An Empirical Study of Pre-Trained Model Reuse in
the Hugging Face Deep Learning Model Registry

Wenxin Jiang*, Nicholas SynovicT, Matt HyattT, Taylor R. Schorlemmer*, Rohan Sethif,
Yung-Hsiang Lu*, George K. Thiruvathukal®, James C. Davis*
*Purdue University and TLoyola University Chicago

Abstract— Deep Neural Networks (DNNs) are being adopted
as components in software systems. Creating and specializing
DNNs from scratch has grown increasingly difficult as state-
of-the-art architectures grow more complex. Following the path
of traditional software engineering, machine learning engineers
have begun to reuse large-scale pre-trained models (PTMs) and
fine-tune these models for downstream tasks. Prior works have
studied reuse practices for traditional software packages to
guide software engineers towards better package maintenance
and dependency management. We lack a similar foundation of
knowledge to guide behaviors in pre-trained model ecosystems.

In this work, we present the first empirical investigation of
PTM reuse. We interviewed 12 practitioners from the most
popular PTM ecosystem, Hugging Face, to learn the practices
and challenges of PTM reuse. From this data, we model the
decision-making process for PTM reuse. Based on the identified
practices, we describe useful attributes for model reuse, including
provenance, reproducibility, and portability. Three challenges for
PTM reuse are missing attributes, discrepancies between claimed
and actual performance, and model risks. We substantiate
these identified challenges with systematic measurements in the
Hugging Face ecosystem. Our work informs future directions on
optimizing deep learning ecosystems by automated measuring
useful attributes and potential attacks, and envision future re-
search on infrastructure and standardization for model registries.

Index Terms—Software reuse, Empirical software engineering,
Machine learning, Deep learning, Software supply chain, Engi-
neering decision making, Cybersecurity, Trust

I. INTRODUCTION

Package reuse has transformed software engineering in
programming languages such as JavaScript and Python [12],
and is transforming deep learning model engineering [3|.
Deep Neural Networks (DNNs) are widely used in modern
software systems, such as image recognition in autonomous
vehicles [4]. Engineering a DNN is challenging due to the
capital and operating expenses of training models [5] and
variation in deep learning libraries [6]. These problems can
be addressed by reusing pre-trained DNN models (PTMs) to
amortize DNN development costs across multiple projects and
organizations [[7]. PTMs are shared via Deep Learning (DL)
model registries, which are modeled on traditional software
package registries such as NPM and provide packages with
model architectures, weights, licenses, and other metadata. DL
model registries enable reuse-driven DNN engineering |8} 9]
As Figure [I] shows, PTM reuse is now appreciable [7].

Reusability and trustworthiness problems in software pack-
age registries impact the relevant ecosystems [[10-12]]. Much is

) (TN = NPM = PyPi = HuggingFace
S 1.00 | | L ‘
< E+8 | ‘
(7]
T
©
o
< 1.00 i HHH | |
»
o
2
<
‘g 1.00 | ‘ | |
E+6
= ‘ MR
The 100 most-downloaded packages
Fig. 1. Package download rates in two software package registries, NPM

and PyPi, and the leading DL model registry, Hugging Face. Many Hugging
Face model packages have high download rates, though with a rapid drop-oft.

known about the practices and challenges of reusing traditional
software packages [[13H15], but how this knowledge transfers
to the reuse of PTM packages has not been investigated.
Existing software engineering knowledge describes how large
companies manage private models [16}[17]. However, we do
not know how small-to-large engineering teams reuse models
in DL model registries nor what challenges they experience.

In this work, we present the first empirical study of pre-
trained model reuse. We took a mixed-methods approach to
identify diverse phenomena for future investigation [[18]]. We
focused our study on the Hugging Face DL model registry,
which is the largest PTM registry at present [[19]. First, we
interviewed 12 Hugging Face practitioners to understand the
practices and challenges of PTM reuse. Second, we comple-
mented this qualitative data with measurements of the Hugging
Face registry. We built a dataflow model of the creation and
distribution process for PTMs in Hugging Face and collected
and analyzed a dataset of 63,182 PTM packages.

Our findings indicate that PTM reuse workflows are sim-
ilar to those for traditional software package reuse, but that
engineers follow practices and experience challenges specific
to deep learning. Based on our interview data, we: present the
first decision-making workflow for PTM reuse, identify useful
PTM attributes and three common challenges, and discuss
the extent to which existing techniques meet these challenges
(§VI§VII). Our dataflow model of PTM distribution found
several vectors for software supply chain attacks (§VIII).
Our analysis shows unique properties of the PTM package
ecosystem relative to traditional software package ecosystems,

notably that the attributes and decision-making workflow are
more complex (. We share the HF Torrent dataset of 63,182
PTM package histories for further analysis (§[X). We conclude
by discussing four new research problems for further study
(. Our contributions are:

o We depict a decision-making workflow for PTM reuse,
and identify three challenges for PTM reuse (§V}—§VII).

« We measure the risks of collaboration in Hugging Face.
We identify several potential software supply chain con-
cerns facing PTM reusers (§VIII).

o We publish the HFTorrent dataset of 63,182 PTM pack-
ages for future analysis (§IX).

« We identified unique properties of PTM package reuse
to guide future research on model audit, infrastructure,
standardization, and attack detection (.

Significance: PTM reuse reduces the engineering costs of
employing DNNs in industry. This paper describes the first
investigation of PTM reuse from a software engineering
perspective. We are the first to (1) capture the decision-
making workflow and challenges for PTM reuse; (2) determine
attributes of PTMs that facilitate reuse; and (3) measure risks
of PTM reuse in the Hugging Face DL model registry. Our
findings can help PTM maintainers and registries improve the
quality of their offerings, and show opportunities for software
engineering tools to support PTM reusers in this process.

II. BACKGROUND AND RELATED WORK
A. Software Package Reuse

Software package registries store versioned packaged soft-
ware, associated metadata, documentation, and configura-
tions [20]. Similarly, deep learning (DL) model registries
distribute PTMs with metadata, a model card (i.e., documen-
tation), relevant configurations, and versions of pre-trained
weights [21]]. DL model registries are an important component
of the DL ecosystem [22]. As shown in Figure 2] PTM pack-
ages may contain more component than traditional packages,
including weights, datasets, and performance metrics.

Evaluating and selecting software packages is a difficult, but
essential, activity for package reuse [13]. Prior work shows
that engineers may improve their software selection with in-
sights into the decision-making process and an understanding
of relevant factors [[13}23}/24]]. Existing literature focuses on
practices in traditional software package registries, such as
NPM [25] and Maven [26,27]. The extent to which reuse
practices for traditional software will transfer to the reuse of
PTM packages is unclear.

Reproducibility is another important aspect of software
package reuse [28]]. In traditional software packages, Goswami
et al. found that 38% of explored NPM package versions
are non-reproducible [29]. Similarly, Vu et al. highlighted
existing discrepancies at different levels of granularity in
PyPi [30]. Following the machine learning scientific research
community [31]], the software engineering community has just
begun to study concerns in DL model registries [32]. We offer
an early software engineering view on this topic.

Traditional packages PTM packages
Code
Dependencies Pre-trained weights
Test link Architecture

Dataset
Model format

Traditional metrics
(e.g. popularity) +

Documentation DL metrics (e.g.

Demonstration accuracy, latency)
Version Fine-tunability
License

Fig. 2. Components of traditional packages [20] and PTM packages [21].
A PTM package includes all the components of a traditional package, plus
some DL-specific parts.

B. Pre-Trained Model Reuse

PTM reuse is necessitated by the emergence of large-
scale models, and is enabled by learning and compression
techniques, including transfer learning [33||, quantization and
pruning [34]], knowledge distillation (35|, and data label-
ing [36]. Through transfer learning, DNNs can be pre-trained
on large datasets and fine-tuned to solve specialized tasks,
leveraging a PTM’s knowledge of one task to better teach it
a similar task [33}/37]. Using quantization and pruning meth-
ods, PTMs can be optimized for latency- or energy-sensitive
contexts, such as on edge devices, without compromising
accuracy [34]]. Via knowledge distillation, PTMs can be used to
teach a smaller model, yielding good performance and reduced
computational costs [35]. Engineers can also use PTMs to
automatically label datasets [36].

Practitioners from major technology companies report chal-
lenges in model management and model reliability [16}/17].
Schelter et al. summarized model validation challenges, in-
cluding decisions on model retraining, metadata querying, and
adversarial settings [16]]. Rahman et al. highlighted that the
behavior of ML models can be easily affected because of
their data-driven nature [38]]. To better reuse the PTMs, it is
important to monitor the performance of deployed models,
track changes in data characteristics, and to retrain and re-
validate them frequently.

One way to address the management problems is to use
a DL model registry, which is defined as: a collaborative
model hub where teams can share DL models [21},|39]]. The DL
model registry concept imitates traditional software package
registries such as NPM [40] and PyPi [41]. Through web
searches, we identified several prominent DL model registries,
including Hugging Face [42], TensorFlow Hub [43], PyTorch
Hub [44]], and ONNX Model Zoo [45]]. Among all registries
we examined [42-48]], Hugging Face offers the largest and
most diverse set of PTMs — it hosts over 60,000 PTMs, fifty
times as many as the next largest DL model registry, as well
as many types of models and datasets.

C. Deep Learning Trustworthiness

The trustworthiness (e.g., reproducibility, explainability)
of DL software grows in importance as DL techniques

are deployed in sensitive contexts such as autonomous ve-
hicles [49,50]. For example, DL traceability is hampered
because authors often omit training logs and documenta-
tion [38|51]. Wing urges the DL community to explore a
combination of approaches to achieve trustworthy DL [52].
To improve the trustworthiness of ML systems, prior work
recommends considering aspects including provenance, repro-
ducibility, and portability [38}[52-54], as defined in Table
Some researchers have investigated the performance variances
tied to DL frameworks [55//56]], which threatens DL reliability.

Adpversarial attacks and defences are also important to DL
trustworthiness [57,[58]]. Gu et al. proposed the general term
BadNet for models that perform well on benchmark datasets
but poorly on attacker-defined inputs [59]]. Kurita ef al. showed
that it is possible to construct BadNets from weight poisoning
attacks by injecting PTM with vulnerabilities that expose
backdoors after fine-tuning [[60]. Additionally, Goldblum ef al.
discussed that it is also possible to attack a model indirectly via
malicious labels in its training dataset (data poisoning) [61]].
Wang et al. described an EvilModel where a PTM has malware
bytes hidden inside its neurons’ parameters to be extracted and
assembled into malware at run-time [62]]. These attacks are not
all covered by existing malware detection techniques and raise
potential risks to DL model registries [63].

III. RESEARCH QUESTIONS

Summarizing the literature: Much is known about software
engineers’ practices and challenges in reusing traditional soft-
ware packages, but little about DL software packages (PTMs).
Reuse and trust are unexamined in DL model registries.

We studied the reusability of PTM packages in DL model
registries, examining qualitative and quantitative aspects. We
focused on one DL model registry, Hugging Face, as it is by
far the largest registry at present [[19]. For PTM reuse in the
Hugging Face ecosystem, we ask:

RQ1 How do engineers select PTMs?

RQ2 What PTM attributes facilitate PTM reuse?

RQ3 What are the challenges of PTM reuse?

RQ4 To what extent are the risks of reusing PTMs mitigated
by Hugging Face defenses?

RQ1-2 are focused on current software engineering practice,
priming the participants to describe their challenges in RQ3.
RQ4 complements this data with quantitative measurements.

IV. METHODOLOGY

To answer our research questions, we used a mixed ap-
proach that combined two perspectives [18[]. We first ex-
plore qualitative insights by interviewing practitioners, then
we substantiate our findings with systematic measurements
in Hugging Face ecosystem. The relationship between our
questions and methods is shown in Figure [3]

A. Qualitative Study: Interviews with PTM Reusers

Our interview study follows a four-step process modeled on
the framework analysis methodology [|64}65]:

Research Questions

Qualitative Study
PTM Selection (RQ1) |

Quantitative Study

.................

Interviews (N=12) Helpful Attributes (RQ2) |

Reuse Challenges (RQ3)]
L »{ Risk Mitigation (RQ4)

Fig. 3.

.................

Relationship of research questions to methodology.

(1) Data Familiarization and Framework Identification Our

initial thematic framework is based on three themes from
our literature review (§[E[): model selection, PTM attributes,
and PTM trustworthiness. For model selection, the identified
considerations were the PTM reuse issues and factors affecting
the decision-making process [19,/66]. For attributes, we saw
both traditional attributes (i.e., popularity, quality, mainte-
nance) [67,/68], and DL-specific attributes, viz. provenance,
reproducibility, and portability [52H54], shown in the first three
columns in Table Il For trustworthiness, we considered the
aspects assumed trustworthy plus possible discrepancies [[19].

(2) Interview Design We designed a semi-structured interview

protocol with questions that explore the three identified themes
of PTM reuse and trust. We conducted three pilot interviews.
We then revised our framework and interview protocol, adding
some PTM attributes and factors and clarifying definitions.

The final interview protocol took 30-45 minutes. We com-
pensated interview participants with a $20 gift card. The
protocol is available in our artifact (§XTI).

(3) Recruitment We recruited users from the Hugging Face

ecosystem [42]], who presumably have experience in devel-
oping and reusing PTMs. According to the Hugging Face
website [[69] there are 18,348 Hugging Face users, 690 of
whom have PRO accounts and 17,658 of whom have regular
accounts. We sorted the lists of PRO and regular users by the
number of models they have contributed to Hugging Face, and
contacted the first 50 users of each type. We interviewed the
12 respondents described in Table This was a (response
rate of 24%, of whom 9 had PRO accounts. Our participants
contributed between 4 and 2500 models to Hugging Face.

(4) Analysis We transcribed the interview recordings. Two

researchers performed memoing [70]], mapping the transcripts
to the pre-defined themes. Each memo had a quote for one
of the themes. Multiple researchers analyzed 4 transcripts and
had high agreement on the memos extracted for each theme.
Agreement was because the pre-defined themes had clear
definitions, but we did not measure the agreement precisely.
A single researcher memoed the remaining 8 transcripts.

Then we organized the memos in a matrix by theme. Two
researchers used the matrix to develop a thorough understand-
ing of the larger picture. Then we answered each RQ by our
understanding and reference to the matrix.

As part of our analysis, we measured saturation from our
interview transcripts by analyzing the number of cumulative
unique codes by participant [71]. Saturation was achieved after

TABLE I
DEFINITION AND EXAMPLES OF DL-SPECIFIC ATTRIBUTES, AND THE RELEVANT FACTORS MENTIONED BY MULTIPLE PARTICIPANTS.

Attribute Definition

Example

Identified Factors

Provenance A measure of model lineage or traceability.

Reproducibility ~ The ability of a DL practitioner to produce
the same accuracy and latency from a PTM as
defined in its paper, source code, or group.

Portability The ease with which an engineer can take
a PTM and reuse it in another environment,

software project, or other application domain.

Noting the original paper

Providing details of environ-
ment configuration

Hardware accelerator infor-
mation helps engineers know
whether a model can run on
their devices.

(1) Dataset details (2) Performance table (3) Ar-
chitecture details (4) Training logs

(1) Hardware specification (2) Training configu-
ration (scripts, hyper-parameters) (3) Demos (4)
Documentation (5) Environment image

(1) Hardware specification (2) Latency (3) Quan-
tized model (4) Environment image (5) Framework
support (6) Fine-tuning instructions (7) License (8)
Cost estimation

TABLE II
PARTICIPANT DEMOGRAPHICS. PARTICIPANTS GENERALLY IDENTIFY AS
SOFTWARE, ML, OR NLP ENGINEERS, WORK FOR SMALL, MEDIUM, AND
LARGE TECHNOLOGY COMPANIES, AND CLAIM INTERMEDIATE OR EXPERT
SKILL IN DEEP LEARNING (DL) AND SOFTWARE ENGINEERING (SE).
ELEVEN PARTCIPANTS WORK WITH NATURAL LANGUAGE PROCESSING
(NLP) MODELS, SIX WITH COMPUTER VISION (CV) MODELS.

ID Role Org. size DL skill SE skill Domain
P1 Tech lead Small Expert Interm. NLP, CV
P2 Tech lead Small Interm. Interm. NLP

P3 Engineer Small Expert Interm. Ccv

P4 Engineer Medium Expert Interm. NLP

P5 Tech lead Large Interm. Interm. NLP, CV
P6 Engineer Small Interm. Interm. NLP, CV
P7 Engineer Small Interm. Expert NLP

P8 Engineer Small Interm. Interm. NLP

P9 Data scientist Large Interm. Interm. NLP
P10 Engineer Medium Expert Expert NLP, CV
P11 Engineer Medium Expert Expert NLP, CV
P12 Engineer Small Interm. Interm. NLP

7 participants so we did not continue to recruit participants.

B. Quantitative Study: Risk Mitigation Measurement

Our qualitative findings identified a variety of challenges
and risks in PTM reuse. We measured these risks and mit-
igations in the Hugging Face ecosystem with the STRIDE
methodology for threat modeling and risk assessment [72]
STRIDE was proposed by Microsoft as a security analysis
technique and is widely used [72H75]]. STRIDE focuses on
trust assumptions related to data, making it suitable for PTMs.

STRIDE is a two-step process. First, the system under
consideration is modeled using a dataflow diagram, and trust
boundaries and the actors involved are identified. Second, each
boundary is analyzed for the threats of the STRIDE acronym.

Following the STRIDE methodology, we started by de-
veloping a dataflow diagram for PTMs on Hugging Face.
Two researchers analyzed Hugging Face’s public documen-
tation. After internal iteration, we settled on one primary trust
boundary: user control vs. Hugging Face internal control. We
identified threats and six risk-mitigating features across this
boundary. Owing to the nature of the available data source

ISTRIDE is a mnemonic for Spoofing identity, data Tampering, Repudia-
tion, Information Disclosure, Denial of Service, and Elevation of privilege.

(public documentation), we limited our analysis to a subset
of the STRIDE threats: Spoofing, Tampering, Repudiation,
and Elevation of Privilege. The completeness of our dataflow
diagram was ensured by having two researchers review the
documentation. These same researchers checked the soundness
of the model by creating and using models on Hugging Face
both as individual accounts and organization contributors.

V. RQ1: HOW DO ENGINEERS SELECT PTMSs?

~ '

Finding 1: The participants share a similar decision-making
process (Figure). Among the four PTM reuse scenarios in
the research literature, our participants reported using only
two: transfer learning and quantization techniques. When
reusing, participants find PTMs from DL model registries
easier to adopt than PTMs from GitHub projects.

A. Reuse scenarios

Most interview participants take PTMs from model reg-
istries and apply transfer learning techniques to the model.
They either “fine-tune an existing PTM” by (optionally) ex-
tending architecture and training on a task-specific dataset, or
“build a new model on top of the pre-trained one”. Commonly,
they select PTMs from leading technology companies (e.g.,
Google, Meta) because “the datasets are carefully cleaned and
[the models] are straightforward to fine-tune”.

The other three reuse scenarios discussed in the research
literature (§II-B)) were far less common in our interviews. P5
described using quantized models. No participants described
using PTMs for knowledge distillation or for data labeling.

B. Decision-making process

To understand how engineers select PTMs, we asked par-
ticipants to summarize their decision-making processes. We
found similarities between participant responses. We followed
Michael et al. [66] in adapting a general software engineering
reuse process [76] to integrate our findings into a unified
model (Figure E]) Our model contains 4 stages: (1) Reusability
assessment, (2) Model selection, (3) Downstream evaluation,
and (4) Model deployment. We discuss each in turn.
Reusability Assessment Engineers begin the decision-making
process with a reusability assessment. Before selecting a
model, engineers must identify an ML task and determine

Model Selection

Reusability Assessment

Downstream Evaluation Model Deployment

Candidate
architecture

Model Registries
Academic Papers

ML Task

P

v O
! Requirements | From-scratch Quality

Fig. 4. Summarized decision-making progress of PTM reuse

if model reuse is appropriate. An ML task is composed of
requirements including model input and output, latency, size,
and licensing. Engineers must then decide if they should
reuse a PTM or create a solution from scratch since “PTMs
do not work for every use case.” Task parameters influence
this decision. For example, three participants (P8, P9, PI1I)
reuse PTMs because they “do not have enough computational
resources”. In a similar manner, participants (P2, P5, P8, P9,
P11) note that DL model registries provide inference APIs to
simplify reuse — PTMs are “easy to use and test’.

Model Selection Once engineers decide to reuse a model,
they must select an existing architecture and an associated
PTM. Engineers search for candidate architectures “built for
the problem that [they are] trying to solve”, browsing model
registries or relevant papers. Most study participants prefer to
search through model registries. For example, participants (P1,
P4, P6) said they can “easily find a model” in model registries
due to classification at the domain (e.g., computer vision,
natural language processing) and task (e.g., text generation,
image classification) levels. P10 noted that standardizing PTM
reuse increases model registries’ popularity.

Once engineers select a candidate architecture, they must
find a particular PTM to use. All study participants, including
those who select architectures from papers, prefer PTMs from
model registries. “Ease of use is very important” to engineers
that do not think it is worth “spend[ing] much time on trying
to understand the script(s] from the GitHub models”. P8 noted
models from Hugging Face are “plug and play.” Since multiple
PTMs might implement the same architecture, engineers select
from among candidates based on PTM attributes (§VTI).
For example, most participants use popularity as a factor to
select a PTM because it indicates “[community] trust in the
model”. As another example, multiple participants (P2, P3,
P8, P11) choose NLP PTMs trained on appropriate datasets
(e.g., models trained on datasets with the correct language).

Downstream Evaluation After selecting a PTM, engineers
conduct a downstream evaluation for their specific task. En-
gineers have the option of assessing more than one candidate
PTM in this stage. They download “a few models,” “finetune
them,” “test them,” then “compare them.” When engineers
select a candidate PTM, they first apply reuse techniques
to fit the model to their specific application (cf. and

Find a PTM

! Maintenance !

Poor

4

|Reuse Techniques

Good
Deployment

Transfer Learning

Quantization&Pruning

Knowledge Distillation
Data Labeling

! Provenance !
+ Reproducibility

. Back edges indicate the possible changes of model selection.

§V-A). This procedure is not necessarily straightforward be-
cause some models “don’t really work too well directly, even
with their own datasets”. Furthermore, 11 out of 12 of the
participants observed a lack of adequate documentation or
discrepancies within existing documentation.

After applying reuse techniques, engineers evaluate the
model to see if it is ready for model deployment. When
evaluating the trade-off between performance and architecture,
P1, P8 and P10 state that these two factors are “tightly relevant
to each other” and should be considered in a “fifty-fifty split”.
Some participants prioritize one of these factors over the other.
For example, P3 and P6 compare multiple models to maximize
task performance. On the other hand, P7 will not use a “weird
architecture” even if its documented performance is higher.
Model Deployment Finally, engineers deploy their models.
Deployment may depend on model characteristics and deploy-
ment environments. All participants mention that certain char-
acteristics such as PTM size, robustness, and documentation
significantly impact the deployment of models to other envi-
ronments (i.e., different hardware or software configurations
than what is used in development). Participant (P8) describes
that the rapid increase in model size makes it “impossible for
most [low-resourced teams] to actually run these models on
their systems.” Participant (P5) states that most “models are
on PyTorch or TF” and are therefore more difficult to deploy
on mobile devices. Participant (P4) notes that documentation
“for running a model on multiple GPUs” is “not clear.”

VI. RQ2: WHAT PTM ATTRIBUTES FACILITATE PTM
REUSE?

Finding 2: For Traditional attributes, Popularity is most
helpful. Provenance, Reproducibility, and Portability are the
three DL-specific attributes we should consider.

Here we would like to learn about what sort of information
is useful to engineers who reuse PTMs. We asked about two
types of attributes here: traditional and DL-specific attributes.

A. Traditional Attributes

In the interview, we asked about whether the traditional
attributes as offered by traditional package registries, such as
NPM [68]], are helpful in DL model registries.

Almost all participants highlighted the importance of pop-
ularity in DL model registries. For example, P12 stated that a

PTM with “lots of downloads™ means that “it could be a good
start point to try”. P5 mentioned that “popularity usually goes
side by side with maintenance and can indicate the quality”.

Some participants thought that quality and maintenance are
also very useful. P2 said it is important to “know that it is
constantly maintained and does not have many open issues”,
and pointed out that good maintenance means “if the code is
being updated or if you raise a bug, then someone will help
you out”. This is highly important because “you are relying
on someone else” and “you want to build that trust factor”.

However, some participants think that maintenance and
quality are less useful. Recall from that most reuse
scenarios are fine-tuning on new datasets or tasks. Provided
that the model is fine-tunable, some participants mentioned
that maintenance and quality metrics are “less useful in down-
stream tasks”. P12 suggested that maintenance may be less
relevant because of the cost of making changes — “it is really
hard to modify the PTM...there were some issues during pre-
training” in a large language model, but the model has not
been retrained “because it is too large”.

B. DL-specific Attributes

We added three DL-specific attributes: provenance, re-
producibility, and portability. The participants provided the
relevant factors for each attribute. Table [l] also indicates the
factors for each attribute which were mentioned by multiple
participants. Most participants mentioned that these three
attributes can cover all the aspects they would consider.

Provenance Some Hugging Face PTMs provide many prove-
nance metrics, such as information about original paper,
dataset, and architecture. However, these are not detailed
enough to fully address model reuse challenges. P3 and P9
would like to see “visualization of model architecture” and
the “explanation of changes” compared to the paper. P2, P4,
P6, P8 mentioned the importance of more details of datasets
because “different authors process data differently, so it cannot
be easily compared”. P10 and P12 highlighted the importance
of training logs because they would like to see “how the PTM
was generated” based on the training checkpoints and scripts.

Reproducibility Reproducibility is the most problematic aspect
of PTMs. The reproducibility issues mainly come from two
aspects: (1) the configuration of training (2) the understanding
of model. For the training configuration, the participants tend
to care more about the hardware specification (e.g., types,
memory), training configuration (e.g., training scripts, hyper-
parameters). As a result, they think environment image would
be helpful to help them easily configure the settings and make
the model more reproducible. In terms of understanding of
the models, different kinds of demos (e.g., Notebook demo,
Fine-tune demo) and better documentation would be helpful.

Portability Different models have different deployment con-
straints, which makes understanding the portability of PTMs
helpful for engineers. Similar to reproducibility, the portabil-
ity factors include hardware specification and environment.
Moreover, for deployment, latency and framework support

aspects are essential. For example, the inference time and
cost of computational resources could be different in different
platforms, as mentioned by P2 and P6. This information
can help engineers understand the portability of PTMs. P3
mentioned that “automate[d] creation of other formats of the
model for different hardware” could also be very helpful for
the deployment. The quantized model is also “helpful for
continuous deployment and fine-tuning”, as mentioned by P35.
As a result, he also suggested the development of automated
quantization. Some participants also mentioned the fine-tuning
instructions, which help them determine whether a model can
be used in specific tasks. For example, P/2 would like to
adapt language models to handle programming languages to
improve their software testing, and the fine-tuning instructions
can help him on deciding which model they should consider.
P6 also mentioned that if the model registries can provide a
“cost estimation for different servers” (e.g., different machine
classes on a Cloud service provider). Moreover, P/ and P3
both said that “licensing should be explicit to industry users”.

VII. RQ3: WHAT ARE THE CHALLENGES OF PTM REUSE?

Finding 3: Three common challenges for PTM reuse are
missing attributes, discrepancies between claims and actual
performances, and model risks (e.g., privacy issues and
unethical models) (Table [ITI).

Missing Attributes Missing attributes are identiifed as the
most challenging problem. Almost every participant men-
tioned that there are missing details in the model registries,
including datasets, licensing, model details, robustness, and
interpretability. The attributes are missing for multiple reasons:
Insufficient documentation is one reason. P5 and P7 observed
“missing details of models” in model registries. For example,
PI and P11 found the “performances of the published mod-
els are unclear” in the model registries. PS suggested that
the reason for under-documentation in Hugging Face is that
PTM authors can upload any model; Hugging Face does not
enforce any form of documentation. Another reason is that
the PTM authors occasionally do not measure the robustness
and explainability of the models—and model registries do not
provide an automated approach to measure such attributes.

Discrepancies Existing discrepancies are another key chal-
lenge mentioned by most participants. P7 pointed out that
“some of the models are over-promising”. P2 indicated another
reproducibility issue: the “model names are not named cor-
rectly and sometimes the provided scripts are broken”. These
discrepancies could result in a waste of time and efforts. P5
pointed that another reason for this kind of problem is that
training configuration details (i.e., hyper-parameters) are hard
to find. P6 also mentioned that some authors only provide
a script instead of providing the actual fine-tuned model
and corresponding performances in Hugging Face due to the
sensitivity of these results. P8 and P9 indicated that they
sometimes follow the provided steps, including the models and
datasets—even the hardware configurations—and still could
not reproduce the results claimed by the PTM authors.

TABLE III
CHALLENGES ASSOCIATED WITH PTM REUSE. THIRD COLUMN SHOWS HOW MANY PARTICIPANTS (OF 12) MENTIONED THE CHALLENGE.

Challenge Description

Participants

Missing attributes
Discrepancies

Security and privacy risks
Model search

Model application

Model flexibility

There exist missing details in the model registries.
The claimed performances (accuracy, latency) are often different from the actual performances. 9
There could exist malicious models which are harmful for security and privacy aspects.
Sometimes the engineers know the model they want but cannot find it.

It is hard for new users to know the correct application of a model.

Some of the model architectures are inflexible to change for downstream tasks.

10

—_—— W

Model Risks There exist potential risks for PTMs in the
model registries, including privacy and ethics aspects. We
discussed in §[I] that prior studies have identified many risks of
PTMs. The participants mentioned both internal and external
problems in DL model registries. Internal risks often involve
privacy problems of models and data. P2 mentioned that when
using the models from model registries, “the model deployment
and data transmission are not in their control”. They could not
directly deploy the model provided by Hugging Face because it
is “unreliable to send” their sensitive dataset by Hugging Face
inference APIs. P8 mentioned that if a model “is trained with
malicious intents. It could have a lot of consequences in the
real world”. This indicates the potential risks of a malicious
model being uploaded to model registries.

A PTM can be used for unethical or nefarious purposes.
P8 gave an example of a chatbot created by training on a
racist discussion forum. This model “created a huge mayhem”
because it was publicly released [77]. P10 observed that it is
hard to know “what exactly generated the model because most
training logs are missing” — the internal biases are concerning
and could potentially make the model a BadNet [59].

VIII. RQ4: TO WHAT EXTENT ARE THE RISKS OF REUSING
PTMS MITIGATED BY HUGGING FACE DEFENSES?

Finding 4: Although Hugging Face offers mitigations for
many risks, these mitigations are incomplete or not widely
adopted (Table [TV). Model information can be missing or
inaccurate due to the self-reporting nature of model metrics
(Figure [7). These risks make the existence of malicious
models possible in the model registries.

Our interview data identified a range of challenges (§VII).
Incomplete or inaccurate data about PTMs was most common.
Engineers also expressed concern about malicious or unethi-
cal models, e.g., “BadNets” [59]. These findings led us to
examine the Hugging Face defenses that mitigate these risks.
We adapted the STRIDE methodology [[72f] to systematically
measure the potential risks in Hugging Face, beginning with an
analysis of the dataflow involved in collaborating on Hugging
Face. The identified risks are shown in Table [Vl

A. Hugging Face PTM Dataflow Model

Based on our analysis of Hugging Face’s Hub and client
libraries documentation, we made a dataflow diagram as
shown in Figure[5] to represent the how models are created and
shared. This allows us to visualize the dataflow from model

TABLE IV

MITIGATION AND THE CORRESPONDING STRIDE RISKS.

Mitigation STRIDE risks Details

Organization Spoofing Low adoption (3.19%)

verification

Dependencies Tampering High dependency (one
dataset has 1,673 downstream
PTMs)

PTM Documen- Repudiation Less than 0.1% provide

tation

GPG commit
signing

User permission
model

ClamAV

Spoofing, Tamper-
ing, Repudiation

Elevation of privi-
leges

N/A

machine-parseable claims

Low adoption (0.21%)

“Organizations” violate the
principle of least privilege

Zero packages were flagged

contributors to users, which involves the developing, releasing,
and accessing of PTMs on Hugging Face.

The common unit of reuse on Hugging Face is the reposi-
tory, classified into datasets (input/output data for supervised
or unsupervised learning) and models (PTM architecture,
weights, and configuration, cf. Figure [2).

All Hugging Face repositories have automated and manual
risk mitigations to limit the spread of malware or mali-
cious models. These include organization verification, user
permission models, commit hash checkout, and model cards
(Figure [3)). Additionally, some PTMs depend on other datasets
or PTMs which can expose themselves to outside risks.

B. Risk Analysis

Hugging Face implements six risk mitigations. These are
organization verification, PTM documentation, GPG commit
signing, a user permission model, automatic malware scan-
ning (ClamAV), and utilizing a commit hash to checkout a
model. While commit hash checkouts are not easily measured
(performed by users on their own machines), we measured
the use and scope of the others within the Hugging Face
ecosystem. We detail our results on organization verification,
PTM documentation, user permission model, and GPG commit
signing. Following the risk analysis of traditional package
registries [[10], we also examine the potential impact of de-
pendencies. The result for ClamAV was uninteresting as no
(zero) PTM packages were flagged by ClamAV.
Organization Verification Hugging Face allows an organiza-
tion to increase trust by verifying its identity, demonstrating

Hugging Face User Workflow

HuggingFace Model Hub

\
| |
I } 1 1 1 I
! HuggingFace.co | Tokenizers Transformers Optimum Accelerate !
: ‘ | @ [@ @ @ :
: H | H
1 ; : ; 1
| Has Y | p N (|
| i ‘ (Optional): Commit (Optional): Commit |
| } Hash Checkout Signing/Verification |
Maintainers and { J
| an be used - v h |
| Authors Users| [Re-Users ‘ |
| . | accessed throug Pretrained Model Have |
[REEEEECEREY) -Are gither---------------1 | l
| v v |
| \ o o o)
| Organizations Authors } ‘/\, ClamAV x‘, (OmIDnCZlZaMOdEI |
| — Inference API \’\,,,,,/J Privately Trained | Released !
| } ‘3 Model Repos [> Model Y |
s : H
L | referenced —Are scanned by Ao H !
| — [by ’7 trained |
| : : Y as an |
\ [,
| i i |
Ver_lﬁel_j own- Hqum_g F_ace ------------ Are either----»| Datasets leTrained_{ - AutoTrain Model |-+
| Organizations | Repositories on |
| |
\
! |admin Write Read | Availible !
| | Have through !
| |
| \ Spaces Datasets |
\
! | Dependencies ’ !
| d |
| ‘ |
| ‘ |
| [Metrics |
| |

Demos/Apps

Availible
rough] Evaluate
()

Fig. 5.

Dataflow diagram for PTMs on Hugging Face. Security features and dependencies appear as red and blue blocks. Libraries with the GitHub logo

are open source GitHub repositories. The large dashed boxes indicate a trust boundary between users and Hugging Face. Solid connections indicate required

paths, and dashed connections represent alternatives.

to Hugging Face that an organization controls an associated
web domain. We counted the number of verified organiza-
tions via web scraping. Out of 6,243 organizations, only
199 (3.19%) were verified. With such a small percentage of
verified organizations, users cannot determine the legitimacy
of unverified organizations. The low adoption rate raises the
risk of Spoofing: malicious users may masquerade as real
organizations, similar to typosquatting [[10}/78].

This lack of adoption is concerning because organizational
reputation was cited as a factor under the Provenance attribute
(Table [[). The risk of such squatting attacks can be greater for
PTM packages than for traditional ones, because new niches
in the ecosystem accompany every new state-of-the-art model.
A malicious actor could identify missing PTMs in the cross
product of (architecture, dataset) and provide EvilModels [|62]]
in that niche, pretending to be a legitimate organization.

Dependencies The dependencies of PTMs pose potential risks.
Malicious models can be injected directly via data manipu-
lation [61]], or indirectly via weight poisoning [[60]. Models
released through Hugging Face may be vulnerable through
their dependencies on model architectures, the associated
weights for those architectures, and datasets. P5, P8, PI0
stated that they fine-tune PTMs on a daily basis, implying
that an attack could have a rapid impact.

Figure [6] shows that the Universal Dependencies
dataset [[79] is the most popular dataset on Hugging Face, with
6,834 models depending upon it. The distribution of models
that depend on a particular architecture is similar to Figure [
We found that the BERT [80] architecture is the most popular
architecture on Hugging Face presently, with 10,247 models
depending upon it. Hugging Face models have the potential to
be trained off of multiple datasets as well. Our analysis of the

existing Hugging Face models shows that many models de-
pend on the works of others that can be maliciously tampered
with. In tampering with these dependencies, BadNets [59]
and unethical models [77] can be created, which could affect
downstream PTM:s.

PTM Documentation Figure shows the distribution of
missing documentation in Hugging Face. The highest
proportion of models that make performance claims in
machine-parseable documentation (YAML) was from the
token-classification task, with 17% of models meeting
the criteria. We found that 26,192 models belong to various
tasks (represented by other) where only 12 (0.05%) PTMs
provide machine-parseable claims about the PTM. Due to
the sparse usage of performance claim reporting, there can
be potential risks of Repudiation: model performance can be
obscured, misreported, or misleading.

Some models report their performance in plain texts or
tables, and are hard to identify by the users. It is also
common for documentation to omit any performance claims
or to refer the user to read an associated research paper for
more information about performance, without assurance that
this is the same model tested in the research paper. Some
popular PTMs are poorly documented as well. The language
model SpanBERT/spanbert-large-cased is the 9th most
downloaded PTM on Hugging Face and receives 6.9 million
monthly downloads, yet has no model card. Figure [/| supports
that missing attributes is a real challenge existing in the
Hugging Face DL model registries. The lack of transparency
reduces the trustworthiness of the models and increase the
potential risks of malicious models.

GPG Commit Signing Hugging Face provides a verification

universal_dependencies
bert

other

other

conll2003

distilbert

common_voice
marian
common_voice_7_0
bart

xtreme 0.3
xIm-roberta 2.0

mmm dataset
architecture

1% 10% 100%

Fig. 6. Number of models trained on a specific dataset (blue) and trained
with a specific model architecture (orange). 1,207 models were trained on the
most popular dataset. 1,673 models depend on the most popular architecture.

tag for commits that have been signed with a GPG key.
By signing with a GPG key, users are providing verification
that they have signed their commits, and not as someone
masquerading as them. This feature allows users to accurately
trace back the changes to the PTM packages. Using the
HFTorrent dataset (§[X), we analyzed the usage of com-
mit signing within Hugging Face model repositories. Out of
63,182 model repositories, we found 132 (0.21%) repositories
within the dataset implemented signed commits. Additionally,
only 2 verified organizations have at least one repository with
signed commits. This indicates that potential attackers can be
contributing malicious code, implementing a BadNet [59] or
EvilModel [62] under a pseudonym, or manipulating the git
commit history to hide malicious activity.

The limited usage of GPG commit signing exposes models
hosted on Hugging Face to Spoofing, Tampering, and Repudia-
tion risks. First, unsigned Hugging Face models are vulnerable
to Spoofing since attackers could make commits under the
alias of a legitimate maintainer. Second, these models face the
risk of Tampering because attackers could contribute malicious
code or edit commit history. Finally, unsigned models could
also risk repudiation since a lack of verified commit history
allows an individual to deny actions within a repository.
User Permission Model Hugging Face has a standard approach
of users and organizations (Figure [5). One shortcoming of the
permission model is that Hugging Face organizations violate
the principle of least privilege [81]: an organization member
with Write privilege can modify any PTM owned by the
organization. Therefore, an attacker could contribute malicious
code, thereby raising the risk of Elevation of Privileges.

IX. THE HFTORRENT DATASET

Our analysis in §VIII| relied in part on measurements of
the PTM packages in Hugging Face. To reduce the impact
on the Hugging Face service during our measurements, we
took a snapshot of 63,182 PTM packages in the Hugging Face
registry. This snapshot, the HFTorrent Dataset, is included in

token-classification
automatic-speech-recognition
image-classification
summarization
text-classification
translation
text2text-generation
object-detection
multiple-choice
question-answering
audio-classification
fill-mask
sentence-similarity
text-generation
otherq12/26192

5% 10% 15% 20%

Fig. 7. The proportion of models with standardized claims (Hugging Face’s
YAML format) for each type of PTM.

the artifact accompanying this paper. An improved version of
this dataset is now available [82]]. We hope these data facilitate
further research on PTM packages, similar to the impact of the
GHTorrent [83]] and SOTorrent [84] datasets.

Creation process We initiated a copy of all PTM packages in
the Hugging Face registry. Copies were taken between August
15th and 16th, with rate limiting to avoid abuse of the Hugging
Face registry. 186 (0.3%) of the copies failed, caused, we
believe, by concurrent changes in package names.

Dataset contents The HFTorrent dataset contains the repos-
itory histories of 63,182 of the PTM packages available on
Hugging Face as of August 2022. They are provided as bare
git clones to reduce space, resulting in a compressed footprint
of ~20 GB. Each PTM package can be reconstructed to its
most recent version, including the model card, architecture,
weights, and other elements provided by the maintainers (cf.
Figure [2). Further information is available in our artifact.

X. DISCUSSION AND IMPLICATIONS
A. Integrating the findings

Our qualitative and quantitative studies provide a deeper
understanding of the practices and challenges for DL model
registries. In §V]we obtained a general reuse process (Figure)
which is complemented by the specific details for Hugging
Face (Figure [B). In §VI| we studied how the theoretical
attributes of reproducibility and provenance can affect the
decision-making process of PTM reuse (Figure [). These
attributes are partially operationalized in Hugging Face by
aspects measured in §VIII} organizations and verification,
PTM documentation, GPG commit signing, and dependencies.
For example, our results in imply that although PTM
reusers value the provenance of models, this provenance
is actually untrustworthy in Hugging Face due to the low
adoption of verified organizations and commit signing. In
§VII] we measured risks based on the identified challenges
from §VII} For example, in we qualitatively learned
that documentation may be missing or have discrepancies. In

TABLE V
MAIN DIFFERENCES BETWEEN DL MODEL REGISTRIES AND
TRADITIONAL (trad.) PACKAGE REGISTRIES.

Aspect Observed difference from trad. registries

Decision-
making process

Selecting PTMs needs a more complicated
assessment of requirements and trade-offs, and
several iterations of downstream evaluation.

PTM reusers have to consider additional DL-
specific attributes.

Attributes

There exist traditional risks and additional
PTM risks in model registries.

Potential risk

§VII| we quantitatively measured that model documentation
is missing or inadequate for 80% of PTMs.

B. Comparison to traditional package registries

Our qualitative analysis in §V}—§VII| sheds light on the
differences between model registries and traditional registries,
in terms of decision-making, attributes, and potential risks.

Decision-making Our results indicate that the decision-making
process of PTMs (Figure [)) is more complex than traditional
packages [231/85,|86], both in terms of the assessment and
evaluation. Traditional software package reuse is integrated
throughout the software development process [87] to improve
productivity [85]]. Our result shows that DL engineers behave
similarly with PTMs. However, PTM reusers have to perform
more complicated assessment and evaluation during decision-
making process. PTMs are hard to evaluate and compare with
others, as indicated by P3, P6, P8, P10. Moreover, Figure E]
involves three back edges (loops between selection and assess-
ment), while the decision-making process for the traditional
software reuse reportedly involves fewer iterations [[1323].
Moreover, we can see in the selection stage of Figure [4] dif-
ferent factors are considered, including the dataset availability
and cost. Traditional software reuser tend to consider more
about the ease of use, and such detailed information are less
needed by PTM reusers. Wang et al. suggest that developers
should use the usage statistics to guide the evolution [88].
Similarly, PTM providers should consider the practices and
challenges based on our qualitative data, and utilize it as a
guidance to improve the PTMs in DL model registries.

Attributes Our interview data indicated the significance of
traditional attributes (i.e., popularity, quality, and maintenance)
and the requirements for DL-specific attributes. For Traditional
attributes, Popularity is most helpful for PTM reuse, while
Quality and Maintenance are less useful compared to tradi-
tional packages (§VI). This differs from traditional software
reusers, who consider quality and maintenance of packages as
important as popularity when selecting and reusing the pack-
ages [25,/68,/89]. This difference comes from the expensive
cost and data-driven nature in PTMs. It is hard for PTM users
to directly obtain and employ an existing model. In contrast
with taking a package from NPM or PyPI and directly reuse it
in the codes, PTM reuse requires a deeper understanding and
knowledge of how a model works. However, “there are not

quite reliable methods to measure the explainability of PTMs
yet”, as indicated by P10. Therefore, to better reuse the PTMs,
the engineers need more information from the model registries,
which result in the requirements for DL-specific attributes.

Potential risks The dependencies, maintainers, and reported
issues can help analyze the security risks in software reg-
istries [[10]]. Prior work indicates that developers should man-
age the upstream dependencies and minimize the impact on
downstream tasks [|86]]. Recently, Jiang et al. empirically stud-
ied the maintainers’ reach of model registries [19]. However,
the results here suggest that there are different risks within
model registries, such as Spoofing, Tampering, Repudiation,
and Elevation of privileges (Table [[V). These risks can have
varying degrees of impacts on the reusability of PTMs: The
unaware discrepancies “do play a huge role” (P8, P11, P12).
They may not only “hinder developer progress”, but also
change the accuracy and robustness of downstream PTMs [61]].
Moreover, our STRIDE analysis (§VIII) indicates multiple
risks and the potential to introduce vulnerabilities [|59}/60].

C. Implications

Compared to well-studied traditional package registries
(e.g., NPM, PyPi), the use and study of DL model registries is
still in its infancy. Our empirical study of Hugging Face model
registry informs future directions on model audit, infrastruc-
ture, PTM standardization, and adversarial attack detection.

Model audit Our results in and shows that one major
challenge of PTM reuse is the missing attributes in model
registries. The most important attribute is the performance of
PTMs which would significantly affect the reusability of mod-
els. Though recently Hugging Face released their automated
validation tool [90]], it is still not able to satisfy the requirement
of engineers. P8 stated that “Robustness and Explainabiltiy
are very key factors to consider when you are deploying ML
models in the real world.” which are important for the eventual
goal of model transparency [91].

The proposed DL-specific attributes should also be mea-
sured and provided. Our study indicates the importance of
these attributes (§VI) and identify the corresponding factors.
We inform researchers on developing formulas and automated
tools to automatically calculate the score of each attribute and
integrate them into the model registries, similar to the pgm
scores (i.e., popularity, quality, and maintenance) in [40].

We envision that future directions should consist of large-
scale measurements of PTMs or of encouraging model reg-
istries to change their PTM release requirements so that it
would be easier for users to audit models by themselves.

Infrastructure The infrastructure of model registries can be
improved from different aspects. P2 mentioned that the badge
mechanism would be helpful for communicating the missing
attributes (e.g., reproducibility), similar to continuous integra-
tion badges provided by GitHub [92]. P6 mentioned a unified
fine-tuning process could also assist engineers. Moreover,
multiple participants highlighted the importance of tools for
automatically creating quantized models or converting models

into different formats. These tools could improve PTM porta-
bility and thus support model deployment.

Some interview participants (P6, P9) mentioned that they
select PTMs first based on their experience, and then based
on evaluation metrics. P/0 mentioned that he reuses PTMs
to understand the “the generalizing behavior of fine-tuned
models”. This envisions development of PTM recommendation
systems, which can sort the models by scores calculated
by model performance in downstream tasks, or predicted by
another ML model. A similar system can help to reduce the
work for ML engineers and could be integrated as part of the
AutoML pipeline for PTM reuse [93].

PTM Standardization Our results on shows that, the
model registries should include the training logs and cor-
responding checkpoints. This information can help reusers
better understand the PTM and improve the provenance and
reproducibility. As associated research opportunities, such
artifacts can be costly to create and store, and it is unclear
how engineers can best apply them.

Beyond model provenance, another opportunity for stan-

dardization is in the model format itself. P5 said that “many
PTMs are on PyTorch or TensorFlow” but they would like to
use ONNX format models which could make the deployment
easier for them. However, due to the rapid appearance of new
operators [94]], ONNX could not support all of them, especially
for state-of-the-art models [95]. Knowing the compatibility of
PTMs in model registries with standardized formats such as
ONNX would also engineers make better decisions and save
their time. We suggest future work examining development
challenges in the ONNX framework.
Adpversarial attack detection One of the major challenges for
PTM reuse are adversarial attacks, as shown in §V] Attacks can
be harmful to both the PTM reusers and the downstream appli-
cation users. Although Hugging Face employs ClamAV [96]]
for malware scanning, this only detects traditional attacks, not
new attacks such as BadNets [[59]]. As a result, we suggest
future studies working on automated detection of toxic models
and poisoned datasets. Integrating these detectors into model
registries can largely improve their trustworthiness.

XI1. THREATS TO VALIDITY

Internal Threats Our choice of research methods potentially
threatens the validity of our investigation of PTM reuse
practices and challenges (RQ1-3). Our results here are derived
solely from interview data but not generalized via a survey
instrument. As a mitigation, our measurements of the Hugging
Face ecosystem (RQ4) substantiate many of the interview par-
ticipants’ concerns. In addition, we note that the participants
of greatest interest are those who also make the greatest use of
PTMs, i.e., presumably those with PRO accounts on Hugging
Face. 9 of our 12 participants have PRO accounts, representing
1% of the PRO user population.

Another internal threat is the reliability of our framework
analysis on the interview data. Our framework analysis might
be biased by our understanding and transfer of concepts from
traditional software to PTMs. This conceptual framework helps

us tease out similarities and differences in the PTM context,
although we recognize that our interviews might reflect our
biases and perspectives and therefore bias participants to a
certain way of thinking. To mitigate bias, we asked if the
participant had anything to add in terms of each theme in our
framework throughout the interview, and some did so.

External Threats Our study examines only one DL model
registry, Hugging Face. We note, however, that examining a
single package registry, e.g., NPM, is fairly common in the
literature. For PTMs, focusing on Hugging Face is sensible,
since it is the only open DL model registry and has an order
of magnitude more models than other registries. Our results
may not generalize to other DL model registries, but given the
relative importance and growing influence of Hugging Face it
is unclear whether this is a concern.

Another external threat is the saturation of our interview
study because of the interview study’s sampling approach (one
PTM registry) and size (12 participants). Within our sample,
we saw a high degree of agreement. The saturation of our
interview study was achieved after 7 participants (§IV-A)

ML researchers identified many uses of PTMs (§II-B)), but
our participants only employed a subset related to fine-tuning:
transfer learning, quantization and pruning. This may pose a
threat to external validity. Our random sampling approach may
bias us towards high-probability use cases. One interpretation
of our data is that fine-tuning is a popular approach in
practice, which would motivate greater study of PTM fine-
tuning relative to more theoretical applications.

XII. CONCLUSION

We conducted the first empirical study of PTM reuse in the
Hugging Face DL model registries. Based on interviews with
12 practitioners, we defined the decision-making workflow
for PTM reuse, and identified three challenges, including
missing attributes, discrepancies, and model risks. To substan-
tiate our qualitative data, we further investigated into useful
attributes and potential risks in the Hugging Face ecosystem.
We unveiled risky engineering practices in the Hugging Face
ecosystem, particularly a lack of signatures in the PTM
supply chain. Our empirical data motivates future research on
PTM audit, automated PTM attribute measurements, improved
infrastructure for PTM reuse, and PTM standardization.

REPRODUCIBILITY AND RESEARCH ETHICS

Our artifact is available at https://doi.org/10.5281/zenodo.
7555469, Within it, we provide the anonymized interview data
used to answer RQ1-3, the HFTorrent dataset used to answer
RQ4, and software for the measurements described in RQ4.
Human subjects work was approved by institutional IRB.

ACKNOWLEDGMENTS

The authors thank the reviewers; and A. Grigorescu, D.
Montes, A. Indarapu, and A. Tewari for their input. This
work was supported by Google and Cisco and by NSF awards
#2107230, #2229703, #2107020, and #2104319.

https://doi.org/10.5281/zenodo.7555469
https://doi.org/10.5281/zenodo.7555469

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology &
Policy, vol. 12, no. 3, pp. 23-49, 1999.

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in European Software Engineering Conference/Foundations of
Software Engineering (ESEC/FSE), 2017.

N. K. Gopalakrishna, D. Anandayuvaraj, A. Detti, F. L. Bland, S. Ra-
haman, and J. C. Davis, ““If security is required”: Engineering and
Security Practices for Machine Learning-based IoT Devices,” in Inter-
national Workshop on Software Engineering Research & Practices for
the Internet of Things (SERP4I0T), 2022.

J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and a. Q. A. Chen,
“A comprehensive study of autonomous vehicle bugs,” in International
Conference on Software Engineering (ICSE), 2020.

D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia,
D. Rothchild, D. So, M. Texier, and J. Dean, “Carbon Emissions
and Large Neural Network Training,” 2021. [Online]. Available:
https://arxiv.org/abs/2104.10350

H. V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan,
Y. Yu, and N. Nagappan, “Problems and Opportunities in Training Deep
Learning Software Systems: An Analysis of Variance,” in International
Conference on Automated Software Engineering (ASE), 2020.

X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao,
A. Zhang, L. Zhang, W. Han, M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu,
Z. Lu, X. Qiu, R. Song, J. Tang, J.-R. Wen, J. Yuan, W. X. Zhao, and
J. Zhu, “Pre-trained models: Past, present and future,” Al Open, vol. 2,
pp. 225-250, 2021.

J. Gordon, “Introducing TensorFlow Hub: A Library for Reusable
Machine Learning Modules in TensorFlow,” |https://blog.tensorflow.org/
2018/03/introducing-tensorflow-hub-library.html, 2018.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-of-the-Art
Natural Language Processing,” in Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, 2020.

M. Zimmermann, C.-A. Staicu, and M. Pradel, “Small World with High
Risks: A Study of Security Threats in the npm Ecosystem,” in USENIX
Security Symposium, 2019.

N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila,
and L. Williams, “What are Weak Links in the npm Supply Chain?”
in International Conference on Software Engineering (ICSE), May
2022. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/what-are- weak- links-in-the-npm-supply-chain/

A. Zerouali, T. Mens, A. Decan, and C. De Roover, “On the impact
of security vulnerabilities in the npm and RubyGems dependency
networks,” Empirical Software Engineering (EMSE), 2022.

A. S. Jadhav and R. M. Sonar, “Evaluating and selecting software
packages: A review,” Information and Software Technology, 2009.

A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering (EMSE), 2019.

C. Okafor, T. R. Schorlemmer, S. Torres-Arias, and J. C. Davis, “Sok:
Analysis of software supply chain security by establishing secure design
properties,” in ACM Workshop on Software Supply Chain Offensive
Research and Ecosystem Defenses (SCORED’22), 2022.

S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, S. Seufert, and
G. Szarvas, “On Challenges in Machine Learning Model Management,”
Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 2018.

S. Amershi, A. Begel, C. Bird, R. DeLine, and H. Gall, “Software
Engineering for Machine Learning: A Case Study,” in International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019.

R. B. Johnson and A. J. Onwuegbuzie, “Mixed Methods Research: A
Research Paradigm Whose Time Has Come,” Educational Researcher,
2004.

W. Jiang, N. Synovic, R. Sethi, A. Indarapu, M. Hyatt, T. R. Schor-
lemmer, G. K. Thiruvathukal, and J. C. Davis, “An empirical study
of artifacts and security risks in the pre-trained model supply chain,”
in ACM Workshop on Software Supply Chain Offensive Research and
Ecosystem Defenses, 2022, pp. 105-114.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[37]

[38]

(391

[40]
[41]

[42]
[43]
[44]

[45]

A. e. a. Monteil, “Nine Best Practices for Research Software Registries
and Repositories: A Concise Guide,” Dec. 2020, arXiv:2012.13117
[cs]. [Online]. Available: http://arxiv.org/abs/2012.13117

S. Oladele, “Ml model registry: What it is, why it matters, how
to implement it,” 2022. [Online]. Available: https://neptune.ai/blog/
ml-model-registry

M. J. Smith, C. Sala, J. M. Kanter, and K. Veeramachaneni, “The
Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective
System Development,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, Jun. 2020.

A. S. Jadhav and R. M. Sonar, “Framework for evaluation and selection
of the software packages: A hybrid knowledge based system approach,”
Journal of Systems and Software (JSS), 2011.

V. del Bianco, L. Lavazza, S. Morasca, and D. Taibi, “A Survey on Open
Source Software Trustworthiness,” IEEE Software, 2011.

A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On the
Diversity of Software Package Popularity Metrics: An Empirical Study
of npm,” in International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2019.

D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and D. Spinel-
lis, “The bug catalog of the maven ecosystem,” in Working Conference
on Mining Software Repositories (MSR), 2014.

C. Soto-Valero, A. Benelallam, N. Harrand, O. Barais, and B. Baudry,
“The Emergence of Software Diversity in Maven Central,” in Interna-
tional Conference on Mining Software Repositories (MSR), 2019.

J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Lariviere, and A. Beygelz-
imer, “Improving Reproducibility in Machine Learning Research,” Jour-
nal of Machine Learning Research, 2020.

P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, “Investigating
The Reproducibility of NPM Packages,” in International Conference
on Software Maintenance and Evolution (ICSME), 2020.

D.-L. Vu, F. Massacci, I. Pashchenko, H. Plate, and A. Sabetta, “Last-
PyMile: identifying the discrepancy between sources and packages,” in
European Software Eng. Conf. and Symp. on the Foundations of Software
Eng. (ESEC/FSE), 2021.

M. Hutson, “Artificial intelligence faces reproducibility crisis,” American
Association for the Advancement of Science, vol. 359, no. 6377, pp.
725-726, 2018.

W. Jiang, N. Synovic, and R. Sethi, “An Empirical Study of Artifacts
and Security Risks in the Pre-trained Model Supply Chain,” Los Angeles,
p. 10, 2022.

S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” Transactions
on Knowledge and Data Engineering, 2010.

T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, ‘“Pruning
and quantization for deep neural network acceleration: A survey,”
Neurocomputing, pp. 370-403, 2021. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0925231221010894

G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in
a Neural Network,” Mar. 2015, arXiv:1503.02531 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1503.02531

P. Dube, B. Bhattacharjee, S. Huo, P. Watson, and B. Belgodere,
“Automatic Labeling of Data for Transfer Learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2019, pp. 122-129.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A Comprehensive Survey on Transfer Learning,” Jun. 2020.
[Online]. Available: http://arxiv.org/abs/1911.02685

S. Rahman, E. River, F. Khomh, Y. G. Guhneuc, and B. Lehnert,
“Machine learning software engineering in practice: An industrial case
study,” in International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), 2019.

Databricks, “MlIflow model registry,” 2022. [Online].
https://databricks.com/product/mlflow-model-registry
NPM, “npm,” 2022. [Online]. Available: httnps://www.npmjs.com/
PyPI, “Python package index,” 2022. [Online]. Available: https:
/Ipypi.org

Hugging Face, “Hugging face — the ai community building the future.”
2021. [Online]. Available: https://huggingface.co/
TensorFlow team, ‘“Tensorflow hub,” 2022.
https://www.tensorflow.org/hub

Pytorch, “Pytorch hub,” 2021. [Online]. Available: https://pytorch.org/
hub/

ONNX, “Onnx model
//github.com/onnx/models

Available:

[Online]. Available:

z00,” 2022. [Online]. Available: https:

https://arxiv.org/abs/2104.10350
https://blog.tensorflow.org/2018/03/introducing-tensorflow-hub-library.html
https://blog.tensorflow.org/2018/03/introducing-tensorflow-hub-library.html
https://www.microsoft.com/en-us/research/publication/what-are-weak-links-in-the-npm-supply-chain/
https://www.microsoft.com/en-us/research/publication/what-are-weak-links-in-the-npm-supply-chain/
http://arxiv.org/abs/2012.13117
https://neptune.ai/blog/ml-model-registry
https://neptune.ai/blog/ml-model-registry
https://www.sciencedirect.com/science/article/pii/S0925231221010894
https://www.sciencedirect.com/science/article/pii/S0925231221010894
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1911.02685
https://databricks.com/product/mlflow-model-registry
httnps://www.npmjs.com/
https://pypi.org
https://pypi.org
https://huggingface.co/
https://www.tensorflow.org/hub
https://pytorch.org/hub/
https://pytorch.org/hub/
https://github.com/onnx/models
https://github.com/onnx/models

[46]
[47]
[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

[72]

Y. K. Jing, “Model Zoo - Deep learning code and pretrained models,”
2021. [Online]. Available: https://modelzoo.co/

NVIDIA, “NVIDIA NGC: Al Development Catalog,” 2022. [Online].
Available: https://catalog.ngc.nvidia.com/

Computational Imaging and Bioinformatics Lab, “Modelhub,” 2022.
[Online]. Available: http://modelhub.ai/

M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Machine
learning towards intelligent systems: applications, challenges, and op-
portunities,” Artificial Intelligence Review, 2021.

D. Marijan and A. Gotlieb, “Software Testing for Machine Learning,”
AAAI Conference on Artificial Intelligence, 2020.

K. Rasheed, A. Qayyum, M. Ghaly, A. Al-Fuqaha, A. Razi, and J. Qadir,
“Explainable, trustworthy, and ethical machine learning for healthcare:
A survey,” Computers in Biology and Medicine, 2022.

J. M. Wing, “Trustworthy AL” Communications of the ACM, 2021.

M. Mora-Cantallops, S. Sdanchez-Alonso, E. Garcia-Barriocanal, and M.-
A. Sicilia, “Traceability for Trustworthy Al: A Review of Models and
Tools,” Big Data and Cognitive Computing, 2021.

L. Floridi, “Establishing the rules for building trustworthy AL’ Nature
Machine Intelligence, 2019.

S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep
learning frameworks over different hpc architectures,” in International
Conference on Distributed Computing Systems (ICDCS), 2017.

L. Liu, Y. Wu, W. Wei, W. Cao, S. Sahin, and Q. Zhang, “Benchmarking
deep learning frameworks: Design considerations, metrics and beyond,”
in International Conference on Distributed Computing Systems, 2018.
N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep
Learning in Computer Vision: A Survey,” IEEE Access, vol. 6, pp.
14410-14 430, 2018.

Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning Attack on Neural Networks,” in Network and Distributed
Systems Security (NDSS) Symposium, 2018.

T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying
Vulnerabilities in the Machine Learning Model Supply Chain,” 2019.
[Online]. Available: http://arxiv.org/abs/1708.06733

K. Kurita, P. Michel, and G. Neubig, “Weight Poisoning Attacks
on Pre-trained Models,” arXiv, Tech. Rep., 2020. [Online]. Available:
http://arxiv.org/abs/2004.06660

M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild, D. Song,
A. Madry, B. Li, and T. Goldstein, “Dataset Security for Machine
Learning: Data Poisoning, Backdoor Attacks, and Defenses,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Z. Wang, C. Liu, and X. Cui, “EvilModel: Hiding Malware Inside
of Neural Network Models,” in IEEE Symposium on Computers and
Communications (ISCC), 2021.

0. Aslan and R. Samet, “A Comprehensive Review on Malware Detec-
tion Approaches,” IEEE Access, 2020.

J. Ritchie and L. Spencer, “Qualitative data analysis for applied policy
research,” in Analyzing qualitative data. Routledge, 2002, pp. 187-208.
A. Srivastava and S. Thomson, “Framework analysis: A qualitative
methodology for applied policy research,” Journal of Administration and
Governance (JOAAG), vol. 4, 2009.

L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant, “Regexes
are Hard: Decision-Making, Difficulties, and Risks in Programming Reg-
ular Expressions,” in International Conference on Automated Software
Engineering (ASE), 2019.

A. Cruz and A. Duarte, “npms,” 2022. [Online]. Available: https:
/npms.io/about

A. Abdellatif, Y. Zeng, M. Elshafei, E. Shihab, and W. Shang, “Simplify-
ing the Search of npm Packages,” Information and Software Technology,
2020.

Hugging Face, “Hugging face users,” 2022.
https://huggingtace.co/users

J. Saldana, Fundamentals of qualitative research.
Press, 2011.

G. Guest, A. Bunce, and L. Johnson, “How Many Interviews Are
Enough?: An Experiment with Data Saturation and Variability,” Field
Methods, 2006. [Online]. Available: jhttp://journals.sagepub.com/doi/10.
1177/1525822X05279903

Microsoft, “The STRIDE Threat Model,” 2021. [On-
line]. Available: https://learn.microsoft.com/en-us/previous- versions/
commerce-server/ee823878(v=cs.20)

[Online]. Available:

Oxford University

(73]

[74]
[75]
[76]

(771

[78]

(791

[80]

[81]

[82]

[83]

[84]

(85]

[86]

(87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

D. Boyd, “How to approach threat modeling,”
2021. [Online]. Available: https://aws.amazon.com/blogs/security/
how-to-approach- threat-modeling/

L. Conklin, “Threat Modeling Process,” 2023. [Online]. Available:
https://owasp.org/www-community/Threat_Modeling_Process

A. Shostack, “Experiences threat modeling at microsoft,” the Workshop
on Modeling Security, vol. 413, 2008.

R. S. Pressman, Software engineering: a practitioner’s approach. Pal-
grave macmillan, 2005.

J. Fingas, “Al trained on 4chan’s most hateful board is just as toxic
as you’d expect,” 2022. [Online]. Available: https://www.engadget.com/
ai-bot-4chan-hate-machine- 162550734.html

N. P. Tschacher, “Typosquatting in programming language package man-
agers,” Ph.D. dissertation, Universitdt Hamburg, Fachbereich Informatik,
2016.

J. Nivre, M.-C. De Marneffe, F. Ginter, Y. Goldberg, J. Hajic, C. D. Man-
ning, R. McDonald, S. Petrov, S. Pyysalo, N. Silveira et al., “Universal
dependencies v1: A multilingual treebank collection,” in International
Conference on Language Resources and Evaluation (LREC), 2016, pp.
1659-1666.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv,
2018. [Online]. Available: https://arxiv.org/abs/1810.04805

J. Saltzer and M. Schroeder, “The protection of information in computer
systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308,
1975. [Online]. Available: http://ieeexplore.ieee.org/document/1451869/
W. Jiang, N. Synovic, P. Jajal, T. R. Schorlemmer, A. Tewari,
B. Pareek, G. K. Thiruvathukal, and J. C. Davis, “PTMTorrent: A
Dataset for Mining Open-source Pre-trained Model Packages,” 2023.
[Online]. Available: https://doi.org/10.6084/m9.figshare.22009880

G. Gousios and D. Spinellis, “GHTorrent: Github’s data from a firehose,”
in International Working Conference on Mining Software Repositories
(MSR), 2012.

S. Baltes, “SOTorrent: Reconstructing and Analyzing the Evolution of
Stack Overflow Posts,” in International Conference on Mining Software
Repositories (MSR), 2018.

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in European Software Engineering Conference/Foundations of
Software Engineering (ESEC/FSE), 2017.

C. Bogart, C. Kistner, and J. Herbsleb, “When It Breaks, It Breaks: How
Ecosystem Developers Reason about the Stability of Dependencies,” in
International Conference on Automated Software Engineering Workshop
(ASEW), 2015.

M. Anasuodei, Ojekudo, and N. Akpofure, “Software Reusability:
Approaches and Challenges,” International Journal of Research and
Innovation in Applied Science, vol. 06, no. 05, 2021.

Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and Y. Liu,
“An Empirical Study of Usages, Updates and Risks of Third-Party
Libraries in Java Projects,” in International Conference on Software
Maintenance and Evolution (ICSME), 2020.

S. Mujahid, R. Abdalkareem, and E. Shihab, “What are the Char-
acteristics of Highly-Selected Packages? A Case Study on the NPM
Ecosystem,” SSRN Electronic Journal, 2022.

L. Tunstall, A. Thakur, T. Thrush, S. Luccioni, L. v. Werra, N. Rajani,
O. Piktus, O. Sanseviero, and D. Kiela, “Announcing Evaluation on the
Hub.” [Online]. Available: https://huggingface.co/blog/eval-on-the-hub
R. Hamon, H. Junklewitz, and J. I. Sanchez Martin, “Robustness
and explainability of artificial intelligence,” Publications Office of the
European Union, vol. 207, 2020.

GitHub, “Adding a workflow status badge,”
2022. [Online]. Available: https://docs.github.
com/en/actions/monitoring-and-troubleshooting- workflows/
adding-a-workflow-status-badge

X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,”
Knowledge-Based Systems, 2021.

Y. Liu, C. Chen, R. Zhang, T. Qin, X. Ji, H. Lin, and M. Yang, “En-
hancing the interoperability between deep learning frameworks by model
conversion,” in European Software Engineering Conference/Foundations
of Software Engineering (ESEC/FSE), 2020.

“Portability between deep learning frameworks — with ONNX,”
Aug. 2019. [Online]. Available: https://blog.codecentric.de/en/2019/08/
portability-deep-learning-frameworks-onnx/

Cisco, “ClamAV,” 2022. [Online]. Available: https://www.clamav.net/

https://modelzoo.co/
https://catalog.ngc.nvidia.com/
http://modelhub.ai/
http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/2004.06660
https://npms.io/about
https://npms.io/about
https://huggingface.co/users
http://journals.sagepub.com/doi/10.1177/1525822X05279903
http://journals.sagepub.com/doi/10.1177/1525822X05279903
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://aws.amazon.com/blogs/security/how-to-approach-threat-modeling/
https://aws.amazon.com/blogs/security/how-to-approach-threat-modeling/
https://owasp.org/www-community/Threat_Modeling_Process
https://www.engadget.com/ai-bot-4chan-hate-machine-162550734.html
https://www.engadget.com/ai-bot-4chan-hate-machine-162550734.html
https://arxiv.org/abs/1810.04805
http://ieeexplore.ieee.org/document/1451869/
https://doi.org/10.6084/m9.figshare.22009880
https://huggingface.co/blog/eval-on-the-hub
https://docs.github.com/en/actions/monitoring-and-troubleshooting-workflows/adding-a-workflow-status-badge
https://docs.github.com/en/actions/monitoring-and-troubleshooting-workflows/adding-a-workflow-status-badge
https://docs.github.com/en/actions/monitoring-and-troubleshooting-workflows/adding-a-workflow-status-badge
https://blog.codecentric.de/en/2019/08/portability-deep-learning-frameworks-onnx/
https://blog.codecentric.de/en/2019/08/portability-deep-learning-frameworks-onnx/
https://www.clamav.net/

	Introduction
	Background and Related Work
	Software Package Reuse
	Pre-Trained Model Reuse
	Deep Learning Trustworthiness

	Research Questions
	Methodology
	Qualitative Study: Interviews with PTM Reusers
	Quantitative Study: Risk Mitigation Measurement

	RQ1: How do engineers select PTMs?
	Reuse scenarios
	Decision-making process

	RQ2: What PTM attributes facilitate PTM reuse?
	Traditional Attributes
	DL-specific Attributes

	RQ3: What are the challenges of PTM reuse?
	RQ4: To what extent are the risks of reusing PTMs mitigated by Hugging Face defenses?
	Hugging Face PTM Dataflow Model
	Risk Analysis

	The HFTorrent Dataset
	Discussion and Implications
	Integrating the findings
	Comparison to traditional package registries
	Implications

	Threats to Validity
	Conclusion
	References

