, 
Ruby, and C#) use a backtracking search algorithm, e.g., 
Spencer’s [44], to answer regex queries [32], [45]. 

C2-Vulnerable Regex. A vulnerable regex is an IA regex 
whose NFA has a prefix region, followed by an IA region 
(either PDA or EDA), followed by a suffix region [20]. The 
IA region is a necessary component and the root cause of 
the regex’s vulnerability. The prefix must be considered to 
reach this IA region, and the suffix must typically lead to a 
mismatch in order to trigger backtracking. 

C3-Malign Input. An attacker-controlled malign input 
triggers the super-linear behavior of a vulnerable regex by 
driving the backtracking engine into evaluating a polynomi­
ally or exponentially large number of possible NFA paths. 
The exploration exhausts computational resources [17]. 

Threat model. We suppose the following threat model 
for ReDoS, aligned with the common use of regexes for 
input sanitization in web software [1], [20], [46]. The 
victim’s regex engine uses a backtracking regex engine 
(ReDoS Condition 1), which is common for many server-
side programming languages. The victim uses a regex (C2) 
to sanitize attacker-controlled input (C3). 

ReDoS in practice. Davis et al. reported two high-profile 
examples of ReDoS affecting millions of users [43], [47]. 
In §C we note growing ReDoS CVEs from 2010 to present. 

3. Related Work 

Empirical measurements of ReDoS in practice: Although 
the ReDoS attack was proposed twenty years ago by Crosby 
and Wallach [11], [48], researchers have only recently at­
tempted to estimate its impact. In 2018, Davis et al. reported 
that vulnerable regexes were present in many popular open-
source software modules, and that engineers struggled to 
fix them [2]; in 2019, they observed that these regexes 
displayed super-linear behavior in the built-in regex engines 
used in most mainstream programming languages [32], [37]. 
Concurrently, Staicu & Pradel showed that 10% of Node.js­
based web services were vulnerable to ReDoS due to their 
use of vulnerable npm modules [15]. In 2022, Barlas et 
al. studied the impact of ReDoS in live web services [16]. 
Even in non-backtracking engines, Turoňová et al. observed 
the impact of ReDoS [49]. These findings motivated further 
research into the ReDoS problem. 

Characterizations to Manually Detect Vulnerable 
Regexes: In past work, Davis et al. characterized the IA 
region of vulnerable regexes with anti-patterns, although 
with a high false positive rate [2]. Brabrand & Thomsen’s 
theories precisely identify unambiguous regexes, but treat 
all others as suspect, including both IA regexes and merely 
finitely ambiguous (i.e., non-vulnerable) regexes [38]. 1 

In contrast with Davis et al.’s anti-patterns, we provide 
a theoretical grounding to formally capture their limitations 
(§4) and thus provide higher precision and recall (§7). 
We also evaluate their usability when applied manually 
by humans (§8). In contrast with Brabrand & Thomsen’s, 
our theory distinguishes between finite and infinite ambi­
guity, enabling developers to distinguish between likely-
unproblematic (non-IA) and problematic (IA) regexes. 

Finally, other characterizations of vulnerable regexes 
exist, but they were not proposed to be applied manually by 
humans. Instead, they follow the models used by automatic 
detection tools, e.g., expressed as finite automata [18], [20] 
(see Figure 1). Contrasting with these other characteriza­
tions, we designed ours to be consumed by humans. Our 
approach uses the modality of the regex language—the 
representation that developers understand best [50], [51]. 

Tools to Automatically Detect Vulnerable Regexes: 
Berglund et al. defined a prioritized type of NFA to simulate 
a backtracking engine in Java and decide if a regex could 
show super-linear behavior [17]. Weideman et al. also use 
a prioritized NFA to find IDA in it [18], [19]. Wustholz et 
al. also looks for the IDA pattern in the NFA and computes 
an attack automaton that produces attack input strings [20] 
. Liu et al. adds support for modeling and analyzing less 
common regex features, e.g., set operations [21]. Li et 
al. prescribed five vulnerability patterns, although without 
theoretical validation [52]. 

Others statically analyze different representations of the 
regex for vulnerability. Kirrage et al. analyze an abstract 

1. Finite ambiguity could cause ReDoS for complex regexes [49] or 
when resources are limited (e.g., a low-power device like a Raspberry Pi). 
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evaluation tree of the regex [22]. Rathnayake et al. look 
for exponential branching in the regex evaluation tree [23]. 
Sugiyama et al. analyzes the size of a tree transducer for 
the regex [24]. Finally, Sulzmann et al. use Brzozowski 
derivatives to create a finite state transducer to generate 
parse trees and minimal counter-examples [25]. 

Still other approaches detect vulnerable regexes using 
dynamic analysis. Shen et al. and McLaughlin et al. pro­
posed search algorithms to find inputs with super-linear 
matching time [26] [53]. More general algorithmic com­
plexity detectors, e.g., [54]–[58], can also be extended to 
detect ReDoS. 

Vulnerable regex detection tools have been evaluated for 
effectiveness, but not for usability. Our anti-patterns com­
plement these tools by improving developer understanding 
of the outcome of their detection (§9). 

Tools to Automatically Fix Vulnerable Regexes: These 
approaches offer trade-offs for the fixed regex, in: semantic 
similarity, (perceived) readability, and support for uncom­
mon features. Van der Merwe et al. presented a modified 
flow algorithm to convert an ambiguous K-regex into an 
equivalent unambiguous one [27], with perfect semantic 
equivalence, but lower readability. More recently, Li et al. 
proposed an approach to fix vulnerable regexes with deter­
ministic regex constraints to avoid regex ambiguity [29]. 
Chida & Terauchi proposed a “Programming By Exam­
ple” approach that supports K-regexes, lookarounds, capture 
groups, and backreferences [59]. Both approaches use a hu­
man in the loop to provide good examples [29], [59]. Finally, 
Claver et al. [30] proposed a synthesis-based approach that 
they evaluate with synthetic regexes. 

These tools have been evaluated for effectiveness, but 
not for usability. Our fix strategies complement these tools 
by improving developer’ understanding of the fix (§9). 

Non-regex-based Workarounds: 
Recovering From ReDoS. After a system containing a 

ReDoS vulnerability is deployed, it is possible to detect 
and mitigate ReDoS attacks. Bai et al. proposed a ReDoS­
specific approach, applying deep learning to detect and sand­
box attack strings [60]. Atre et al. proposed using adversarial 
scheduling to mitigate adversarial complexity attacks [61]. 
Approaches that detect anomalous resource utilization, e.g., 
time [62], CPU [57], or application-level concepts [63], can 
also mitigate ReDoS. These approaches reduce the impact 
of ReDoS, but do not remove the root cause. 

Changing the regex engine. There are both classic and 
more recent alternatives to the exponential-time backtrack­
ing regex algorithm. The earliest published regex match­
ing algorithms, by Brzozowski in 1964 [64] and Thomp­
son in 1968 [65], offer linear-time guarantees. There are 
production-grade implementations of Thompson’s approach, 
notably RE2 [66] and the engines in Rust [67] and 
Go [68]. Microsoft has considered Brzozowski’s approach 
for .NET [69], as well as deterministic [70], [71] or hy­
brid [72] matching strategies. However, programming lan­
guage maintainers have been slow to adopt these algorithms 
because of the risk of regression and the limited support for 

non-regular regex features [43]. 

4. Theory of Regex Infinite Ambiguity 

Here we introduce an existing theory of regex ambiguity 
[38], discuss its limitations, and present our novel theorems. 

Recalling §2, a regex with an infinite degree of am­
biguity (IA) [40] has the necessary condition for super-
linear regex behavior [2], [11], [48]. Though the NFA-level 
conditions for IA regexes (namely PDA and EDA regions) 
are well known [40], we lack characterizations in terms of 
regex syntax and semantics. We provide such a description 
to support developers assessing or composing regexes. 

Preliminaries: Brabrand & Thomsen [38] developed the 
state of the art description of regex-level ambiguity. They 
introduced an overlap operator, ∨∩ , between two languages 
L(R1) and L(R2). The set L(R1) ∨∩ L(R2) contains the 
ambiguity-inducing strings that can be parsed in multi­
ple ways across L(R1) and L(R2). More formally, with 
X = L(R1) and Y = L(R2), 

X ∨∩ Y = {xay | x, y ∈ Σ ∗ ∧a ∈ Σ+s.t. x, xa ∈ X∧ay, y ∈ Y } 

Using this operator, Theorem 0 summarizes their findings. 

Theorem 0 (Brabrand & Thomsen [38]). Given unam­
biguous regexes R1 and R2: 
(a)	 R1|R2 is unambiguous iff L(R1) ∩ L(R2) = φ. 
(b)	 R1 ·R2 is unambiguous iff L(R1) ∨∩ L(R2) = φ. 
(c)	 R1 ∗ is unambiguous iff E ∈/ L(R1) ∧ 

L(R1) ∨∩ L(R1 ∗) = φ. 

In their implementation of this Theorem, Brabrand & 
Thomsen use Møller’s BRICS library [73], and actually rely 
on what we call the Møller overlap operator, Ω. We use 
this operator in our theorems. The Møller overlap operator 
describes only the ambiguous core “a”: 

X Ω Y = {∃ x, y ∈ Σ ∗ ∧a | a ∈ Σ+s.t. x, xa ∈ X∧ay, y ∈ Y } 

Limitation: Given unambiguous regex components, Theo­
rem 0 specifies when a composed regex remains unambigu­
ous. Yet not all ambiguity is harmful. For example, the regex 
\w|\d is finitely ambiguous. This regex formulation may 
improve readability [74]; it is not a ReDoS risk. 

Regex Infinite Ambiguity Theorems: This section 
presents our regex ambiguity theory for composition with 
alternation (Theorem 1), concatenation (Theorem 2), and 
star (Theorem 3). Here we give proof sketches, examples, 
and the ReDoS implications. Full proofs are in §B. 

Theorem 1 (Ambiguity of Alternation). Given unam­
biguous regexes R1 and R2, 
(a)	 R1|R2 is finitely ambiguous iff L(R1) ∩ L(R2)  = 

φ. 
(b)	 R1|R2 cannot be infinitely ambiguous. 

4
 



 

 

 

 

Proof sketch: The theorem states that given unambiguous 
regexes R1 and R2, if R1|R2 is ambiguous, then it is always 
finitely ambiguous. Since R1 and R2 are both unambiguous, 
for any matching input w, there is only one path through 
R1 and R2. Therefore, for R1|R2 and any matching input 
w, there are at most two matching paths. 

Example: For regex a*|a*, consider input “a...a” of 
length N . Regardless of input length, the number of ac­
cepting paths will be 2: via the first a∗ or the second a∗. 

ReDoS implications: If two regexes R1 and R2 are unam­
biguous, R1|R2 is always safe (cannot form IA). 

Theorem 2 (Ambiguity of Concatenation). Sup­
pose unambiguous regexes R1 and R2, and that 
L(R1) ∨∩ L(R2) = φ (so R1 ·R2 is ambiguous by The­
orem 0). Then: 
(a)	 R1 ·R2 is infinitely ambiguous iff L(R1) contains 

the language of a regex BC*D and L(R2) contains 
the language of a regex EF*G, where E /∈ L(C) ∧ 
E /∈ L(F) ∧ L(C) ∩ L(F) ∩ L(DE) = φ. 

(b) Otherwise, R1 ·R2 must be finitely ambiguous. 

Proof sketch: ⇐= : Consider the string “bcc...cdeff...fg” 
∈ L(R1 · R2) where c = f = de. It can be divided into 
two strings “bcc...cd” ∈ L(BC*D) ⊆ L(R1) and “eff...fg” 
∈ L(EF*G) ⊆ L(R2). By hypothesis, we can repeat the 
substring “de” arbitrarily many times, and the resulting 
string can be matched in R1 (by C*) or in R2 (by F*). We 
can choose an arbitrarily long string and obtain arbitrary 
ambiguity in R1 ·R2. 

=⇒ : Suppose R1 ·R2 is infinitely ambiguous. The NFA 
corresponding to R1 ·R2 cannot contain the EDA structure 
because this requires a self-loop — i.e., that R1 or R2 
is already ambiguous. Therefore the NFA of R1 ·R2 must 
contain a PDA structure, as shown in Figure 1(a). We can 
map the two loops π1 and π3 with C* and F* respectively; 
and the bridge π2 with DE in the regex representation, where 
L(C) ∩ L(F) ∩ L(DE) = φ. 

Example: For regex (a*a)(aa*) on input “aa...a” of 
length N , there are N accepting computations, one for each 
of the indices of the input dividing the string into a left half 
consumed by R1 and a right half consumed by R2. 

ReDoS implications: Though two regexes R1 and R2 are 
unambiguous, R1 ·R2 could be IA, thus concatenation should 
be used with care. Theorem 2(a) implies that for R1 ·R2 
to be IA, there must be a star component in both R1 and 
R2. In §5, we introduce three forms of concatenation anti-
patterns based on this observation. 

Theorem 3 (Ambiguity of Star). Given unambiguous 
regex R, 
(a)	 R∗ is infinitely ambiguous iff E ∈ L(R) ∨ 

L(R) Ω L(R∗) = φ. 
(b)	 R∗ cannot be finitely ambiguous. 

Proof sketch: The theorem states that given an unambigu­
ous regex R, if R∗ is ambiguous, then it is always infinitely 
ambiguous. Suppose R∗ is ambiguous. Then there is some 
input w that it can match in k ways, k > 1. So there is an 
input ww that it can match in k ∗ k = k2 ways. The degree 
of ambiguity increases as a function of input length. 

Example: For the regex (a*)*, consider input “aaa...a” 
of length N . There are two ways (inner * or outer *) to 
match each ‘a’, making the total number of ways to match 
to be 2N . 

ReDoS implications: Even though an original regex R is 
unambiguous, R∗ can be IA. In §5, we give an anti-pattern 
that only checks for a subset of conditions for simplicity. 

Theorem 4. Given a finitely ambiguous regex R, R∗ 
is always infinitely ambiguous. 

Proof sketch: The proof follows the logic of Theorem 3. 

Example: For the regex (a|a)*, consider an input 
“aaa...a” of length N . There are two ways (first a or second 
a) to match each ‘a’ of the input, for 2N matches in all. 

ReDoS implications: If R is finitely ambiguous, from 
alternation (R = P |Q) or concatenation (R = P ·Q), R∗ 
is always IA. Later in §5, we introduce two anti-patterns of 
the form (P |Q)∗. 

5. Anti-patterns for Regex Infinite Ambiguity 

This section describes anti-patterns for IA regexes (IA 
anti-patterns), derived from the preceding theory of regex 
infinite ambiguity. Ideal anti-patterns would be as sound 
and complete as the theory, but this goal must be balanced 
against usability. With this in mind, we iteratively extracted 
IA anti-patterns from the theory by dropping clauses from 
theorems or combining the theorems in different ways. 
These anti-patterns were refined through internal discussion. 
We evaluate these anti-patterns in §7 and §8. 

Table 1 summarizes our IA anti-patterns. As alternation 
alone does not make a regex IA (Theorem 1), there are 
Concatenation anti-patterns derived from Theorem 2, and 
Star anti-patterns derived from Theorems 3 and 4. 

Concatenation Anti-patterns: The Concat anti-patterns 
come from Theorem 2. In Theorem 2, a regex R concate­
nates regexes R1 and R2 that contain the languages BC*D 
and EF*G, respectively. The theorem states that the potential 
vulnerability occurs in the sub-regex C*DEF*, which we 
write in simplified form as P*SQ* for our anti-patterns. We 
call S the “bridge” between P* and Q*. 

Concat-1. This anti-pattern, where P ∗ Q∗ is a sub-regex 
of R, represents the simplest form without the bridge S. 
Developers must find a string matched in both P ∗ and Q∗. 

Concat-2. This anti-pattern, where P ∗SQ∗ is a sub-regex 
of R, has the bridge S component. Developers must find a 
string matched in all P ∗, Q∗, and S. 
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Table 1: Our proposed IA anti-patterns. Each row indicates the anti-pattern, the theorem(s) from which it was derived, a 
description, and an example of how the anti-pattern leads to ambiguity. 

Anti-pattern Thm. Description Example 

Concat 1 2 R = ...P*Q*... (R has a sub-regex P*Q*) — The two 
quantified parts P* and Q* can match some shared string s. 

\w*\d* — both classes can match digits [0­
9]. 

Concat 2 2 R = ...P*SQ*... — The two quantified parts P* and Q* 
can match a string s from the middle part S. 

\w*0\d* — the repeated classes \w and \d 
can match the middle part 0. 

Concat 3 2 R = ...P*S*Q*... — Advanced form of Concat 1. Since 
S* includes an empty string, the ambiguity between P* and 
Q* can be realized. 

\w*:*\d* — The classes \w and \d overlap, 
and the intervening :* can be skipped. 

Star 1 1, 4 R*, R= (P|Q|...) — There is an intersection between 
any two alternates, i.e., both match some shared strings. 

(\w|\d)* — both classes match digits [0-9]. 

Star 2 3 R*, R= (P|Q|...) — You can make one option of the 
alternation by repeating another option multiple times or by 
concatenating two or more options multiple times. 

(a|b|ab)* — The 3rd option, ab, matches 
combinations of the first and second options. 

Star 3 3 R*, R= (...P*...) — Nested quantifiers, provided RR 
follows any of the Concat anti-patterns. 

Expanding R=(0?\w*)* to RR yields 
0?\w*0?\w*, which is IA by Concat 3. 
Similarly, R=(xy*)* yields xy*xy*; this is 
not IA by any Concat anti-pattern. 

Concat-3. This anti-pattern, where P ∗ S ∗ Q∗ is a sub­
regex of R, is the case with optional bridge S. Like Concat­
1, developers must find a string matched in both P ∗ and Q∗. 

Gap Analysis: The Concat anti-patterns represent all possi­
ble ways that the bridge component DE (from Theorem 2) 
may appear as a sub-regex of the form E, S, or S∗. Thus, 
there is no gap between theory and anti-patterns. 

Star Anti-patterns: The Star anti-patterns come from The­
orem 3 and Theorem 4. 

Star-1 and Star-2. These anti-patterns are designed to pre­
vent (some) regexes of the form R∗ where R = (P |Q|...). 
Theorem 4 states that if R is finitely ambiguous, then 
R∗ becomes IA. From Theorem 1(a), alternations may 
introduce finite ambiguity. The Star-1 anti-pattern describe 
the condition when the subregex (P |Q|...) becomes finitely 
ambiguous. The Star-2 anti-pattern describe the condition 
when the non-ambiguous (P |Q|...) form IA with the help ∗ 
according to Theorem 3. 

Gap Analysis: There is a gap between Theorem 4 and 
the Star-1 anti-pattern. Star-1 does not consider all possi­
ble forms of finitely ambiguous regexes. For instance, the 
concatenation may also introduce finite ambiguity (Theo­
rem 2(b)). Thus, some regexes of the form (P ·Q)∗ could be 
IA as well: e.g., ((a|ab)(c|bc))*. Also, the Star-2 anti-
pattern is one of the conditions that incorporate Theorem 3. 
Thus regexes under missing conditions would appear as false 
negatives for these anti-patterns. 

Star-3. This anti-pattern prevent (some) regexes of the 
form R∗ where R has a sub-regex P ∗. Theorem 3 states 
the conditions when R∗ becomes IA. considering the first 
condition E ∈ L(R) is relatively trivial. Yet, the second 
condition L(R)ΩL(R∗) = φ requires reasoning about a 
language overlap between L(R) and an arbitrary repetition 
of L(R∗), which could be tricky. Based on the common 

knowledge that a nested quantifier (e.g., (P ∗)∗) is bad [75], 
the Star-3 anti-pattern only considers the case where R has 
a sub-regex P ∗, as a generalized form of nested quantifiers. 
The Star-3 anti-pattern further simplifies the condition and 
asks developers to consider the overlap between L(R) and 
(twice-repeated) L(R·R), using the Concat anti-patterns. 

Gap Analysis: The Star-3 anti-pattern does not incorporate 
all the conditions in Theorem 3. Regexes with the missing 
conditions would appear as false negatives. 

6. Fix Strategies for Regex Infinite Ambiguity 

This section describes five fix strategies (F1–F5) that can 
be broadly applied across the different IA anti-patterns. The 
fix strategies are derived from various ways of invalidating 
necessary conditions of Theorem 2 and Theorem 3. The 
proposed fix strategies do not always preserve semantics. 

Fix strategies: Table 2 summarizes the proposed five fix 
strategies along with examples for each anti-pattern. We 
evaluate their effectiveness in Experiment 3 (§9). 
1) The first fix strategy (F1) is to add a delimiter between 

the subregexes P and Q of the anti-patterns (e.g., P*Q*, 
(P|Q)*) that can match the shared string(s). More 
precisely, the delimiter makes L(C) ∩ L(DE) = φ 
and/or L(F ) ∩ L(DE) = φ in Theorem 2(a); and 
L(R) Ω L(R∗) = φ in Theorem 3(a). For instance, 
consider the regex \w*\d* (Concat 1). If we add a 
delimiter ‘:’, the new regex \w*:\d* becomes non-IA 
because L(\w) ∩ L(:) = φ and L(\d) ∩ L(:) = φ. 
Table 2 provides examples for the other anti-patterns. 

2) The second fix strategy (F2) is to reduce one of the sub­
regexes P and Q so that it no longer matches any of the 
shared strings. In other words, the fix F2 makes L(C) ∩ 
L(F ) = φ in Theorem 2(a); and L(R) Ω L(R∗) = φ 
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Table 2: Fix strategies. Each strategy is illustrated with respect to each anti-pattern, within the limit of the example provided.
 

Concat 1 Concat 2 Concat 3 Star 1 Star 2 Star 3 
Fix Description Anti-pattern: ...P*Q*... ...P*SQ*... ...P*S*Q*... (P|Q|...)* (P|Q|...)* (...P*...)* Freq. 

Example: \w*\d* \w*0\d* \w*:*\d* (\w|\d)* (a|b|ab)* (0?\w*)* 

Add a delimiter between the 
F1	 sub-regexes P and Q that \w*:\d* \w*:0\d* \w*:+\d* (\w*|:\d)* (a:|b|ab)* (:0?\w*)* 12 

can match a shared string. 

Reduce one of the sub-regexes 
F2	 P and Q so that it no longer [a-zA-Z ]*\d* [a-zA-Z ]*0\d* [a-zA-Z ]*:*\d* ([a-zA-Z ]|\d)* (b|ab)* (0?[a-zA-Z ])* 10 

matches any of the shared strings. 

Reduce both the sub-regexes
 
P and Q so that they no longer
 
match any of the shared strings,
 

F3	 and add the shared string(s) in a \w* N/A N/A \w* (a|b)* \w* 3 
disjunction. In many cases, this 
will resemble making a superset 
of the two sub-regexes. 

Reduce or remove repetition in at 
F4	 least one of the sub-regexes \w{,10}\d{,10} \w{,10}0\d{,10} \w{,10}:*\d{,10} (\w|\d){,10} (a|b|ab){,10} (0?\w{,10}){,10} 13 

P and Q that match a shared string. 

Remove or substantially modify add logic to add logic to add logic to	 add logic to 
F5	 the sub-regexes P and Q and catch non-digits catch non-digits catch non-digits \w*|\d* a+|b+|(ab)+ catch 0, then 16 

add logic for the semantic changes. then use \d* then use 0\d* then use :*\d* use \w* 

in Theorem 3(a). For instance, refer to the same regex 
\w*\d* (Concat 1). If we reduce \w to [A-Za-z_] 
so that it does not overlap with \d, the new regex 
[A-Za-z_]*\d* is not IA since L([A-Za-z_]) ∩ 
L(\d) = φ. 

3) The third fix strategy (F3) is to reduce the subregexes P 
and Q so that they no longer match any of the shared 
strings, and add the shared string(s) in a disjunction. 
In many cases, this will resemble making a superset 
of the two sub-regexes. Effectively, the fix F3 has the 
same effect as F2 that excludes any shared string(s), yet 
it additionally keeps the shared string(s) in a disjunc­
tion, making the fix semantic-preserving. For example, 
consider (\w|\d)* (Star 1). Suppose we reduce \w 
to [A-Za-z_] and reduce \d to null so that they no 
longer match the shared string(s) [0-9]. Then we add 
the subregex [0-9] in a disjunction. Finally, we get 
([A-Za-z_]|[0-9])*, which is equivalent to \w*. 
Note that \w is a superset of \w and \d, and the old 
and new regexes match the same language. 

4) The fourth fix	 strategy (F4) is to reduce or remove 
repetition in at least one of the subregexes P and Q 
so that the shared string(s) cannot be matched infinitely. 
Both Theorem 2 and Theorem 3 require an unbounded 
repetitions (a star quantifier). The fix F4 in effect turns 
unbounded repetitions to bounded ones. For example in 
Star 1 anti-pattern, we can replace the regex (\w|\d)* 
with (\w|\d){0,10} permitting only up to 10 repe­
titions. 

5) The fifth fix	 strategy (F5) is to remove or substan­
tially modify the subregexes P and Q and handle se­
mantic changes elsewhere. The fix F5 capture general 
non-systematic fixes that may introduce more semantic 
changes than the other fixes. For example, the regex 
(\w|\d)* can be fixed to \w*|\d*. 

Evaluation of Practical Relevance: We analyzed the 54 
developer-created regex fixes reported by Davis et al. [2]. 
We classified each fix into one of these five strategies. The 
last column in Table 2 reports the frequency of each fix 
strategy. We also observed that developers value simplicity 
in the fix. To preserve the original (vulnerable) regex’s 
structure, they introduced semantic changes (51/54 = 94%). 

7. Experiment 1: Effectiveness of Anti-patterns 

Our proposed IA anti-patterns (§5) were derived from 
our theory (§4), but we deliberately introduced inaccuracy in 
favor of simplicity. In this section, we evaluate the impact of 
these deviations over the largest available regex corpus [32]. 
We measured effectiveness using precision and recall. 

7.1. Experimental Design 

Studied Techniques: Our IA anti-patterns. We detected 
each anti-pattern using static analysis. We parsed regexes 
in PCRE format [36] using an ANTLR 4 grammar and 
parser [76]. We used the BRICS [73] tool to check whether 
multiple sub-regex parts can generate any shared string. 

We implemented our IA anti-patterns to support the 
common case of K-regexes, i.e., regexes that use only 
Kleene-regular regexes (cf. §2). Our prototype also ex­
cludes extended POSIX and Unicode character classes for 
simplicity. These limitations are consistent with past ap­
proaches [17]–[20], [22]–[25]. 

State-of-the-art (SOA) anti-patterns. For comparison, we 
also executed the state-of-the-art (SOA) anti-patterns that 
characterize IA regexes [2]. We used the automatic detector 
provided by Davis et al. [2]. These anti-patterns lack a 
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Table 3: State of the art IA anti-patterns, as described by 
Davis et al. [2]. Each row indicates the anti-pattern, its 
description. and an example. 

Anti-pattern Description 

QOA The two quantified \w* nodes overlap, and 
(Quantified are adjacent because one can be reached from 
Overlapping the other by skipping the optional octothorpe. 
Adjacency) From each node we walk forward looking 

for a reachable quantified adjacent node with 
Example: an overlapping set of characters, stopping at 
/\w*#?\w*/ the earliest of: a quantified overlapping node 

(QOA), a non-overlapping non-optional node 
(no QOA), or the end of the nodes (no QOA). 

QOD Here we have a quantified disjunction
 
(Quantified (/(...|...)+/), whose two nodes overlap
 
Overlapping in the digits, 0-9.
 
Disjunction)
 

Example: 
/(\w|\d)+/ 

Star height >1 To measure star height, we traverse the regex 
and maintain a counter for each layer of 

Example: nested quantifier: +, *, and check if the counter 
/(a+)+/ reached a value higher than 1. In such cases, 

the same string can be consumed by an inner 
quantifier or the outer one, as is the case for 
the string “a” in the regex /(a+)+/. 

theoretical basis, so we expect them to perform worse. Davis 
et al. described three anti-patterns, listed in Table 32 

Ground Truth: We assessed ground truth for whether a 
regex is IA using Weideman et al.’s detector [18], [19]. 
This detector tests if a regex is IA by analyzing its NFA 
(Figure 1). Since the Weideman tool uses automata theory 
instead of regex semantic theory, it provides an independent 
check on the anti-patterns (and our underlying theory). 

Metrics: The standard metrics of precision and recall [77]. 

Dataset: We evaluated the studied anti-patterns in the 
largest available dataset of real-world regexes [32] (537,806 
regexes). This dataset has been used by previous studies for 
measuring ReDoS [32], fixing ReDoS [43], [78], and mea­
suring general characteristics of regexes [37]. We analyzed 
209,188 regexes from this dataset — one order of mag­
nitude larger than the evaluation of past ReDoS-detection 
approaches (15,000–30,000 regexes [18], [19], [21], [26]). 

We curated the dataset for this experiment: (1) We 
removed the 295,151 regexes that were not supported by 
the ground truth tool [19]).3 According to our ground truth, 
32,005 of our studied regexes were IA. (2) We discarded 
32,413 additional regexes that were not supported by the 

2. As might be expected, these anti-patterns resemble those presented 
in Table 1. The main difference is in the nuanced definition of “overlap” 
available from our IA theory. 

3. While our implementation of our IA anti-patterns supported a larger 
percentage of the dataset, we discarded those for which we could not collect 
ground truth. 

Table 4: Comparison of Precision and Recall between our 
IA anti-patterns and SOA anti-patterns. 

Anti-patterns Precision Recall 
Our IA anti-patterns 100% 99% 

SOA anti-patterns [2] 50% 87% 

BRICS library [73] used in our anti-pattern prototype. (3) 
We discarded 1,054 additional regexes with POSIX or Uni­
code character classes not supported by our implementation. 

The implementation of our IA anti-patterns supports 
450,753 regexes (83.8%) of the dataset (10.2% had advanced 
or non-regular features; 6% unsupported by BRICS). This 
level of completeness is comparable to prior research pro­
totypes for regex analysis [20], [23], [43]. 

Finally, we measured regex generalizability metrics [37] 
in the regexes that we kept and filtered out. We found that 
they were similar in median: length (18 vs. 19), paths (1 vs. 
1), features (3 vs. 4), and ratio of IA regexes flagged by our 
anti-patterns (15% vs. 15.8%). 

7.2. Results 

How Effective were Our IA Anti-patterns Compared to 
the SOA Anti-patterns?. In Table 4, we report the results 
for our studied anti-pattern families. It shows that our pro­
posed IA anti-patterns provided a substantial improvement 
in both precision (100% compared to 50%) and recall (99% 
compared to 87%) when compared to the SOA anti-patterns. 
Our IA anti-patterns addressed many of the false positives 
of the SOA. For example, the Star height > 1 anti-pattern 
can produce many false positives e.g., the non-IA regex 
/(b*c)*/ has Star height = 2. Our IA anti-patterns also 
reduced the number of false negatives of the SOA, e.g., for 
regexes like (a|b)*(ab)* and (a|b|ab)*. The SOA 
anti-patterns find no overlap between (a|b) and (ab) and 
would not label them as IA. In contrast, our Concat 1 and 
Star 2 anti-patterns, respectively, would label both as IA. 

We note that we observed higher precision and recall 
achieved by the SOA anti-patterns than was reported by their 
original study [2]. We suggest two reasons: we studied a 
different dataset, and we assumed full match for unanchored 
regexes (e.g., converting a+ to /ˆ.*?a+$/) [32]), which 
reveals more IA regexes in the dataset. 

Finally, we also performed a deeper investigation into 
the root cause of the false negatives of our IA anti-patterns 
(the 1% of IA regexes that they did not flag as IA). The 
false negatives in our experiment were mainly regexes with 
constructions that were too complex for our current anti-
pattern scripts to detect for the limitation of Star anti-
patterns discussed in §5. While this limitation of our im­
plementation caused a few false negatives (affecting only 
1% of IA regexes), our implementation is still sound for 
our studied dataset — it caused no false positives. 

How Prevalent was each of our IA Anti-patterns?. Table 5 
shows the prevalence of each of our proposed IA anti-
patterns in our studied dataset, i.e., the ratio of IA regexes 
that were detected by each IA anti-pattern. Note that the 
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Table 5: Prevalence of each of our proposed IA anti-patterns 
within the studied dataset. As some regexes fit multiple IA 
anti-patterns, the final row eliminates double-counting. 

IA Anti-pattern # Regexes Prevalence 
Concat 1 17,349 54% 
Concat 2 12,419 39% 
Concat 3 414 1% 

Star 1 192 <1% 
Star 2 639 2% 
Star 3 1,133 4% 

All anti-patterns 31,537 99% 

prevalence ratios do not add up to 100%, since some IA 
regexes may contain multiple anti-patterns. 

We make multiple observations in this table. First, all our 
IA anti-patterns as a group provided high recall (99%); false 
negatives are rare. Second, we observed wide variations in 
the prevalence of each individual anti-patterns. This means 
that our set of anti-patterns could be further simplified and 
still obtain very high recall altogether. Somebody wanting 
to learn only a single anti-pattern could learn only Concat 
1 and still cover 54% of IA regexes — adding Concat 2, 
one would cover the large majority (> 90%) of IA regexes, 
and so on. This confirms past research that found that poly­
nomial regexes were much more prevalent than exponential 
ones [62]. We believe that this does not mean that developers 
are already good at avoiding some anti-patterns, but instead 
that the kinds of problems that would require a Concat 
regex are more common than those that would require a 
Star one. However, future work would be needed to answer 
this question. Finally, before considering ignoring the less 
common (lower prevalence) IA anti-patterns, one should 
also consider their risk. While the star anti-patterns are less 
common (about 6% of all IA regexes), they are riskier — 
our theory shows that they lead to exponential ambiguity. 

Summary for Experiment 1: Our IA anti-patterns correctly 
identified IA regexes with substantially higher effectiveness 
(100% precision, 99% recall) than the SOA anti-patterns 
(50% precision, 87% recall). 

8. Experiment 2: Effectiveness when Applied 
by Humans 

Our IA anti-patterns can identify IA regexes with high 
precision and recall (§7), but their effectiveness may be 
reduced when applied manually [31]. Here we report on 
a human-subjects experiment evaluating the effectiveness of 
our IA anti-patterns when applied manually. 

8.1. Experimental Design 

Overview: We asked 20 software developers to perform 5 
regex composition tasks. To study a context in which devel­
opers may prefer to apply IA anti-patterns manually [31], 
we studied simple regex composition tasks. We followed a 
within-subjects approach: each subject applied both our IA 

anti-patterns and the state-of-the-art (SOA) ones. Among 20 
participants, half (10) used our anti-patterns first, and the 
other half used the SOA ones first. We measured whether 
subjects correctly identified IA in their regexes. 

Treatments: We showed subjects our IA anti-patterns 
as described in Table 1 and the SOA anti-patterns using 
verbatim text from Davis et al.’s original description of 
the anti-pattern, and of how it should be applied (described 
in Table 3). Note that we did not study a control group that 
used no anti-patterns. Experiment 1 already answers what 
a control group would show: when developers are given no 
support, they write thousands of vulnerable regexes (§7). 

Tasks: Table 9 shows the 5 tasks of Experiment 2. Task 
1 was an easy warm-up task, to familiarize subjects with 
the structure of the experiment. The next three tasks (Tasks 
2, 3, 4) evaluated limitations that we identified in the three 
SOA anti-patterns, to learn if our IA anti-patterns were more 
effective in those scenarios. In task 2, Star height > 1 may 
produce a false positive, assessing the regex as IA. In task 
3, QOA may produce a false negative, assessing the regex 
as non-IA. In task 4, QOD may produce a false negative. 
Finally, task 5 evaluated a scenario in which the SOA anti-
patterns are successful, to learn if our IA anti-patterns are 
comparable in such a scenario. We expected both sets of 
anti-patterns to perform equally in tasks 1 and 5, and our 
IA anti-patterns to be more effective in tasks 2, 3, and 4. 

Within-Subjects Protocol: Our protocol had three steps: 
(1) Training: We shared background information in: (i) 
regex syntax and useful terminology, so that they knew 
correct regex syntax; and (ii) regex ambiguity and ReDoS, 
so that they understood the practical utility of the task and 
thus increase their engagement. (2) First set of anti-patterns: 
We taught subjects one set of anti-patterns. They completed 
the 5 regex composition tasks, producing a regex that is 
not IA, using the given anti-patterns. (3) Second set of anti-
patterns: We taught subjects the other set of anti-patterns. 
They performed the same 5 tasks, in the same order, using 
the other anti-patterns. 

We let subjects ask clarifying questions. We asked them 
to think aloud. The experiment took ∼1 hour per subject. 
Subjects were compensated with a $15 gift card. 

Subjects: Subjects were recruited via posts on Twitter, 
Reddit (r/regex), and our institutional mailing lists. We 
asked subjects to report their years of professional soft­
ware development and their experience with regexes (self­
reported, based on popular regex features following Michael 
et al. [46]). We had 27 respondents, and kept the 21 respon­
dents who reported some experience in both categories. Af­
ter performing the experiment, we discarded one additional 
subject who composed incorrect regexes for 70% of the 
tasks (they did not match the example inputs provided in the 
specification). Thus, in total, we analyzed the performance 
of 20 subjects. We list their demographics in Table 7. 

Metrics: For each studied task and anti-pattern set, we mea­
sured success using Detection Effectiveness: the percentage 
of subjects that correctly identified whether their composed 
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Table 6: Regex composition tasks studied in Experiment 2.
 

Typical Task Description solution 
1	 Write a regex to match one or more non-IA: 

‘b’ followed by a single ‘c’. Example b+c 
matching strings: bc, bbc, bbbbc, bbbbbc, 
bbbbbbbbbbbbbbbbbbbbbc 

2	 Write a regex to match one or more non-IA: 
repetitions of the following: one or more (b+c)+ 
‘b’ followed by a single ‘c’. Example 
matching strings: bcbc, bbcbbcbbc, bbbb­
bcbbbbbc, bbbbbbbbbbbbbbbbbbbb­
bcbbbbbbbbbbbbbbbbbbbbbc 

3	 Write a regex to match one or more IA: 
‘a’ or ‘b’, followed by one or more (a|b)+(ab)+ 
repetitions of ‘ab’. Example matching 
strings: aab, bab, aaab, aaaaab, bab, bb­
bab, aaaabababab, bbbbababababab 

4	 Write a regex to match one or more oc- IA: 
currences of the strings ‘a’, ‘b’, or ‘ab’. (a|b|ab)+ 
Example matching strings: aaaaaaaaaa, 
bbbbbbbbbbbb, ababababababababab 

5	 Write a regex to match one or more IA: 
‘a’ followed by an optional ‘b’ followed (a+b?a+) 
by one or more ‘a’. Example matching 
strings: aaaabaa, aaaaa, abaaaa 

Table 7: Demographics of Experiment 2: subjects’ experi­
ence with software development, and with regexes. 

Years Prof. Soft. Dev. Exp. with Regexes 
< 1 1-2 3-5 Novice Interm. Expert 

# Subjects 7 7 6 9 11 0 

regex was IA. We used the same approach for ground truth 
as in Experiment 1 (§7.1). Note that we did not measure 
whether subjects fixed the IA section in their regex, if any; 
we measured the effectiveness of anti-patterns following the 
goal of the original SOA anti-patterns — to identify IA. 

Statistical Tests: We validated our results using hypothesis 
testing and power analysis. 

Hypothesis testing. We used the null hypothesis: H0: sub­
jects using our IA anti-patterns achieve as much detection 
effectiveness as those using the SOA anti-patterns. We tested 
H0 using a Wilcoxon signed rank test [79] (since we cannot 
assume a normal distribution of results, and our observations 
are paired) over the IA assessments produced by our IA anti-
patterns and the SOA ones for all tasks and orders. If this 
test returned a low p-value (p < 0.05), we rejected H0. 

Power analysis. We used power analysis to determine if 
our sample size was sufficient to support a statistically sig­
nificant expected effect size in detection effectiveness [80]. 
We looked for standard power of 0.8, standard statistical 
significance of p < 0.05, with our observed effect size (i.e., 
the difference in detection effectiveness using our IA anti-
patterns vs. using the SOA anti-patterns for all tasks and 
orders). 

Table 8: Performance of subjects in Experiment 2: per­
centage of subjects correctly using each anti-pattern set to 
identify if their composed regex was IA. 

SOA first, IA after IA first, SOA after All orders 
(N = 10) (N = 10) (N = 20) 

Task SOA IA SOA IA SOA IA 
1 100% 100% 100% 100% 100% 100% 
2 10% 100% 0% 100% 5% 100% 
3 20% 100% 20% 100% 20% 100% 
4 30% 100% 20% 100% 25% 100% 
5 100% 100% 100% 100% 100% 100% 

All 52% 100% 48% 100% 50% 100% 

8.2. Results 

Table 8 summarizes our results for each order of application, 
by each set of anti-patterns, for each task. 
•	 Considering all tasks and treatment orders, subjects using 

our IA anti-patterns achieved 100% detection effective­
ness, improving on the SOA anti-patterns (50%). 

•	 Our hypothesis test showed a statistically significant im­
provement (p < .00001). 

•	 Our observed effect size was 50%, comparing the final 
columns in the bottom row of Table 8. Our power analysis 
indicated that we studied a sufficient number of subjects: 
we needed 11 and studied 20. 

As we expected (§8.1), the SOA anti-patterns showed their 
limitations in tasks 2, 3, and 4 — regardless of the ordering. 
Also as expected, both sets of anti-patterns achieved 100% 
detection effectiveness for tasks 1 and 5, also regardless 
of ordering. We conclude that our IA anti-patterns are as 
effective as the SOA ones when they are not limited, and 
much more effective than them when they are. 

Summary for Experiment 2: Our IA anti-patterns outper­
formed the SOA anti-patterns when applied manually (100% 
vs. 50% effectiveness). 

9. Experiment 3: Usability when Complement­
ing Existing Tools 

Experiments 1 and 2 showed that our anti-patterns are 
effective over a wide variety of regexes (§7), and can be 
applied manually by humans (§8). However, developers may 
prefer automatic tools, e.g., for complex regexes. 

In Experiment 3, we studied whether our anti-patterns 
and fix strategies complement automatic tools for real-world 
regexes. Our goal is not to replace existing automatic tools 
(we hope developers use them!), but to complement them, 
to increase developer understanding of the task outcome. 

9.1. Experimental Design 

Overview: We asked 9 software developers to perform real-
world ReDoS detection and fixing. They performed tasks 
over their own regexes from open-source projects. They first 
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used only an automatic tool, and then the tool combined 
with our anti-patterns (for detection) and our fix strategies 
(for fixing). Our design was within-subjects. We fixed the 
order so we could measure their (hypothesized) increase in 
understanding after adding our approach. 

Treatments: For detection, our subjects first used a rep­
resentative detection tool (Weideman et al.’s [19]), and 
then complemented it with our anti-patterns. We studied 
Weideman et al.’s approach because they provide a mature 
implementation with many stars in GitHub. For fixing, our 
subjects first used a representative fixing approach (van der 
Merwe et al.’s [27]), and then complemented it with our 
anti-patterns and fix strategies. We studied van der Merwe et 
al.’s approach because it is the only existing fixing approach 
that does not modify the language accepted by the regex.4 

To help these tools to perform their best, we trained our 
subjects. For detection, we trained them on the purpose and 
workings of Weideman’s detection tool, including the NFA-
based characterizations of IA that it detects in the regex (see 
Figure 1). For fixing, we trained them on the purpose and 
workings of Van Der Merwe’s algorithm, i.e., that it converts 
the regex’s NFA to an equivalent unambiguous DFA, then 
back to an equivalent regex. We also explained our anti-
patterns (Table 1) and fix strategies (Table 2). 

Tasks: Table 9 shows the tasks of Experiment 3. 
Detection Task. We asked our subjects to detect vulnera­

bility in 3 regexes, in a random order: a PDA regex, an EDA 
regex, and a non-IA regex (see Figure 1). One of the PDA or 
EDA regexes was the vulnerable one that we took from the 
subject’s software project. For the other two regexes, we 
used the same randomly chosen regexes from the dataset 
studied in Experiment 1 (§7.1). For each regex, we showed 
our subjects the output of Weideman’s detection tool, and 
asked them how strongly they understood the vulnerability 
in the regex. Then, we also showed them our anti-patterns, 
asked them to identify the anti-pattern(s) that each regex fits 
(to prompt them to use the anti-patterns), and asked them 
the same question again. 

Fixing Task. We asked our subjects to fix the vulnerability 
in the regex that we took from their code. We showed them 
their regex in the context of their project, and asked them 
how strongly they understand it (to refresh their memory). 
Then, we showed them the output of van der Merwe’s 
approach: a non-IA version of their regex. We let them write 
their own fix or take/adapt van der Merwe’s, and we asked 
them our understanding questions. Then, we also showed 
them our anti-patterns and fix strategies, again let them 
modify their fix if they choose to, and again asked them 
our understanding questions. 

Within-Subjects Protocol: Our protocol had three steps: 
(1) Training: This training was more in-depth than Ex­
periment 2 because the subjects had greater expertise. We 
taught the technical details of ReDoS attacks (following [2]), 
and showed the participants how the detection [19] and 

4. The algorithm of van der Merwe et al. does not include an open-source 
implementation. Our implementation is included in our artifact. 

Table 9: Tasks of Experiment 3. Italics denote changing text 
with each subject. Brackets denote subject answers. 

Detection Task 
Output of auto­
matic detection 
tool 

How strongly 
you understand 
makes this 
vulnerable? 

do 
what 
regex 

Explain 
your 
rea­
soning 

PDA 
regex 

Output of Weide­
man’s detection 
tool [19] 

[Very strongly, Strongly, 
Neutral, Weakly, Very 
weakly, Not Vulnerable] 

[. . . ] 

EDA 
regex 

Output of Weide­
man’s detection 
tool [19] 

[Very strongly, Strongly, 
Neutral, Weakly, Very 
weakly, Not Vulnerable] 

[. . . ] 

Non-IA 
regex 

Output of Weide­
man’s detection 
tool [19] 

[Very strongly, Strongly, 
Neutral, Weakly, Very 
weakly, Not Vulnerable] 

[. . . ] 

Fixing Task 
Output of auto­
matic fixing tool 

How 
you 
what 

strongly do 
understand 

makes the 

Explain 
your 
rea­

resulting fixed 
not vulnerable? 

regex soning 

Their 
vulnera­
ble regex 
in context 

Output of van 
der Merwe’s fix­
ing tool [27] 

[Very strongly, Strongly, 
Neutral, Weakly, Very 
weakly, Not Vulnerable] 

[. . . ] 

fixing [27] tools work. (2) Detection: We asked subjects 
to detect IA in a set of regexes, first using only existing 
automatic tools, and then combining them with our anti-
patterns. (3) Fixing: We asked subjects to fix an IA regex 
that they wrote in their codebase to make it non-IA, first 
using only existing automatic tools, and then combining 
them with our anti-patterns and fix strategies. 

We let subjects ask clarifying questions. We asked them 
to think aloud. To simulate real-world conditions, we let 
them use external resources, and showed them some re­
sources: a web interface for the studied tools, and two 
websites for regex understanding (www.regex101.com and 
www.regexper.com). The experiment took ∼1 hour per sub­
ject. Subjects were compensated with a $40 gift card. 

Subjects: We recruited software developers that had writ­
ten a vulnerable regular expression in the PyPi [81] and 
NPM [82] software ecosystem. To increase response rate, 
we scanned ∼200K PyPi projects and ∼40K NPM projects 
with some popularity (at least 1 star) and with recent activity 
(at least one commit since January 2020). We extracted their 
regexes; discarded any in test files or dependencies; and 
identified vulnerable regexes using Davis et al.’s ensemble 
of ReDoS detectors [32], This process resulted in 120 vul­
nerable regexes (99 from PyPI, 21 from NPM). We disclosed 
these potential vulnerabilities to the 120 software developers 
who last modified them. We invited those developers to 
participate in our experiment. 9 of them agreed (8% response 
rate) — demographics are in Table 10. 

Metrics: We measured the success of our anti-patterns 
or fix strategies as the increase in understanding that our 
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Table 10: Demographics of Experiment 3: subjects’ experi­
ence with software development, and with regexes. 

Years Prof. Soft. Dev. Exp. with Regexes 
3-5 6-10 > 10 Interm. Expert 

# Subjects 1 1 7 1 8 

E[isting tools onl\
Anti-patterns and e[isting tools

Ver\
Zeakl\ 

Weakl\ NeXtral Strongl\ 
Ver\

strongl\ 

P1
P2
P3
P4
P5
P6
P7
P8
P9

AVG

Figure 2: Detection Task: Subjects consistently reported 
stronger understanding of what makes their regex vulnerable 
when using our anti-patterns to complement existing tools. 

subjects reported after applying them. We asked our subjects 
the same question twice, once after applying each treatment. 
We also asked them to explain their reasoning (see Table 9). 

For detection, we asked them how strongly they un­
derstood what makes the regex vulnerable, using a Likert 
scale of: “Very strongly”, “Strongly”, “Neutral”, “Weakly”, 
and “Very weakly” understand, and “Not vulnerable”. For 
fixing, we asked them how strongly they understood what 
makes the resulting fixed regex not vulnerable, using the 
same scale. Finally, we asked them how helpful they found 
the anti-patterns or fix strategies for their future overall. 

Statistical Tests: We validated our results using hypothesis 
testing and power analysis (as in §8.1). 

Hypothesis testing. We set two null hypotheses. For 
detection, H0: Subjects using our IA anti-patterns in com­
bination with existing tools report the same understanding 
strength of what makes the regex vulnerable as those using 
existing tools only. For fixing, H0: Subjects using our fix 
strategies in combination with existing tools report the same 
understanding strength of what makes the fixed regex not 
vulnerable as those using existing tools only. We tested the 
null hypothesis for each task using a Wilcoxon signed rank 
test [79] (since we cannot assume a normal distribution of 
results, and our observations are paired) over the reported 
understanding scores for each treatment. 

Power analysis. We again looked for standard power 
of 0.8, standard statistical significance of p < 0.05, and 
measured effect size as the increase in mean reported un­
derstanding for each task. 

9.2. Results 

Detection Task: We focus on how strongly subjects under­
stood what makes their own regex vulnerable (see Figure 2). 
•	 Subjects using our anti-patterns to complement existing 

tools reported median “Strongly” understanding the vul­

nerability, improving over using existing tools only (me­
dian “Very weakly”). 

•	 Our hypothesis test showed a statistically significant im­
provement (p < 0.05). 

•	 Our observed effect size was mean 2.1 Likert points — 
bottom bar in Figure 2. Our power analysis indicated that 
we studied a sufficient number of subjects: we needed 4 
and studied 9. 

Subjects also reported that the anti-patterns will be “Help­
ful” (N = 4) or “Very helpful” (N = 5) for their future 
detection efforts. The following quote describes their most 
common sentiment: “I will use the tool to see if there is 
something wrong, and with the anti-patterns I can try to 
understand why there is a problem”. 

E[iVWing WoolV onl\
AnWi-paWWernV, fi[ VWraWegieV, and WoolV

Ver\
Zeakl\ 

Weakl\ NeXWral SWrongl\ 
Ver\

VWrongl\ 

P1
P2
P3
P4
P5
P6
P7
P8
P9

AVG

Figure 3: Fixing Task: Subjects consistently reported 
stronger understanding of what makes their resulting fixed 
regex not vulnerable when they used our anti-patterns and 
fix strategies to complement existing tools. 

Fixing Task: Figure 3 shows our subjects’ reported under­
standing of what makes the fixed regex not vulnerable. 
•	 Subjects using our anti-patterns and fix strategies to com­

plement existing tools reported median “Very strongly” 
understanding, improving over using existing tools only 
(median “Very weakly”). 

•	 Our hypothesis test showed a statistically significant im­
provement (p < 0.05). 

•	 Our observed effect size was mean 2.9 Likert points — 
bottom bar in Figure 3. Our power analysis indicated that 
we studied a sufficient number of subjects: we needed 2 
and studied 9. 

Subjects also reported that the anti-patterns and fix strategies 
will be “Neutral” (N = 1), “Helpful” (N = 2), or “Very 
helpful” (N = 6) for their future detection efforts. As an 
example quote, one subject regarded the fixing tool as: “The 
output does not make a whole lot of sense to me”. Another 
said of the fix resulting from our fix strategies: “I understand 
why this is ambiguous and how the change fixes it”. Finally, 
almost all subjects (N = 8) were more comfortable fixing 
their codebase with the fix produced using our fix strategies 
than with the one produced by the existing tool (Figure 5 
in Appendix). 

Summary for Experiment 3: Subjects using our IA anti-
patterns and fix strategies to complement existing tools 
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reported much higher understanding, from median “Very 
weakly” to median “Strongly” for detection, and to median 
“Very strongly” for fixing. 

10. Threats to Validity 

Internal Validity: We took multiple measures to increase 
internal validity. In Experiment 1 (§7), we tested the imple­
mentation scripts of our anti-patterns over small samples of 
the dataset. We also curated our studied dataset to prepare it 
for our experiments. We also used existing implementations 
of tools where possible, viz. the SOA anti-patterns by Davis 
et al. [2] and Weidemann et al.’s detector [19], to avoid 
errors if implementing them ourselves. 

In Experiment 2 (§8), we used best practices in human-
subject experiment methodologies in its design, e.g., [83], 
[84]. We piloted the protocol on 3 pilot studies, which 
helped us clarify the language describing the tasks (pilot 
1) and the technical terms in the training (pilot 2). Pilot 
3 showed that our script was adequate. To reduce social 
desirability bias, we did not disclose who created any of 
the anti-patterns, and we referred to them in the third person 
(Anti-patterns 1 and 2). To avoid expertise bias, we asked 
subjects to apply the given anti-patterns irrespective of their 
perception of their correctness. To avoid learning bias, 10 
random subjects used the SOA anti-patterns first, and the 
other 10 used our IA anti-patterns first. 

In Experiment 3 (§9) we likewise used best practices in 
design. We piloted the protocol on 3 subjects. After pilot 1, 
we adjusted the number of tasks to reduce the experiment 
duration. After pilots 2 and 3, we clarified some terms in 
the training. To reduce social desirability bias, we did not 
disclose who created any of the tools or supplementary 
approaches (even if we were asked); we referred to them 
only as “Treatment 1” etc. Further, we separately and in­
dependently asked subjects their understanding using one 
treatment and then using the other (as opposed to asking 
them to compare treatments). Having subjects individually 
decide and assign a specific score to each treatment reduces 
the possibility of them unconsciously preferring the last 
treatment. To reduce expertise bias (e.g., higher understand­
ing reported by more experienced subjects), all subjects 
used both treatments. To reduce learning bias, subjects 
used first the treatment that we anticipated would provide 
lower understanding, i.e., the existing tools. If subjects used 
first the treatment that truly provided higher understanding 
(and second the one that truly produced lower), they would 
misleadingly report higher understanding for the second 
treatment; they cannot forget what they learned. Having the 
combination of our anti-patterns, fix strategies, and existing 
tools as the last treatment may have unconsciously nudged 
subjects to report higher understanding for them. However, 
subjects reported much higher understanding for this last 
treatment with statistical significance, i.e., more likely due 
to a real effect than to chance. 

External Validity: We also took multiple measures to in­
crease external validity. 

In Experiment 1 (§7), we evaluated the largest available 
dataset of regexes [32]. 

In Experiment 2 (§8), our subjects had diverse levels 
of professional software development experience. Their ex­
perience with regexes was at the novice and intermediate 
levels, but we studied regex experts in Experiment 3. We 
studied simple composition tasks to represent situations 
when developers may choose to apply anti-patterns man­
ually, but they represented diverse scenarios. Furthermore, 
our subjects composed solutions that were only slightly less 
complex than typical real-world regexes according to [37]. 
For example, they had length 6-11 (median regex length 
in Java: 15) and used 2-3 operators (Java: median 3). We 
report the most common solution observed for each task in 
Table 6. We also studied more complex real-world regexes 
in Experiment 3. 

In Experiment 3 (§9), we studied mostly regex experts 
and complex real-world regexes to complement Experiment 
2. We also made this experiment as realistic as possible by 
having developers work with their own regexes, and giving 
them free access to online resources. 

Finally, both Experiment 2 and 3 studied a limited num­
ber of subjects (N = 20 and N = 9). However, we observed 
large effect sizes in our results, we did so consistently, they 
were statistically significant, and power analysis revealed 
that fewer subjects would have been sufficient. 

11. Conclusions 
To secure software systems, developers need approaches 

that are both sound and understandable. Prior to this pa­
per, the approaches to address regular expression security 
problems provided theoretical guarantees, but were difficult 
for developers to understand. Our goal was to complement 
these existing approaches with understandable regex security 
anti-patterns and fix strategies. To that end, we developed a 
novel theory of regex infinite ambiguity that characterizes 
vulnerable regexes to ReDoS, and a set of anti-patterns and 
fix strategies derived from it. Our evaluation showed that 
our IA anti-patterns identified vulnerable regexes with much 
higher effectiveness than the state-of-the-art anti-patterns, 
both when applied automatically and manually. Our anti-
patterns and fix strategies also substantially increased de­
veloper understanding when used alongside existing tools 
to detect and fix vulnerable regexes. In the future, we plan 
to apply this methodology to similar security problems in 
domain-specific languages (e.g., in GraphQL [85]). 
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Appendix A. 
Replication Package 

We have made our data and code publicly available for 
replication [33]. 

It contains, for Experiment 1: i) the dataset used (§7.1), 
ii) our implementation of Weideman’s detection tool [19] 
used as ground truth (§7.1), and iii) the implementation of 
our anti-patterns (§7.1). For Experiments 2 and 3: iv) the full 
protocol used (§8.1 and §9.1), and v) our implementation 
of van der Merwe’s fixing tool [27] (§9.1). Finally, vi) the 
analysis of prevalence of our fix strategies (§6). 

Appendix B.
 
Proofs of the Theorems
 

B.1. Definitions 

We define the operators used in Theorems 2 and 3: 

B.1.1. ∨∩ . Brabrand & Thomsen [38] introduced an overlap 
operator, ∨∩ , between two languages L(R1) and L(R2). 
The set L(R1) ∨∩ L(R2) contains the ambiguity-inducing 
strings that can be parsed in multiple ways across L(R1) and 
L(R2). More formally, with X = L(R1) and Y = L(R2), 

X ∨∩ Y = {xay | x, y ∈ Σ ∗ ∧a ∈ Σ+s.t. x, xa ∈ X∧ay, y ∈ Y } 

B.1.2. Ω. Brabrand & Thomsen use Møller’s BRICS li­
brary [73] for the implementation of their theorems, and 
actually use what we call the “Møller overlap operator”, Ω. 
We use this operator in our theorems. The Møller overlap 
operator describes only the ambiguous core “a”: 

X Ω Y = {∃ x, y ∈ Σ ∗ ∧a | a ∈ Σ+s.t. x, xa ∈ X∧ay, y ∈ Y } 

B.2. Assumptions 

In our theorems and proofs, we assume that we can 
convert regexes to their equivalent, ambiguity-preserving, E-
free NFAs [19], [40]. 

B.3. Theorems & proofs 

Brabrand & Thomsen’s Theorem 0 [38] provides the 
conditions for unambiguity. Our proofs consider the effect 
of negating the unambiguity condition, and distinguish the 
conditions that lead to finite or infinite ambiguity. 

B.3.1. Theorem 0: Brabrand & Thomsen’s [38] Theo­
rem. Given unambiguous regexes R1 and R2, 
(a)	 R1|R2 is unambiguous iff L(R1) ∩ L(R2) = φ. 
(b)	 R1 ·R2 is unambiguous iff L(R1) ∨∩ L(R2) = φ. 
(c)	 R1 ∗ is unambiguous iff E ∈/ L(R1) ∧
 

L(R1) ∨∩ L(R1 ∗) = φ.
 

B.3.2. Theorem 1: Ambiguity of Alternation. Given un­
ambiguous regexes R1 and R2, 
(a) R1|R2 is finitely ambiguous iff L(R1) ∩ L(R2) = φ. 
(b)	 R1|R2 cannot be infinitely ambiguous. 

The components of Theorem 1 follow from Lemma 1. 

Lemma 1. Given unambiguous R1 and R2, if R1|R2 is 
ambiguous it is always finitely ambiguous. 

Proof. A string s may be matched against R1|R2 in four 
ways: s may be matched by R1, by R2, by both, or by 
neither. In any case, since R1 and R2 are unambiguous, 
there are at most two ways for R1|R2 to match s. 

B.3.3. Theorem 2: Ambiguity of Concatenation. 
Suppose unambiguous regexes R1 and R2, and that 
L(R1) ∨∩ L(R2) = φ (so R1 ·R2 is ambiguous by Theo­
rem 0). Then: 
(a)	 R1 ·R2 is infinitely ambiguous iff L(R1) contains the 

language of a regex BC*D and L(R2) contains the 
language of a regex EF*G, where E ∈/ L(C) ∧ E ∈/
L(F) ∧ L(C) ∩ L(F) ∩ L(DE) = φ. 

(b) Otherwise, R1 ·R2 must be finitely ambiguous. 
2(a) is an iff so we need to prove: 
⇐= : If L(R1) contains the language of a regex BC*D 

and L(R2) contains the language of a regex EF*G, where 
E /∈ L(C) ∧ E /∈ L(F) ∧ L(C) ∩ L(F) ∩ L(DE) = φ, then 
R1 · R2 is infinitely ambiguous. 

Proof. Consider a string q = bcmd ∈ L(BC*D) where b, d ∈ 
Σ∗ , c ∈ Σ+ , b ∈ L(B), c ∈ L(C), and d ∈ L(D). By 
hypothesis, L(BC*D) ⊆ L(R1), so q ∈ L(R1). Similarly, 
consider another string r = efng ∈ L(EF*G) where e, g ∈ 
Σ∗ , f ∈ Σ+ , e ∈ L(E), f ∈ L(F), and g ∈ L(G). By 
hypothesis, L(EF*G) ⊆ L(R2), so r ∈ L(R2). As L(C) ∩ 
L(F) ∩ L(DE) = φ, suppose c = f = de. 

Consider the new string p = qr = bcmdefng ∈ 
L(R1)·L(R2) = L(R1 ·R2). In other words, R1 ·R2 should 
include the following NFA accepting p. 

... v1 v2 v3 ... b d e g 
c f 

For m = 2 and n = 2, p = bccdeffg. There are (m × 
n) + 1 = (2 × 2) + 1 = 5 ways to match. Ignoring prefix b 
and suffix g, the five cases to match the middle ccdeff are: 

v1 →(de=c) =c) =de)•	 v1 →c v1 →c v1 →(f v1 →(f v3 
v1 →(de=c) =de)• v1 →c v1 →c v1 →(f v3 →f v3 

•	 v1 →c v1 →c v1 →d v2 →e v3 →f v3 →f v3 
v1 →(c=de) v3 →(de=f )•	 v1 →c v3 →f v3 →f v3 

v1 →(c=de) v3 →(de=f )• v3 →c=f v3 →f v3 →f v3 
where the superscript of an arrow represents the (input 
observed = path taken) pair. 

The degree of ambiguity grows for each larger m and 
n. It can be shown that for an input string p = bcmdefng, 
there will be (m × n)+1 ways to match. Here ambiguity is 
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a function of the input length. Therefore, R1 ·R2 is infinitely 
ambiguous. 

=⇒ : If R1 · R2 is infinitely ambiguous, then L(R1) 
contains the language of a regex BC*D and L(R2) contains 
the language of a regex EF*G, where E /∈ L(C)∧E /∈ L(F)∧ 
L(C) ∩ L(F) ∩ L(DE) = φ. 

Proof. We will reason over an equivalent, ambiguity-
preserving, E-free NFA [40]. The NFA of an infinitely 
ambiguous regex should include either a Polynomial or an 
Exponential Degree of Ambiguity (PDA, EDA) section [40], 
as shown in Figure 1. 

We first show that if R1 · R2 is infinitely ambiguous, 
then the NFA of R1 · R2 must contain a PDA (Figure 1(a)). 
R1 and R2 are unambiguous, so none of them should have a 
full EDA. Concatenating two regexes R1 · R2 cannot create 
a new self loop of EDA. Thus, R1 ·R2 must contain a PDA. 

Consider the two nodes p with the loop π1 and q with the 
loop π3 in Figure 1(a). As R1 and R2 are unambiguous, nei­
ther R1 nor R2 can include both nodes p and q — because 
then they would be infinitely ambiguous (not unambiguous). 
Therefore, R1 and R2 each should have a part of PDA; 
and the partition will appear somewhere along the path π2 
as the loops π1 and π3 cannot be newly introduced via 
concatenation. 

Each partition of PDA consists of a prefix, a loop, and a 
suffix, which can be mapped to a regex of the form PQ*R. 
As a PDA is a part of the whole NFA, more generally, 
we can conclude that (1) L(R1) contains the language of a 
regex BC*D and (2) L(R2) contains the language of a regex 
EF*G: i.e., L(BC*D) ⊆ L(R1) and L(EF*G) ⊆ L(R2) 
where E /∈ L(C) ∧ E /∈ L(F). 

After concatenation, the full PDA can be represented by 
a language of the form BC*DEF*G, where C* is mapped 
to the first loop π1, DE to the path π2, and F* to the 
second loop π3. Let s be the string that meets the PDA 
path conditions: label(π1) = label(π2) = label(π3). Then, 
s ∈ L(C) (by label(π1)), s ∈ L(DE), and s ∈ L(F). And 
thus L(C) ∩ L(F) ∩ L(DE) = φ. 

Theorem 2(b) follows from elimination with Theorem 0. 

B.3.4. Theorem 3: Ambiguity of Star. Given unambiguous 
regex R, 
(a)	 R∗ is infinitely ambiguous iff E ∈ L(R) ∨ 

L(R) Ω L(R∗) = φ. 
(b)	 R∗ cannot be finitely ambiguous. 

The components of Theorem 3 follow from Lemma 2. 

Lemma 2. If R* is ambiguous, it is always infinitely am­
biguous. 

Proof. We prove this by induction. From the contrapositive 
of Theorem 0(c), if R∗ is ambiguous, L(R) ∨∩ L(R∗) = φ. 
There exists an input string s = xay such that 1) x, y ∈ Σ∗ , 
2) a ∈ Σ+, 3) x, xa ∈ L(R), 4) y, ay ∈ L(R∗). In other 

words, there are at least 2 = 21 ways to parse s (i.e., x ∈ 
L(R) then ay ∈ L(R∗); or xa then y). 

' 'Now consider ss = (xay)(xay). Let x = x, a = 
'	 ' ' 'a, y = yxay then, ss = x a y . Then the following 

'	 ' Σ∗ ' Σ∗conditions are true: (1) x , y ∈ , (2) a ∈ , (3) 
'	 ' ' 'x , x a' ∈ L(R), and (4) y , a y' ∈ L(R ∗ RR∗) ⊂ L(R∗). 

For each xay there are at least 2 accepting paths. Therefore, 
for ss there are at least 4=22 accepting paths, and the degree 
of ambiguity grows for each additional concatenation of an 
s. Therefore, R∗ is infinitely ambiguous. 

B.3.5. Theorem 4: Finite to Infinite. Given a finitely 
ambiguous regex R, R∗ is always infinitely ambiguous. 

Proof. If R is finitely ambiguous by definition there exists 
an input string s for which there will be at least 2 accepting 
paths. For R∗, we can increase the length of input string 
as much as we want because of the ∗. Now for input string 
ss, there will be at least 4 = 22 accepting paths as we have 
at least 2 options for each s. By the same logic, for input 
string sss.... where length of the input string is n, there will 
be at least 2n accepting paths. 

Therefore, R∗ is infinitely ambiguous. 

B.4. Limitations 

Our theorems do not cover the cases when R1 and 
R2 are finitely ambiguous. In such scenario, our expec­
tation is that Alternation (R1|R2) would always yield a 
finitely ambiguous regex. We also expect that Concatena­
tion (R1 · R2) would still yield an infinitely ambiguous 
regex if L(R1) contains the language of a regex BC*D 
and L(R2) contains the language of a regex EF*G, where 
E /∈ L(C) ∧ E /∈ L(F) ∧ L(C) ∩ L(F) ∩ L(DE) = φ. However, 
whether this is the only case is less clear. Still, despite this 
limitation, our theorems allowed us to derive anti-patterns 
(§5) and fix strategies (§6) that substantially improved the 
effectiveness of the SOA ones (§7, §8), and the usability of 
existing automatic detection and fixing tools (§9). 

Appendix C. 
Other Figures 

C.1. CVEs Increasing Year by Year 

We observe annual growth in ReDoS CVEs from 2010 
to the present. Figure 4 shows the trend of ReDoS CVEs 
since 2010. The incidence of ReDoS CVEs grew from 2 in 
2010 to 20 in 2021. 

C.2. Fix Acceptance 

We asked the participants of Experiment 3 (§9) how 
comfortable they were replacing the vulnerable regex in their 
codebase with the fixes provided by each repair treatment. 
As shown in Figure 5, almost all subjects were more com­
fortable with the fix produced using our anti-patterns and 
fix strategies. 
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Figure 4: The data were obtained by a two-step process: a 
preliminary labeling of the CVE database using key words 
and phrases (e.g., “ReDoS” or “extremely long time” with 
a reference to regular expressions), followed by a manual 
inspection for accuracy. 
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Figure 5: Fixing Task: How comfortable our subjects re­
ported being with fixing their codebase with the fix produced 
by each treatment. 
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