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Abstract—
Mobile and embedded devices are becoming ubiquitous. Applications such as rescue with
autonomous robots and event analysis on traffic cameras rely on devices with limited power
supply and computational sources. Thus, the demand for efficient computer vision algorithms
increases. Since 2015, we have organized the IEEE Low-Power Computer Vision Challenge to
advance the state of the art in low-power computer vision. We describe the competition
organizing details including the challenge design, the reference solution, the dataset, the referee
system, and the evolution of the solutions from two winning teams. We examine the winning
teams’ development patterns and design decisions, focusing on their techniques to balance
power consumption and accuracy. We conclude that a successful competition needs a
well-designed reference solution and automated referee system, and a solution with modularized
components is more likely to win. We hope this paper provides guidelines for future organizers
and contestants of computer vision competitions.

COMPETITIONS drive innovation and promote
creativity. The DARPA Grand Challenge opened
the era of autonomous driving; the Ansari X
Prize opened the era of reusable spacecrafts. The
same positive influence of competitions applies to
the field of computer vision. FERET from NIST
[13] set up the standard of face recognition. Ima-
geNet Large-Scale Visual Recognition Challenge
(ILSVRC) [15] established deep learning as the
mainstream approach for computer vision. These

competitions created an incentive of surpassing
the existing solutions and provided a platform for
researchers to benchmark their solutions.

To take further advantage of competitions, the
IEEE Annual International Low-Power Computer
Vision Challenge (LPCVC) has been held to iden-
tify energy-efficient computer vision solutions
since 2015 [1], [16]. These solutions may apply to
energy-constrained systems equipped with digital
cameras, such as mobile phones, aerial robots,
and automobiles. From 2015 to 2017, LPCVC
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Figure 1: The highest score, highest accuracy, and lowest energy on each day during August 2021.

competitions were held on-site at large confer-
ences (Design Automation Conference in 2015-
2016 and the International Conference on Com-
puter Vision and Pattern Recognition in 2017-
2018). On-site competitions allowed contestants
to bring their own hardware, including experi-
mental boards, mobile phones, tablets, FPGAs,
and desktops. To encourage more participation,
the competition was hybrid in 2018: contestants
could bring their own hardware on site and a
separate track allowed contestants to submit their
code online using the same hardware. Since 2019,
the competitions have been entirely online.

In the 2021 LPCVC, 53 teams from 4 differ-
ent countries submitted 366 solutions during the
submission window (08/01 - 09/01) (Figure 1). A
public leaderboard ranked all submitted solutions
during the month. A total of 138 solutions from
17 teams outperformed our open-source reference
solution. Compared with the reference solution,

the best solution improved accuracy by 3.43 times
(343%) using only 4.0% (96% reduction) of the
energy. This paper analyzes all submissions from
the top two teams and presents their important de-
sign decisions. This paper aims to help organizers
design future competitions and to help contestants
explore design space and win competitions.

2021 IEEE Low-Power Computer
Vision Challenge (Video Track)

Multi-Object Tracking (MOT) is a challenging
problem in computer vision [4], [10]. MOT aims
to determine the identities and trajectories of
multiple moving objects in a video. MOT is
limited by input frames — if the input frames
come from a stationary camera, tracking can
only happen within the frame, and the occlusions
interfere the tracking accuracy. Although some
application scenarios can address this with an
array of cameras, others envision following the
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Figure 2: Four frames in one sample video for
multiple object tracking. Each person is labeled
a number between 1 to 5. Balls have different
colors. The balls, the people, and the cameras
may move simultaneously. Occlusion may occur:
in (d) the red ball is occluded by the person with
white shirt.

objects of interest using of Unmanned Aerial
Vehicles (UAVs, also called drones). UAVs have
received increasing attention in research and in-
dustry communities for their flexibility. From
video surveillance to crowd behavior analysis,
many application scenarios can benefit from ana-
lyzing drone-captured video with MOT solutions.

MOT on UAVs has two major challenges: (1)
the dynamic background makes tracking more
difficult; and (2) the solutions need to be low-
power since the UAVs have limited energy from
onboard batteries. Although these constraints are
not unique to UAVs, and many battery-powered
systems need fast and energy-efficient solutions,
most computer vision competitions focus exclu-
sively on accuracy. To fill this gap, the 2021
LPCVC introduced a track that measured vision
solutions in both accuracy and energy consump-
tion.

The contestants were required to perform
Multi-Class (balls and humans) Multi-Object
Tracking on a series of videos captured by UAVs.
Figure 2 shows four example frames from one
video. The solutions should determine when the
balls change hands by indicating the frame num-
ber and the ball possessor. Sample test data was
provided; contestants could use any training data.

Referee System
Figure 3 shows the architecture and how

information flows through the automated ref-
eree system. A contestant uploads a solution to
the competition website: https://lpcv.ai.
These solutions enter a queue to be evaluated
by the referee system. To process a submission,
the referee system resets the evaluation board to
a clean state and then executes the submission.
Power measurement starts when a submitted so-
lution starts running. After a submission com-
pletes, the referee system calculates the score and
updates the public leaderboard on the website.
Online submissions require a common hardware
platform for comparing the speed — we used a
Raspberry Pi 3B+ because it is a popular platform
for embedded systems.

A submitted solution receives two input files:
a testing video and a calibration file. The expected
output is a CSV (comma separated value) file
storing the frame when a ball changes hands.
Table 1 shows the expected format of the output
file. A submission program is disqualified if it
cannot be executed or generates the wrong output
format.

Reference Solution
We provided an open-source reference solu-

tion on GitHub [6] as a baseline for contestants to
create better solutions. The purpose is to help par-
ticipants understand the submission format while
encouraging creativity. From our experience in
the previous competitions, the reference solution
is used as an example to present the submission
formatting but not limiting innovative designs.
It also serves as the qualification: a submitted
solution is disqualified if it is inferior to the

Supply 
power

Submissions 
Queue

Accuracy

Energy

Pop

OutputUpdate

Trigger

Website

submission

Figure 3: The automated referee system.
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Frame Class ID X Y Width Height
0 0 1 50.41015 0.39583 0.02031 0.03425
0 0 2 0.36835 0.61990 0.04557 0.18055
0 1 3 0.41015 0.39583 0.03593 0.16296

... ... ... ... ... ... ...

Frame Yellow Orange Red Purple Blue Green Meaning
0 0 1 5 2 3 0 Initial setting
5 0 1 5 2 4 0 Person 4 catches blue ball

30 0 3 5 2 4 0 Person 3 catches orange ball
60 0 3 1 2 4 0 Person 1 catches red ball

... ... ... ... ... ... ... ...

Table 1: The top table is an example of the input file provided with the test video. Class 0 is a person
and 1 is a ball. Following the YOLO annotation format, X and Y are the absolute center of each
bounding box with width and height. The bottom table is an example of the expected output format.
The last column (Meaning) helps human interpret the information and is not included in the file.

Red

Mahalanobis 
Distance

YOLOv5 
Model

Kalman 
Filter Deep Appearance 

Descriptor

Hungarian 
Assignment

Object Detection

Multi-Object Tracking

Input Detections

5 2 1 3 4Output

MOT Results output.csv

Yellow

DeepSORT

Figure 4: The workflow of the reference solution.
The Multi-Object Tracking block follows the ob-
ject association architecture listed in DeepSORT.

reference solution.

To encourage innovation, the reference solu-
tion provides a sample adopting the conventional
multi-class multi-object tracking paradigm using
“tracking-by-detection” (Figure 4). YOLOv5 [8],
an advanced version of the YOLO object detector
[14], is the detector of our choice because of its
flexibility in training and high inference speed.
DeepSORT [19] is used to track the moving

object because it contains multiple dimensions of
features to track the instance across frames and
has been widely used in many MOT projects. The
reference solution ranked No. 2 on the fourth day
of the challenge, 2021/08/04. When the challenge
concluded on 2021/09/01, the same reference so-
lution (two versions) ranked 139 and 147 among
158 valid submissions.

Evaluation Metrics
The evaluation metrics are designed to bal-

ance multiple factors. First, the organizers did
not wish to use per-frame annotations, commonly
adopted in conventional multi-object tracking
datasets. Creating such annotations require signif-
icant efforts from the organizers. Also, comparing
the submitted solutions with the ground truth
frame by frame will require significant compu-
tation on the referee system and delay posting
the scores on the leaderboard. Second, the main
purpose of this tracking problem is to detect when
the balls change hands and who holds which ball.
The event of capturing a ball is more important
than the duration of holding a ball. The accuracy
is determined by detecting when a ball is caught
using two major components of an MOT solution:
object detection and re-identification. A catch is
defined as the moment a thrown ball touches a
person’s hand. Re-identification determines which
person catches the ball.

When a submitted solution reports a catch, the
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index frame can belong to one of three categories:

1) True Positive (TP ): a catch is caught cor-
rectly. Suppose a ball is caught at frame
t in the ground truth, the reference system
accepts the answer within ±10 frames from
the ground truth frame. If multiple output
frames are within the range, the earliest
frame is selected so more accurate output
is encouraged.

2) False Positive (FP ): a catch is falsely
detected. This reduces the scores of the
solutions that output too many irrelevant
frames.

3) False Negative (FN ): the solution fails to
detect a catch.

F1-score is commonly used as evaluation met-
rics in machine learning as it elegantly sums
up the predictive performance of a model by
combining two otherwise competing metrics —
precision and recall [11]. The conventional F1-
score is represented in Equation (1).

F1 =
TP

TP + 1
2
(FP + FN)

(1)

For this competition, TP is not uniform in
all cases. If TP only counts the frame that
has a correct detection, other attributes within
the detection (how many pairs of balls/person
within the frames are correctly detected) will be
neglected. Thus, we have scoreTP for each TP
frame, which is calculated by dividing the number
of correct ball/person values correcti over the
total catches in the groundtruth totali (Equation
(2)). i is the index frame and n is the total number
of balls in the input video.

scoreTP =

n∑
i=0

correcti
totali

(2)

The original numerator TP in Equation (1)
is replaced by scoreTP . Since TP represents the
frames correct detections and scoreTP gives the
accuracy within the correct detection, this gives
a better evaluation of the performance for the en-
tire solution. Finally, the accuracy is calculated
based with Equation (3).

accuracy =
scoreTP

TP + 1
2
(FP + FN)

(3)

In the example showed at Table 2: frame 31
and 95 in the output are within ± 10 frames

Frame Red Blue Green Result
Groundtruth

30 1 2 3
60 1 3 4
90 2 1 3

115 4 2 1
Example Output

31 1 4 3 TP, 2/3
48 5 3 4 FP
95 2 1 3 TP, 1

Table 2: Example output and ground truth for one
input video.

from the ground truth frame 30 and 90, therefore
they are classified as TP with corresponding
scoreTP ; frame 60 and frame 115 are missing in
the output, so FN is 2; frame 48 is not within any
range of the frames in the ground truth, therefore
it is classified as FP . The final accuracy is:

1+2/3

2+ 1
2 (1+2)

= 0.48.

score =
accuracy

energy
(4)

Evolution of Winners’ Solutions
To better understand the design decisions of

the participants, this paper analyzes the solutions
submitted by the top two winning teams (see
Table 3). The champion is the VITA team from
the University of Texas and WormpexAI. The
second award belongs to the baseSlim team from
Meituan. The accuracy and energy difference
between each submission from both teams are
showed in Figure 5 and Figure 6. Important sub-
missions are divided into sections on the figures.

Table 3: Final scores of the top 2 teams and
the reference solution. Energy is in kWh and
accuracy is in %. The VITA team has lower
energy consumption; baseSlim, higher accuracy.

Team Energy Accuracy Score Count
VITA 0.09 0.79 8.57 22
baseSlim 0.10 0.83 8.56 14

Reference 2.26 0.23 0.11 2
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The baseSlim Team

Section A The baseSlim team’s first submis-
sion used a combination of NanoDet [12] and
JDETracker [18], but the program produced no
output. In the second submission (Section A), the
team replaced JDETracker with the DeepSORT
used in the reference solution. The resultant score
was 8 times better than the reference solution
given the low-power profile of NanoDet.

Section B The 5th submission made sig-
nificant progress by updating the structure to
NanoDet as the detector and DeepSORT as the
tracker. The solution also has an improved feature
extractor for the re-identification module in the
DeepSORT by retraining the tracking pre-trained
weights. The 5th submission obtained a score of
2.26. The team further improved the accuracy
by pruning the DeepSORT weights in the 6th
submission. This improvement in accuracy also
increased energy consumption. The 6th submis-
sion replaced NanoDet by YOLOx and tuned
the pre-trained weights of the VOC dataset. The
eighth submission reduced energy consumption
with nearly no change in accuracy. The 9th and
10th submissions attempted to accelerate execu-
tion but the accuracy decreased. The slight reduc-
tion in energy consumption was accompanied by
a significant reduction in accuracy (10th and 11th
submissions).

Section C The last three submissions achieved
much better accuracy with negligible impacts on
energy consumption. Up to the 11th submission,
the team used pre-trained weights stored in .pth
format; this is the default format for models
trained with PyTorch. In their 11th submission,
the team converted the .pth weights into the
.jit format. This reduced the model size to
only 21.82% of the previous submissions. The
just-in-time (JIT) compiler takes a PyTorch model
and rewrites it to run at higher efficiency. The
team came back to the YOLOx model from
NanoDet on submissions 12-14 and made great
improvements in accuracy. The 13th submission
replaced YOLOx with SPGNet and stored all
color codes in a NumPy array. These changes
increased accuracy by 0.1533. The final (14th)
submission used better pre-trained weights. This
submission achieved an accuracy of 0.83 at en-
ergy usage of 0.097 — score of 8.56. This is 77.9
times better than the reference solution. More
details on model compression techniques used in
the solution are reported elsewhere [17], [9].

The VITA Team

Section A VITA team’s first submission used
YOLOv5s as the detector, which required only
8.3% operations compared to the YOLOv5 model
used in the reference solution. Through quantiza-
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A B C

En
er

gy

Team baseSlim

Submission Index
Figure 5: Changes in accuracy (%) and energy consumption (kWh) over the solutions from the baseSlim
team. The first pair, labeled 01, shows the scores from the first submission. Higher accuracy (positive)
and lower energy (negative) are preferred.

6 IEEE Computer



tion, the YOLOv5s model was only 1.29 MB (the
released YOLOv5 model was 13.9 MB). These
changes led to 2.78 times better accuracy than
the reference solution. Their first solution also
improved the DeepSORT tracker by replacing
the original backbone Wide Residual Network
(WRN) [20] with ResNet18 [5]. With the new
backbone, the VITA team trained a tracking
model of size 2.81 MB through pruning, only
6.47% the size of the reference model. For in-
ference, the team designed an action detector that
dynamically classified and selected useful actions
in the input video to minimize the frames that
needed to be processed [7]. With the help of
the action detector, the 2nd submission reduced
energy by 0.23 kWh. The 3rd submission com-
pressed the tracking model even more, from 2.81
MB to 0.31 MB through pruning. As a result, the
3rd submission decreased the energy consumption
by 0.06 kWh, with a slight increase in accuracy.

Section B The following submissions had
wide fluctuations in accuracy while the energy
consumption remained nearly unchanged. The
6th submission attempted to improve the action
detector by estimating the proximity of the balls
and the people. However, this did not perform
well and the accuracy dropped by 26.00%. The
7th submission was similar to the 5th submis-
sion. The 8th submission attempted to improve
the action detector but the accuracy dropped by
201.00% again. In the 9th submission, the team

used the DeepSORT tracking which improved
accuracy to 77.67%. The 10th submission added
calibration to the action detector and bounding
boxes to make the tracking more precise, but the
accuracy dropped by 41.70%. The 11th submis-
sion removed the calibration and used a smaller
pre-trained YOLOv5 model (from 1.29 MB to
0.93MB). The accuracy improved by 33.67%.

Section C The VITA team had the highest
increase in accuracy in their 16th submission at
36.70%. In this submission, the team learned the
lessons from all the components that did not help
improve their submissions and finalized their ac-
tion detector by adding more cases to handle the
different situations in the input video. What came
with higher accuracy was more energy usage. A
longer execution time was needed to complete
the 15th submission, leading to an increase of
0.04 kWh. Due to this increase, the score of the
16th submission was lower than some of their
previous submissions. The team implemented a
correction strategy in their action detector. The
max number of balls and persons were marked
at the beginning of the video based on the given
annotation files. When the query reached the max
number but the detector detects a new ball or
person is in the video, the detector will first
try to re-identify again to see if the new object
could be linked with any existing profiles. This
strategy helped the team to reduce much time of
correcting themselves, and an accuracy increase

A CB
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En
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Team VITA

Submission Index
Figure 6: The difference of accuracy (%) and energy consumption (kWh) between the submissions
from the VITA team. The first submission has the actual data instead of the difference.
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of 25.67% and an energy usage decrease of 0.026
kWh in the 18th submission. Finally, the team
reached the highest accuracy at 81.30% in the
19th submission.

Later submissions explored the trade-offs be-
tween accuracy and energy usage. With all the
previous lessons, the VITA team reached the
highest score among all submissions in LPCVC
2021 at 8.57 with accuracy at 79.00% and energy
usage at 0.09 kWh. More details of the devel-
opment process, including model compression
techniques and training, can be found in the VITA
team’s paper [7].

Observations and Suggestions for
Future Challenges

As shown in Figures 5 and 6, the winning
teams’ solutions did not achieve monotonic im-
provements. Instead, both teams experimented
with different methods to improve accuracy and
to reduce energy consumption. Both teams found
success by tuning individual modules while stick-
ing within the same general modular design they
started with. The teams’ approaches suggest that
winning solutions should be designed and imple-
mented in modules so that replacing components
can be easy.

We sent a survey to all participants from all
different tracks of the 2021 LPCVC competition
to collect their feedback. Based on this feedback,
here are several suggestions for organizers of
future challenges.

• An up-to-date leaderboard encourages inno-
vations. Figure 1 shows that the best daily
scores improved substantially over the month.
It is possible to update the leaderboard quickly
because the referee system was automated
(shown in Figure 3). The UAV video track did
not have any execution-related failures from
the automated referee system.

• An open-source scoring system helps partici-
pants understand how to optimize. Our referee
system was open-source and contestants can
fully understand how scores are calculated. An
interesting insight from the survey is that the
UAV video track received a 3.8/5 satisfaction
score on the scoreboard. Since the UAV video
track was the only one equipped with the
automated referee system, it suggests that our

approach benefited the participants by provid-
ing constant and reliable scoreboard updates.

• A reference solution is valuable. A reference
solution serves multiple purposes: (1) It helps
contestants understand the input and output
formats. (2) It sets a minimum standard for
qualification. (3) If it is well-structured, it en-
courages contestants to experiment by replac-
ing the components. Our survey results show a
score of 4.4/5 on satisfaction with the reference
solution. One potential disadvantage is that it
may discourage participants’ creativity in using
drastically different approaches. We acknowl-
edge that even the winning teams innovated
only within the modular design of the refer-
ence solution — they improved components
but they did not explore new designs. In the
future, we will explore whether providing zero,
one, or multiple reference solutions promotes
greater design diversity.

Conclusion

In this paper, we present the preparation pro-
cess of organizing the 2021 Low-Power Com-
puter Vision Challenge UAV video track and
the evolution of top two winning teams’ solu-
tions. We summarize the key to a successful
competition consists of a well-designed reference
solution, an automated referee system, and a
timely scoreboard. In the analysis of the evo-
lution of the winning solutions, both teams ex-
perimented many design choices throughout their
submissions to achieve balance between accuracy
and energy consumption. The success of 2021
LPCVC, along with the previous competitions,
help to shift the computer vision competition
focus from accuracy only to both accuracy and
power efficiency. The application scenario of
computer vision on UAV paved the way for
two follow-up competitions: the 2023 IEEE Au-
tonomous UAV Chase Challenge and the 2023
LPCVC UAV Segmentation track. More evalua-
tion criterias such as fairness [2] and robustness
[3] may be considered in future challenges. We
hope this paper benefits future competition orga-
nizers as well as participants, promoting our goal
of advancing innovation in Computer Vision.
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