
Regexes are Hard: Decision-making, Difficulties,
and Risks in Programming Regular Expressions

Louis G. Michael IV
Virginia Tech

louism@vt.edu

James Donohue
University of Bradford

j.donohue@bradford.ac.uk

James C. Davis
Virginia Tech

davisjam@vt.edu

Dongyoon Lee
Stony Brook University &

Virginia Tech
dongyoon@cs.stonybrook.edu

Francisco Servant
Virginia Tech

fservant@vt.edu

Abstract—Regular expressions (regexes) are a powerful mech-
anism for solving string-matching problems. They are supported
by all modern programming languages, and have been estimated
to appear in more than a third of Python and JavaScript projects.
Yet existing studies have focused mostly on one aspect of regex
programming: readability. We know little about how developers
perceive and program regexes, nor the difficulties that they face.

In this paper, we provide the first study of the regex develop-
ment cycle, with a focus on (1) how developers make decisions
throughout the process, (2) what difficulties they face, and (3)
how aware they are about serious risks involved in programming
regexes. We took a mixed-methods approach, surveying 279 pro-
fessional developers from a diversity of backgrounds (including
top tech firms) for a high-level perspective, and interviewing 17
developers to learn the details about the difficulties that they face
and the solutions that they prefer.

In brief, regexes are hard. Not only are they hard to read,
our participants said that they are hard to search for, hard to
validate, and hard to document. They are also hard to master:
the majority of our studied developers were unaware of critical
security risks that can occur when using regexes, and those who
knew of the risks did not deal with them in effective manners. Our
findings provide multiple implications for future work, including
semantic regex search engines for regex reuse and improved input
generators for regex validation.

Index Terms—regular expressions, developer process, qualita-
tive research

I. INTRODUCTION

Regular expressions (regexes) are a text processing tool
baked into all modern programming languages as well as
popular tools like text editors [52], [53]. Developers frequently
incorporate regexes into their software. Estimates suggest that
more than a third of JavaScript and Python projects include
at least one regex [12], [19]. It is therefore surprising that
we know so little about how developers interact with such a
widely-used technology.

Existing investigations into regexes have mainly focused
on the source code and the technology rather than on the
person using it. For example, other studies have delved into
regex feature usage [12], regex evolution [55], and worst-case
regex behavior [19]. However almost nothing is known about
how software developers actually work with regexes. Without
understanding what real developers think about regexes, how
they go about creating them, what difficulties they face, and
how they manage risks, we can only guess at what aspects can
be improved.

We present the first large-scale qualitative study of the
decision-making, difficulties, and risks developers face when
they program with regexes. We surveyed 279 professional
developers about their regex practices, and support our findings
by interviewing 17 professional developers to illuminate our
findings. Through our investigation, we gained insight into
developer perceptions and decision-making regarding regexes.
We report on the decisions developers make when working on
regexes: to apply a regex or not; to write or reuse a regex; to
identify test input; and whether the regex is correct. We shed
light on the difficulties that developers feel when wrestling
through problems, ranging from mundane syntax problems
to complex reasoning about the relative importance of false
positives and false negatives in the pattern-matching problem
space. We learn about how developers work to handle these
obstacles, the tactics they employ and the tools they use. We
examine the risks of regex programming, with the surprising
result that many developers are unaware of the portability and
security problems associated with regexes.

Our core contributions are as follows:
• In order to provide as rich a glimpse of regex practices

as possible, we conduct and analyze large-scale surveys of
279 professional software developers from a diversity of
companies, including several major tech firms to understand
their regex practices. We further our findings by interviewing
17 developers.

• We synthesize this mixed-methods data to better understand
the regex programming process: the decisions developers
make, the difficulties developers face and how they handle
them, and the degree of awareness around the risks of regex
programming.

• We discuss the myriad implications of our findings, propos-
ing a wide range of directions for future research grounded
in real-world practice.

II. BACKGROUND AND RELATED WORK

A. Regex Programming and Risks

Regexes are a string matching tool, used to identify a gen-
eralized subsequence of characters within a string. Generally,
the process that ends with the inclusion of a regex in code
written by a professional developer takes four overall steps.
First, the developer identifies — or is tasked with — a string
matching problem that he or she assesses for its suitability

to be solved using a regex. Next, developers will move to
compose a regex, evaluating the feasibility of reuse, and then,
either author a regex from scratch or reuse one, with or without
modification. Then, having arrived at a regex that the developer
hopes solves their problem, they will validate it. If the regex
passes validation, developers will document the regex and
integrate it into their project. If the regex fails validation,
developers will attempt to recompose it.

Software developers face two major risks when program-
ming regexes: portability and performance. Many regex di-
alects have emerged over the years [26], with divergent
syntaxes and semantics. Developers therefore face portability
problems during regex programming, with the risk that the
regex that they compose or reuse will be executed in a dialect
other than the one they anticipate, with unanticipated behavior
(e.g., syntax errors or unexpected match behavior) [20].

Developers also face performance problems leading to se-
curity risks due to the polynomial or exponential worst-case
time complexity of regex matches in most regex engines [15]
These super-linear regexes can expose applications to Regular
expression Denial of Service (ReDoS) vulnerabilities [17],
[18], which have been reported on dozens of major web-
sites [51], hundreds of major JavaScript projects [22], and
thousands of JavaScript, Python, and Java projects [19], [60].
Any software developers who write client-facing regexes face
the risk of regex performance problems and ReDoS security
vulnerabilities.

B. Empirical Regex Research

Prior research regarding regexes has been predominantly
quantitative, examining regexes in their role as a software arti-
fact. Researchers have empirically examined regex reuse [20],
[30], regex test coverage [57], regex evolution [56], regex
repair [19], and regex generalizability [21]. Others have pro-
posed tools for regex programming, e.g., input generation [5],
[36], [42], [48], [54], linters [35], and type checking [50].
Although regexes are interesting artifacts, they also represent
hours of developer effort that bear qualitative investigation.
Our developer-focused investigation of regex programming
is orthogonal to quantitative research that treats regexes as
a software artifact. Our qualitative efforts will inform the
development of new tools that address the problems developers
actually face, maximizing the potential impact of regex tool
research.

Only two studies have explored the developer side of regex
programming, with an emphasis on composition and com-
prehension. Chapman and Stolee [13] asked 18 professional
developers how often and in what contexts they use regexes.
And in a laboratory setting, Chapman et al. [14] performed
a fine-grained study on whether their subjects preferred one
regex “synonym” over another (e.g., equivalent patterns that
use character classes /[ab]/ or disjunctions /a|b/). Our
approach is to cast our net broadly, hearing from hundreds
of developers from diverse backgrounds to understand coarse-
grained issues surrounding process, difficulties, and risks.

C. Developer Perceptions, Practices and Information Needs

We are not the first to apply qualitative methods to shed
light on software engineering practices. Prior work in this vein
ranges from general engineering perceptions [37] to specific
practices such as code review [6]. The standard approach is
to survey [6], [11], [24], [29] or interview or observe [6],
[24], [25], [33], [37] developers who are exposed to the topic
of interest. Some studies have also considered interaction
artifacts [6], [10].

Our study is the first investigation of developer regex
programming practices in this spirit. We are the first to survey
developers on many of these regex topics at all, the first to
survey developers on regexes at scale, and the first to conduct
regex-focused developer interviews of any kind.

III. RESEARCH QUESTIONS

In this study, we focus on understanding core human
aspects of regex programming: how developers make their
decisions, what difficulties they face, and whether they are
aware of dangerous risks. Understanding these aspects of regex
programming will motivate impactful new lines of research
targeting the specific problems that professional software
developers face. To this end, we study the following research
questions:
RQ1: What perceptions do developers have about the value

and difficulty of regexes?
RQ2: What influences developer decisions when program-

ming regexes?
RQ3: What do developers find difficult about programming

regexes?
RQ4: How do developers handle those difficulties in program-

ming regexes?
RQ5: Are developers aware of portability and security risks

when programming regexes?
To support our study of these research questions, we devised

a general framework for the regex programming process,
depicted in Figure 1. We adapted this framework from the
general software engineering methodology of defining require-
ments, writing, validating, and deploying [44], and introduced
a reuse stage based on our intuition that regexes are a kind of
“function”, complex enough to be reused like other software.
We do not claim that our framework is exhaustive, but we
believe it captures the crucial regex programming decisions
that developers make. Using this framework, we were able
to focus our methodology on developers’ decision-making,
challenges, and handling-mechanisms for each of the decisions
in Figure 1.

IV. RESEARCH METHOD

Overall method and considerations. We followed a mixed
qualitative and quantitative approach [16]. We used a qual-
itative approach to answer most of our questions, but for
RQ1 and RQ5 we also asked some quantitative questions. We
emphasized a qualitative approach with the goal of discovery:
to identify an exhaustive set of answers to our research

Fig. 1. Stages of regex programming, with four major decision points (diamonds). This outline is what we used to frame the further investigation into
developers’ decision-making processes and difficulties.

questions, as well as understand the details and context behind
them.

Since discovery was our goal, we wanted to maximize
the number of professional developers whose perspectives
we heard through surveys and interviews. Of course, one
major difficulty in qualitative software engineering research is
persuading enough (busy, highly-paid) subjects to participate
to give weight to findings. We therefore prepared two dis-
tinct pairs of surveys and interview protocols, with different
emphases roughly on the left and right halves of the process
framing Figure 1. This allowed us to reach a diverse population
of software developers and to ask a diverse set of questions,
while also keeping the survey-taking time to a reasonable 17-
minute median and the interview times to roughly 30 minutes.

Survey design. We designed our surveys by first having dis-
cussions with professional software developers, and following
best practices in survey design [32], [49]. Then, we refined
the design of each survey through internal iteration, followed
by several pilot administrations each.

Both of our final survey instruments included free response
questions about the four stages of regex programming that
we set out to study (see §III). In these open questions, we
asked developers about their thought process when making
the decisions that we described in §III, and we asked them
what they found difficult in programming with regexes. We
also asked them to describe the mechanisms that they follow
to handle those difficulties. We used these responses to answer
our research questions RQ2, RQ3 and RQ4.

Our surveys also included multiple-choice questions about
developers’ perceptions about regexes in general, which we
used to answer RQ1. Then, we also included multiple-choice
questions asking about developers’ awareness of portability
and ReDoS risks, and free response questions asking them how
they prevent such risks. We used these responses for RQ5.

Finally, our second survey also included three additional
questions about regex reuse, the results of which are discussed
in a previous publication that focuses specifically on the topic
of regex reuse [20].

Survey deployment. We deployed our surveys after obtaining
approval from our institution’s ethics board, following a two-
pronged strategy to maximize the diversity of respondents.

We deployed our first survey internally in a large interna-
tional media company. We sought participants through an in-
ternal advertising campaign and by asking senior engineering
staff to promote the survey.

We deployed the second survey at software companies of
various sizes. We used snowball sampling [9], [47], contacting
professional developers of our acquaintance who work at tens
of different software companies, including top Fortune 500
companies, and asking them to take the survey and propagate
it to their colleagues. To further increase the diversity of
responses, we also posted the survey on popular Internet
message boards that are frequented by software developers [1],
[2]). We compensated legitimate responses with cookies for
the first survey and a $5 Amazon gift card for the second one.

We obtained survey responses from 121 developers for our
first survey and 158 developers for our second one. The median
respondent had more than 6 years of professional experience
in the first survey and 3-5 years in the second one.

Interview design and deployment. The final question in our
surveys was a request for permission to conduct a follow-
up interview. We contacted all survey respondents who were
willing to be interviewed, and were able to schedule interviews
with 17 of them. Following common practice to learn more
about a phenomenon [59], our interview protocol was semi-
structured [38]. We developed interview guides with general
topics and questions to be covered instead of an exact set of
questions. We focused our interview guides on the decisions
that developers make, the difficulties that they face, and
the ways in which they handle them when programming
regexes. We also asked for clarification on details of the regex
programming process, hinted at by our survey results. We
compensated interview participants from the second interview
population with a $25 Amazon gift card. The first set of
interview participants were not compensated.

Data analysis. We analyzed the free response questions in
our surveys and the transcriptions of our interviews using
open coding [34] (also used in grounded theory [4]). For
our second survey, one author of the paper read all the
responses for a question to identify codes into a code book.
Afterwards, the author reread and coded all the responses.
Then, a different author of this paper used the code book to

perform their own coding of units. Finally, both sets of codes
were used to reach agreement. Due to organizational privacy
and confidentiality requirements, the first survey was analyzed
by one author, coding free responses and then repeating the
process several weeks later, using the codes from the other
survey. The results were then compared with the original
codes to resolve discrepancies. Finally, we organized the
resulting codes according to the research question that their
corresponding quotes answered. We report them together with
exemplary quotes in sections V to VIII. Our survey instru-
ments and interview protocols are available for replication at
http://doi.org/10.5281/zenodo.3424069 [31].

V. RQ1: WHAT PERCEPTIONS DO DEVELOPERS HAVE
ABOUT THE VALUE AND DIFFICULTY OF REGEXES?

Fig. 2. We asked developers about their perceptions of regexes, in regards
to: value to their job (most agreed that they are valuable), and as software
developer knowledge (most agreed that they are important). Regarding the
difficulty of regexes, most developers: agreed that they were daunting when
learning to code, did not show strong confidence in their regex usage (overall
neutral response), and disagreed that regexes are more readable than other
code.

We initially wanted to understand whether regexes are a
technology that developers value and benefit from, as well as
to learn developers’ general perceptions about their difficulty.
We found that developers view regexes as a valuable
technology, but one that is also difficult (Figure 2).

To understand whether developers believe that regexes are
valuable, our first survey asked participants if they agreed with
the statement “Regular expressions are valuable to me in my
job”. Respondents were nearly unanimous: 88% of developers
agreed that regexes were valuable to their job. Developers also
generally agreed that “Regular expressions are an important
part of software development knowledge”.

But our participants also described regexes as difficult. 65%
of respondents agreed that they “found regular expressions
daunting when. . . learning to code”; most developers did not
always feel confident in their usage of regexes; and most
developers (70%) disagreed with the statement that “regular
expressions are more readable than other code”.

These initial findings give strong motivation to pursue
regex research in general, and prompted us to investigate our
subsequent research questions to characterize the particular
ways in which developers find regexes difficult.

VI. RQ2: WHAT INFLUENCES DEVELOPER DECISIONS
WHEN PROGRAMMING REGEXES?

One of the primary results of our work was an understanding
of how developers make the decisions involved in program-
ming regexes. We report it in the following subsections.

A. Choosing a String-matching Solution

We asked developers how they made the decision of which
string matching solution to use, asking specifically about using
a regex vs. writing alternative code

1) Using Regex vs. Using Alternative Code: Developers
reported making this decision based mostly on the perceived
complexity of the problem. Developers perceive regexes as
well suited for solving “Goldilocks” problems, neither too
simple nor too complex. For simple problems, simple string
APIs were preferred. As one interviewee said, “if there’s a
string function that says the prefix should be this, I would
prefer that over a regex . . . it’s simpler to understand” And
when the problems are too complex, a survey respondent
cautioned that regexes are also not a good solution: “If a regex
is complex enough that it’s ‘too complex’ to write from scratch,
it’s probably also too complex a problem to solve with a regex”

Another factor that developers considered when deciding to
use a regex or its alternatives is their perceived readability.
But developers disagreed on how readable regexes were, with
some inclined towards and others away from using them.
One participant said “I stay away from tedious string parsing
and splitting, and I see regular expressions as a tool to
aid in conveying what you are trying to do.”, while other
teams discourage regexes instead: “With code review you want
readable code and regexes are often not readable so they
become less commonly used”.

Developers also mentioned that sometimes a single choice
is available. For example, some built-in language and third-
party APIs require developers to supply regexes to solve string
matching problems. A common example is search tools: “You
find regular expressions and globs in search tools all over the
place. . . in those cases, it’s not really a choice.”

B. Composing a Regex

When developers decide to solve their string-matching prob-
lem with a regex, we asked them how they make two decisions
while composing regexes. First, we asked how they decided
to write from scratch vs. re-using a regex. And when they opt
to reuse, we asked them how they select reuse candidate(s).
Developers also volunteered a decision that we had not initially
considered, namely determining the relative merits of overly
liberal or conservative matching (i.e., too much or too little?).
We updated our interview protocol to investigate this decision.

1) Writing Regex vs. Reusing Regex: Our participants often
said they would reuse when they believed they were trying to
solve a common problem. As one survey respondent said,
“If it’s a common regex like various form fields I would reuse
a regex, but for a more company/business use case specific
requirement I would write a custom regex”.

Many respondents preferred to reuse regexes where possible
to improve reliability, believing that regexes from a trusted
reuse source would provide higher quality or better testing.
For example, one interviewee said “[A highly up voted Stack
Overflow regex] is more likely to be right and account for
edge cases” The specifics of what constituted a trusted source
varied. Some developers relied on a private team resource like

http://doi.org/10.5281/zenodo.3424069

TABLE I
DEVELOPER-REPORTED DECISION FACTORS WHEN PROGRAMMING REGEXES AND THEIR INFLUENCE ON DECISION OUTCOME

Stage Decision RQ2: Factors Influence on Outcome

Choosing a Solution 1) Using regex vs. using alternative code
Problem complexity Medium-complexity ú Regex
Readability Both outcomes
Single choice Regex

Composing a Regex

1) Writing regex vs reusing regex
Problem commonality Common problem ú Reuse
Reliability Reuse
Time savings Both outcomes

2) Which regex should I pick for reuse?
Best understanding Simpler regexes preferred
Feature usage Fewer preferred
Length Shorter preferred

3) Match too much vs match too little? Problem domain Domain-dependent

Validating a Regex
1) Am I confident this regex is correct?

Sample data availability Available ú High confidence
Result recipient Internal use ú Shallow testing

2) Am I confident this reused regex is correct? Trust of reuse Both outcomes

Documenting a Regex 1) How much documentation is required?
Personal opinion Both outcomes
Complexity High ú Documentation

a shared regex file, while others trusted highly up-voted Stack
Overflow posts.

Another factor that developers considered when deciding
whether to reuse was saving time, but they disagreed about
the more efficient strategy. Some favored reuse (“Similar to
writing code, finding a working example and adapting it is
faster”), while others said that “Writing from scratch often
requires less time than searching for a suitable one.”

2) Which Regex Should I Pick for Reuse?: Developers
who opt to reuse must often choose from multiple candidate
regexes. Our participants said they preferred simpler regexes
when given the choice, but measured complexity in different
ways. One interviewee showed a preference for the fewer
special characters, saying “I just try and pick the one I have
the most understanding of . . . the one with the fewest special
characters”. Another emphasized length. “[If one] answer is
half the length I’m going to go with that one.”.

3) Match too much vs. match too little?: We did not
initially anticipate this decision, but added it to our interview
protocol based on information volunteered in an early inter-
view. When composing a regex, developers discussed needing
to have an understanding of the context in which their regex
would be used. In some situations, they preferred their regex
to be overly liberal, matching too much, while in others they
wanted to be conservative, matching too little. They said “what
might be tricky is deciding whether or not you want to match
it too much or match too little”, and pointed to validation as a
particular context where matching too little (false negatives)
was preferable to matching too much: “I’d much rather match
too little than too much [to avoid introducing] garbage data”.

C. Validating a Regex

We asked developers about two aspects of validation: how
they decide whether a regex is correct, and whether their

process changes when they are re-using a regex rather than
writing their own.

1) Is This Regex Correct?: Our participants’ confidence
was often tied to having comprehensive sample input for
their regex. “I’m usually pretty confident about them. . . we
have a pretty much an unlimited ... sample pool of things I
can use to test.” On the other hand, a participant described
editing a colleague’s old regex as difficult because they did
not perfectly understand the input space.

In non-customer-facing contexts, some participants had a
lower standard for correctness. They said things like “I just
kind of eyeball it . . . somebody . . . will probably test the edge
cases”, usually when the recipient of the data was a team
member rather than a customer.

2) Is this Reused Regex Correct?: Our participants were
split on whether and how to change their validation strategy
for reused regexes. Some developers viewed reused regexes
as better tested or more and as a result did not work to
validate as thoroughly as when they wrote from scratch,
saying things like “I’ll usually trust re-using an expression
more . . . [and] skip [some validation phases]”. But others
treated reused regexes cautiously, “I am aware of the security
implications of using something from public sources”.

D. Documenting a regex

1) How Much Documentation is Required?: Perhaps re-
lated to the differing opinions on the readability of regexes
that we identified earlier, interviewees disagreed on the extent
to which regex documentation was required. Many felt
that a well-written regex would not require documentation:
“I would say that . . . most people would consider them self
documenting,”. Others thought that the amount of documenta-
tion depended on regex complexity, e.g., “something that has
two or three levels of parentheses . . . I will try to break them
apart into smaller pieces with more comments”.

VII. RQ3 & RQ4: WHAT DO DEVELOPERS FIND
DIFFICULT ABOUT PROGRAMMING REGEXES, AND HOW

DO THEY HANDLE THOSE DIFFICULTIES?

Intertwined with their decision-making process, participants
mentioned many difficulties during regex programming. As
in the preceding section, we analyzed our survey responses
and then used our interview phase to probe for additional
details about the challenges that developers face and the ways
in which they handle them. For clarity, in this section we
accompany each challenge with the way(s) in which our
participants described handling them1. Table II summarizes
our findings. As indicated in Table II, the first two challenges
we discuss were cross-cutting, spanning several stages of the
regex programming process. We then discuss two common
challenges that our participants face when composing regexes,
and two challenges that they face when validating regexes.

A. Understanding the Problem

1) Difficulty: Multiple developers reported the difficulty of
fully understanding the string problem that they are trying to
solve, e.g., “The most difficult thing with regular expressions
tends to be defining the problem”. Developers mentioned this
difficulty affecting many of the stages of programming with
regexes. In particular, one participant mentioned understanding
the problem as a difficult step in both writing and validating
regexes with tests: “Having clear understanding of the task
. . . helps not only to write the tests but also to write/pick
the regex”. This may be tied to the importance of a good
set of inputs during the validation step, mentioned by other
participants in §VI-C.

2) Handling: Developers primarily handled the difficulty of
problem definition by studying sample inputs for patterns.
“I tried to generalize what I’m looking at and [then] craft
the regular expression.” When they could not understand
the problem at a glance, developers discussed breaking the
problem into smaller pieces. One interviewee described this
as “[getting] very methodical . . . much like I attack any pro-
gramming problem, where I break it into manageable pieces.”

B. Understanding the Regex

1) Difficulty: Their opinions about regexes being “self-
documenting” notwithstanding, many of our participants said
that they perceive regexes as difficult to understand. Several
interviewees summed this up well, variously remarking that
“The syntax of regular expressions is kind of terse”, that
“The regex syntax is cryptic”, and simply referring to it as
“Illegible gibberish”. Developers reported that the difficulty
of interpreting regex syntax as a pattern, i.e., “reading
regexes”, impacted all stages of the regex programming
process. The difficulty of understanding regexes is exacerbated
by frequent “lack of comments/documentation, poor style”, a
point raised by many developers.

1We chose our words carefully here. We refer to what participants described
as “handling problems” because many participants were aware of limitations
or gaps in their approaches. We discuss potential research directions to address
some of their concerns in §IX.

2) Handling: Developers reported two ways to handle this
difficulty: using tools to improve their own regex compre-
hension, and documenting regexes to improve comprehension
for others. The most common tools mentioned by participants
were visualization aids, like graphical visualization and syntax
highlighters. The most praised among these were the built-in
syntax highlighting for the JetBrains IDEs, “Jetbrains has
my back - IDE syntax highlighting”.

To improve regex comprehension for others, developers
described their regex documentation strategies. One common
method was to break regexes across multiple lines, pro-
viding a comment about each individual part of the regex.
This is not a universally supported feature across all regex
implementations, but was encouraged by participants when it
was available. From a developer interview: “Hopefully, you’re
using a programming language where you could break it into
multiple lines and comment those”.

In addition, some developers encourage others to document
their regexes when they come across them in code review. In
those cases, some developers push to include more detailed
commenting, e.g., “Put a plain language explanation in com-
ments. . . Have as many examples of matching and unmatching
text as is appropriate in the comments”

C. Searching for Reuse Candidates

In this and the following subsection, we introduce chal-
lenges specific to two stages of the regex programming pro-
cess: composing and validating regexes.

1) Difficulty: In order to reuse a regex, developers first
need to search for a regex that is worth reusing. Multiple
participants lamented the difficulty of this process, which
mostly affects the regex composition stage.

When our participants search for a regex to reuse, they
usually try to leverage general search tactics with mixed
success. In particular, developers find it difficult to frame
their search in a way that is understood by existing search
tools — it is difficult to express their abstract string-matching
problem as a plain-text query for a search engine. For some
tasks, the desired regex is easy to search, e.g., “email regex”,
but developers often find it difficult to express the regex that
they need. From a developer interview: “It’s hard to . . . query
the problem you’re trying to solve. Sometimes it’s so domain
specific.”

In this case, developers face both the difficulty of under-
standing the problem itself (§VII-A) and the difficulty of
articulating it for existing search engines.

2) Handling: Developers reported three mechanisms to
handle this difficulty.

Some developers choose to decompose the regex into
smaller pieces that may be easier to search. This is expressed
well by one of the survey respondents: “If I can’t find an
existing regex that fits my need, I will start searching . . . [for]
pieces that will help me construct the final regex.”

Anther popular approach was an indirect search. Developers
commonly search for code that may use a relevant regex.
For example, this was described in an interview when the

TABLE II
DEVELOPER-REPORTED DIFFICULTIES WHEN PROGRAMMING REGEXES AND HANDLING MECHANISMS FOR THEM

Stage RQ3: Difficulty RQ4: Handling Mechanism for Difficulty

Cross-cutting

A) Understanding the Problem
Generalizing sample inputs

Breaking down the problem

B) Understanding the Regex
Using tool support for visualization and highlighting

Breaking down regexes

Adding documentation

Composing a Regex

C) Searching for Reuse Candidates
Decomposing the regex

Searching for similar code

Personal regex library

D) Non-intuitive Syntax
Reading the regex documentation

Using tool support

Validating a Regex

E) Testing Edge Cases
Generating their own inputs

Testing all the available inputs

F) Testing Enough Inputs
Request additional inputs from other stakeholders

Property-based testing

participant said: “I would say intuition, but also sort of like
code that’s close by for sure. A file next to it or maybe it’s an
implementation of something that conforms in some interface.”

Finally, some participants maintain personally curated lists
for regex reuse that they will consult. For example, one survey
respondent mentioned that they would “refer to the regex
section of my personal notebook” when searching for reuse
candidates. This handling mechanism seems similar to having
a personal library of utility functions that you copy into your
codebase as needed.

D. Non-intuitive Syntax
1) Difficulty: Developers frequently discussed dealing with

the syntax of regexes as an obstacle, e.g., “You have to
remember what each symbol in that string means . . . they’re
non-intuitive.” Another developer expressed a reliance on
regex-specific reference charts: “I need a little cheat sheet
that has to outline what each symbol does.”

2) Handling: Developers relied on two handling mecha-
nisms to address difficulties with syntax.

Unsurprisingly, developers often mentioned referring to
their programming language’s regex documentation to sup-
port their composition of regexes, e.g.,: “. . . If [searching
for a regex to reuse] fails, I will start reading the regex
documentation.”

But another common mechanism is the usage of tool
support. “Anytime I am curious about a regex [I] go to
regex101.com. . . You type in your regex and some examples
and it’ll match or not match in real time and that’s just
useful.” Developers also appreciated tools that incorporated
documentation. One participant noted that “there’s a bar on
the side of [regexr.com] . . . [You can] click on every sort
of regular expression piece of syntax and it’ll show you an
example.”

E. Testing Edge Cases

1) Difficulty: Developers also found it difficult to identify
corner cases or edge cases, terms colloquially used to refer
to boundary values [46]. They often expressed the “Difficulty
in [coming up with] corner case inputs and outputs” and the
fact that it is “Tough to imagine all edge cases to test”.

2) Handling: Some developers handle this problem by
generating their own input, while others rely on real-world
input data from others. For simple problems, developers say
that they think through the problem space and generate their
own input, but noted that this approach has its limits. “If the
regular expression is . . . simple enough that thinking about the
entire scope of the input space is feasible . . . It’s really the case
where it really grows into a massively complex one that [is
problematic].”

Other developers gained an understanding of their problem
by reading data they had on hand, but they acknowledge
that they therefore tend to only address the edge cases
that manifest in the available input data. One participant
remarked that “[I] look for everything that I can get from
production. . . that’s my input . . . that’s my unit test.”, and went
on to say “[but] unfortunately the input that I get can’t be
‘universal’.”.

F. Testing Enough Inputs

1) Difficulty: Similarly to testing edge cases, developers
also reported on the difficulty of validating regexes with
enough inputs. Regexes are powerful and flexible tools, but
in consequence can be very difficult to validate thoroughly.
A survey respondent summed up this idea well: “an infinite
regression problem, to test a regex . . . would require regexes”.
In particular, developers find it difficult to come up with sets
of sample inputs for testing that they would consider complete.

Fig. 3. When asked what they worried about when reusing regexes, developers
expressed a range of concerns, emphasizing semantic portability issues —
that a regex would not work as intended. Developers also worried less about
performance issues, where a regex could slow down overall execution time,
but this may be attributed to lack of awareness of performance vulnerabilities,
as is discussed in §VIII-B1.

This was a frequent complaint: “insufficient sample inputs /
unknown set of sample inputs”

2) Handling: Developers handled this through ad-hoc ap-
proaches to expand their collection of inputs. One participant
relied on the expertise of other humans to do this: “Testing
literally every scenario is unfortunately not a realistic solu-
tion. . . working with the QA and the clients to get a diverse
set of real world documents”. Another participant said that
they automatically generated additional input using property-
based tests [40].

VIII. RQ5: ARE DEVELOPERS AWARE OF PORTABILITY
AND SECURITY (REDOS) RISKS WHEN PROGRAMMING

REGEXES?

As discussed in §II, developers encounter two risks when
programming regexes: correctness concerns due to regex
(non)-portability, and security concerns due to ReDoS. In this
section, we describe developers’s awareness of these risks, as
well as their handling mechanisms.

A. Portability Risks

1) Awareness: We asked developers whether they worry
about a series of risks involved in regex reuse: syntactic,
semantic, and performance differences when re-using regexes.
We report their answers in Figure 3.

Developers who responded to the second survey worry
about syntactic and semantic differences (over 50%), and
around a third (29%) also worry about performance
differences. Our interview participants provided more details
about specific portability problems that they have resolved in
the past. They reported re-factoring regexes with unsupported
features, which at times would blend semantic and syntactic
differences, e.g., “escape sequences . . . vary across systems”
and “[Go regexes] don’t support some of the constructs that
are available in other languages”.

An interesting facet of Figure 3 is that a substantial portion
of developers also reported not worrying about any of these
reuse risks. Our interviews shed some light into why many
developers do not worry about regex reuse risks: many are
not aware that reuse carries portability risks. In fact, some
developers reported that they prefer to use regexes over other
alternatives because of their (perceived) portability across

languages. One survey respondent stated “It is consistent
across languages”, and another said that the “same regex can
be used across technologies/systems”. In concurrent work, we
have explored this misconception [20].

Furthermore, other respondents described the shock that
they felt when they first learned of regex portability issues,
e.g., “I certainly didn’t know [before that incident] . . . what
the hell is that?” Ignorance of this issue exposes developers
to correctness issues due to improper regex validation2. We
note that these assumptions can affect correctness whether or
not regexes are being reused, simply as a result of an incorrect
mental model for regex behavior.

2) Handling: Most developers handled missing feature
support or blatant syntax differences by consulting language
documentation and making a translation. For example, “for
syntactic differences, I look at a regex cheatsheet and find
the appropriate syntax for my environment”. If they under-
stand the need for translation, developers do not find this
translation difficult, though it can be frustrating. In some
cases, the need for regex translation can even influence larger
project decisions. One participant was considering migrating
a project from one language to another, but decided against
it: “Transitioning our common regular expressions . . . kind of
a headache.” Other developers would not go to the effort to
make a translation. If they found that a regex reuse candidate
would not work in their regex dialect, they would start their
reuse search process over to find one that did not need a
translation: “Sometimes I ported it. Sometimes I went looking
for another.” The primary way that most developers discussed
dealing with further concerns was testing to confirm that the
regex that they were reusing behaved in the way that they
expected. “I run the regex against various tests to ensure it
outputs as expected.”

B. ReDoS

1) Awareness: Regexes open the somewhat obscure secu-
rity concern of ReDoS. ReDoS is fairly avoidable, however, if
proper steps are taken to sanitize input and to not use super-
linear regexes. Most importantly, the first step to avoiding the
issue is being aware of the problem. When asked if they knew
what ReDoS was, developers were overwhelmingly unaware.
Only 38% of all surveyed developers knew of the possible
vulnerability. This is concerning, since the vulnerability is
easy to introduce without noticing and it can slip through
validation without being detected. We note that ReDoS is a
vulnerability rather than an exploit, and is only relevant if the
regex may match against malicious input. Nevertheless, we
were surprised that the majority of participants were unaware
of ReDoS.

2) Handling: Beyond their (occasional) awareness of this
security risk, developers currently do little to combat perfor-
mance issues and feel ill-equipped to identify performance

2For example, consider the participants that we described across several
earlier sections, who reuse from a “trusted source” like Stack Overflow and
do not validate carefully as a result.

issues leading to ReDoS in their regexes. When discussing per-
formance issues and challenges in interviews, many developers
said they only worry about regexes that introduce noticeable
“lag”: “I just wait and see if it becomes an issue.” Only one
interviewee referred to ReDoS (“catastrophic backtracking”)
thanks to a related feature in regex101.com.

Some developers held a misconception about worst-case
regex performance issues, which may not manifest on typ-
ical input, but only on malicious input. The feature in
regex101.com is not a ReDoS detector, but rather a diagnosis
tool suitable if the developer already knows about the worst-
case input.

Part of these behaviors may be because developers lack
tools or knowledge about solving regex performance prob-
lems. For example, Davis et al. reported that input sanitization
is an easy mitigation for many ReDoS vulnerabilities [19], but
none of our participants mentioned this approach. And when
asked what is difficult about validation, one developer simply
stated “Performance and security risks”, but did not mention
any of the tools tailored to this problem [45], [48], [58], [60].

IX. DISCUSSION AND IMPLICATIONS

Our findings have implications for many research directions.

A. Addressing String-Matching Problems

Our observations motivate future studies of string-matching
problems to understand them in more detail.

1) Understanding String-matching Problems: Developers
specifically mentioned the difficulty of fully understanding
string matching problems, which makes it hard to decide
whether a regex is the best solution for the problem. It may
be beneficial to investigate in more depth how experts solve
specific kinds of string-matching problems. Understanding
and naming categories of problems and their solutions would
simplify the way that we describe and reflect about them
— much like it is done with design patterns in object-
oriented programming [27]. An example taxonomy member
may take the shape of classifying all regexes that search for
nested delimiters as a specific grouping. Chapman and Stolee
[13] proposed a classification of common regex solutions in
terms of their textual similarity. We propose a complementary
research direction, by classifying string-matching problems.

2) Diverse Solutions for String-matching Problems: Fur-
thermore, our participants mentioned that some string-
matching problems are better addressed by non-regex solutions
— those that are either too simple or too complex. It would be
worth investigating what specific characteristics make string-
matching problems fall into this category, and what kinds
of solutions developers employ in those cases. Some exam-
ple alternative solutions may be: position-fetching, substring
matching, anchor-splitting, or their combinations with simple
regexes. Another powerful mechanism that may be useful
for this kind of problems are context-free grammars — e.g.,
using tools like ANTLR [43], which may also be easier to
understand and debug. It is possible that an additional level
of abstraction or more powerful language with built-in string

functions could solve some of the challenges that developers
face with regexes.

B. Assessing Regexes

We found that developers need to assess various qualities
of regular expressions. Our findings for RQ2 and RQ4 explain
how developers use various factors of complexity and quality
to make decisions and overcome difficulties. For example,
developers considered both regex complexity and quality as
important factors to decide which regexes to reuse. Such
estimations of regex complexity and quality are normally
performed manually, by simply looking at the regex.

1) Regex Metrics: These findings highlight the value of
developing regex metrics to automatically measure the quality
and complexity of regexes in a way that will help developers
make decisions when programming regexes. For source code,
metrics already exist to capture some of its complexity and
quality, e.g., cyclomatic complexity [41]. We pose that regex
metrics would have a strong impact in the productivity of
developers when programming regexes, since most of the
decisions that they make consider some metric. We elaborate
further on our envisioned usage of regex metrics in the
following sections.

C. Automated Support for Reusing Regexes

Our participants highlighted multiple difficulties in regex
reuse, such as defining the problem for a search engine query
and reusing across regex dialects. They also pointed out the
characteristics that they valued when reusing, as well as the
interesting practice of keeping regex lists for reuse. These
findings open multiple opportunities for research.

1) Semantic Regex Search: Currently, developers find it
difficult to use search engines to look for regexes to reuse,
since it is hard to express their string-matching problem in
a few words — particularly considering that the problems
themselves are hard to understand (see §VII-A).

Thus, developers would benefit from a search engine that al-
lowed them to express string-matching problems in a domain-
specific way, i.e., semantic regex search. Such a semantic regex
engine could be more useful to developers by taking inputs
that are regex-specific. For example, these could be: (a) a list
of inputs that match or non-match the regex that they need,
(b) a regex that resembles the regex that they need (c) a code
context in which the regex would be used. The approaches for
processing these inputs would vary, but we pose that such a
search engine would make it easier for developers to express
the problem that they are trying to solve.

2) Regex Repositories: Since developers mentioned keep-
ing their own lists of regexes for future reuse, it may be useful
to empower them in that practice. Regex repositories would
strongly complement semantic regex search, particularly if the
stored regexes contain additional metadata, such as: the cate-
gory of string-matching problem that they solve (possibly from
Chapman and Stolee’s [13] proposed classification of common
regex solutions), portability or performance problems, or other
indicators of quality via regex metrics or user ratings. One

regex repository does currently exist (RegExLib [3]), but it
encompasses a very narrow set of facets in which to perform
search, and is also relatively small given the relative size of
other existing software datasets.

3) Metrics-based Regex Ranking: Regex metrics would
complement semantic regex search by allowing the ranking
of results according to various metrics. Developers expressed
that, in most regex-reuse cases, they valued low complexity
— e.g., short length, few features used — and high quality —
e.g., coming from a reliable source and being better tested.

4) Regex Dialect Translation: Finally, developers also ex-
pressed the difficulty of reusing regexes that were created in
a different dialect. Ideally, a regex search engine should also
include mechanisms to understand the regex dialect for which
a regex was created, as well as mechanisms to refactor it for
the dialect in which it will be used.

D. Automated Support for Composing Regexes
We also identified developers’ difficulties with composing

regexes — e.g., dealing with difficult syntax that is hard to
remember, and many qualities that developers value in regexes
— e.g., short length and reduced feature usage. These findings
motivate many avenues for research.

1) Live Support for Regex Composition: Now that we
better understand some of the characteristics that developers
value in regexes (see §IX-B), we could develop assistants to
support developers in composing regexes with those desirable
attributes. Such assistants could help developers to, e.g., break
down their regexes, use fewer advanced features, or decide
between matching too match or too little.

2) Regex Refactoring: The same information about desir-
able qualities in regexes could be applied to develop regex
refactorings that would improve the quality of regexes. Regex
refactoring could be applied on demand or automatically over
a whole code base. Refactoring is another example of a highly-
valued concept in object oriented programming that could
highly benefit regex programming. Chapman and Stolee [13]
already proposed the idea of regex refactoring. Our findings
throw more light into what kinds of refactorings would be
desirable for developers.

3) Automatic Regex Composition: Another interesting re-
search direction would be the full automation of regex compo-
sition. Some existing work has made advances in this direction
by composing regexes from examples of matching and non-
matching input [7], [8], [23], [39] A different approach to
automate regex composition may feed the algorithm with
partial regexes that solve pieces of the problem — since
developers seem to be already decomposing the problem in
their manual composition efforts.

E. Automated Support for Validating Regexes
Developers mentioned the difficulty of validating regexes,

particularly in testing edge cases and in deciding whether
they tested enough input cases. They currently handle such
difficulties manually, by testing all the input that they have
available. These difficulties motivate research in at least two
directions.

1) Regex Input Generation for Humans: Many tools have
been proposed to generate input for testing regular expressions
[5], [36], [42], [48], [54]. Surprisingly, none of our studied
developers mentioned using these tools for input generation.

We realize that further study would be necessary to under-
stand the extent to which these tools are adopted. However,
we believe that further research is motivated to study what
developers consider good or relevant input, as well as to
evaluate regex input generators when their output is consumed
and judged by humans.

2) Boundary-value Analysis for Regexes: Methods like
boundary-value analysis and equivalence partition [46] help
software developers define and test edge cases and are widely-
known. Thus, further research is motivated to adapt these
techniques to regexes in particular or to develop other methods
to support developers in defining boundary values for regexes.

F. Automated Support for Documenting Regexes

Some of our participants felt that regexes should be self-
documenting, others thought that documenting regexes is
necessary, and others thought that the decision depends on the
complexity of the regex. In addition to this, we also observed
the things that developers value in regex documentation:
breaking down the regex into pieces, documenting each piece,
and the inclusion of both matching and non-matching input,
as well as a plain description of what the regex does.

1) Automatic Regex Documentation: These findings moti-
vate research to automatically document regexes, since many
of the pieces of information that developers value could poten-
tially be generated automatically. Machine learning techniques
could be developed to automatically break down regexes by
learning from examples. Also, regex input generation tech-
niques (see §IX-E) could be adapted to generating few inputs
that would be highly relevant for humans to understand the
regex, and that also covered matching and non-matching input.

G. Understanding Regexes

Many developers mentioned the terseness and cryptic-ness
of the syntax of regexes, and how that makes them very
difficult to understand.

1) Novel Regex Syntax for Comprehension: We believe that
this widely-held sentiment calls for further research into new
syntax for regexes to make them easy for humans to under-
stand. Since developers are already breaking down regexes in
multiple lines, that may give space for a more verbose syntax
that could be more easily understood.

H. Regex Education

Developers noted that regexes can be difficult to learn,
but also consistently noted that they are a very helpful tool.
Our findings will help educators to teach best practices in
programming with regexes, as well as specific difficulties to
anticipate in the process.

1) Learning Regexes: This also gives a clear incentive to
investigating further how developers first learn regexes, as well
as the common pitfalls that beginners face in particular. This
research brought to light some common mistakes that profes-
sional developers can make, such as perceived portability. A
similar study focused on developers learning regexes would
provide more comprehensive insights into the early stages of
understanding.

2) ReDoS Awareness: Most developers do not know about
ReDoS. We believe that this vulnerability is easily overlooked,
since regexes may seem harmless to many developers. Thus,
we encourage educators and professionals to disseminate the
mechanics of this vulnerability to better prevent problems
associated with it.

X. THREATS TO VALIDITY

Construct Validity: In order to pose questions about the
regex process to developers, we first outlined a general process
based on our understanding of general software engineering
practice. This may have limited the extent to which partici-
pants reflected on their own distinct decision-making factors
or difficulties. An example of findings that we may not have
been able to observe are those related to code-review practices
when regexes are involved, since we did not ask about code
review explicitly. To counteract this risk, we used open-ended
questions, which enabled our participants to report on diffi-
culties and decisions that we did not anticipate, e.g., matching
too much vs. matching too little. Still, an observational study
of our studied phenomena, based on contextual inquiry, may
uncover a broader set of findings.

Internal Validity: The researchers on this study manually
analyzed the data by reading, summarizing, categorizing and
discussing the contents of developer surveys and interviews.
This has the potential to introduce bias at various levels, and
may also limit reproducibility, since other individuals may
interpret the same information in different ways. This is a
known limitation of qualitative research [28]. We strived to
reduce the impact of this limitation by corroborating and
discussing our findings across authors and across the two
developer populations.

External Validity: We sampled hundreds of developers
across two different populations, but this is still a small portion
of all software engineers and populations. In the second survey,
we used snowball sampling for part of the sample, starting with
professional contacts of the authors, biasing towards people
known by the authors and at companies where the authors
have worked. Though this may compound some bias, we
believe that our snowball sampling allowed us to contact both
a large and wide range of developers, and the information that
these participants provided was similar to the one provided by
participants from our public recruitment approaches.

XI. CONCLUSION

Regexes are powerful tools that developers find valuable.
Regexes are also hard to work with. We identify six difficulties
that developers face when using regexes and multiple handling

mechanisms that they employ to deal with them. Developers
are also mostly unaware of risks that they take when using
regexes — under 40% of our participants were aware of se-
curity vulnerabilities associated with regex usage. We propose
many lines of research and new ways to support developers
when working with regexes.

XII. REPLICATION

Our survey instruments and interview protocols are available
for replication at http://doi.org/10.5281/zenodo.3424069 [31].

REFERENCES

[1] Hacker news. https://news.ycombinator.com/.
[2] Reddit. https://www.reddit.com/.
[3] Regular expression library. https://web.archive.org/web/

20180920164647/http://regexlib.com/.
[4] S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the

experience of software development. Empirical Software Engineering,
16(4):487–513, 2011.

[5] P. Arcaini, A. Gargantini, and E. Riccobene. MutRex: A Mutation-
Based Generator of Fault Detecting Strings for Regular Expressions. In
International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2017.

[6] Bacchelli and Bird. Expectations, Outcomes, and Challenges of Modern
Code Review. In International Conference on Software Engineering,
pages 712–721, 2013.

[7] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao. Playing regex
golf with genetic programming. pages 1063–1070. Association for
Computing Machinery (ACM), 7 2014.

[8] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao. Inference
of Regular Expressions for Text Extraction from Examples. IEEE
Transactions on Knowledge and Data Engineering, 28(5):1217–1230,
5 2016.

[9] P. Biernacki and D. Waldorf. Snowball Sampling: Problems and Tech-
niques of Chain Referral Sampling. Sociological Methods & Research,
10(2):141–163, 11 1981.

[10] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs in
bug reports. In Proceedings of the 2010 ACM conference on Computer
supported cooperative work - CSCW ’10, page 301, New York, New
York, USA, 2010. ACM Press.

[11] R. P. L. Buse and T. Zimmermann. Information Needs for Software
Development Analytics. In Proceedings of the 34th International Con-
ference on Software Engineering, pages 987–996, Zurich, Switzerland,
2012. IEEE.

[12] C. Chapman and K. T. Stolee. Exploring regular expression usage and
context in Python. In Proceedings of the 25th International Symposium
on Software Testing and Analysis - ISSTA 2016, pages 282–293, New
York, New York, USA, 2016. ACM Press.

[13] C. Chapman and K. T. Stolee. Exploring regular expression usage and
context in Python. International Symposium on Software Testing and
Analysis (ISSTA), 2016.

[14] C. Chapman, P. Wang, and K. T. Stolee. Exploring Regular Expression
Comprehension. In Automated Software Engineering (ASE), 2017.

[15] R. Cox. Regular Expression Matching Can Be Simple And Fast (but is
slow in Java, Perl, PHP, Python, Ruby, ...), 2007.

[16] J. W. Creswell and J. D. Creswell. Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.

[17] S. Crosby. Denial of service through regular expressions. USENIX
Security work in progress report, 2003.

[18] S. A. Crosby and D. S. Wallach. Denial of Service via Algorithmic
Complexity Attacks. In USENIX Security, 2003.

[19] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee. The Impact of
Regular Expression Denial of Service (ReDoS) in Practice: an Empirical
Study at the Ecosystem Scale. In The ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2018.

http://doi.org/10.5281/zenodo.3424069
https://news.ycombinator.com/
https://www.reddit.com/
https://web.archive.org/web/20180920164647/http://regexlib.com/
https://web.archive.org/web/20180920164647/http://regexlib.com/

[20] J. C. Davis, L. G. Michael IV, C. A. Coghlan, F. Servant, and D. Lee.
Why arent regular expressions a lingua franca? an empirical study on
the re-use and portability of regular expressions. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
- ESEC/FSE 2019, pages 443–454, New York, New York, USA, 2019.
ACM Press.

[21] J. C. Davis, D. Moyer, A. Kazerouni, and D. Lee. Testing regex
generalizability and its implications: A large-scale many-language mea-
surement study. In ACM International Conference on Automated
Software Engineering (ASE). ACM, 2019.

[22] J. C. Davis, E. R. Williamson, and D. Lee. A Sense of Time for
JavaScript and Node.js: First-Class Timeouts as a Cure for Event
Handler Poisoning. In USENIX Security Symposium (USENIX Security),
2018.

[23] M. J. Ennis. txt2re. http://www.txt2re.com/, 2006.
[24] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton. Measure

it? Manage it? Ignore it? software practitioners and technical debt. pages
50–60. Association for Computing Machinery (ACM), 8 2015.

[25] S. Fannoun and J. Kerins. Towards organisational learning enhance-
ment: assessing software engineering practice. Learning Organization,
26(1):44–59, 1 2019.

[26] J. E. Friedl. Mastering regular expressions. ” O’Reilly Media, Inc.”,
2006.

[27] E. Gamma, , R. Helm, , R. Johnson, , and J. Vlissides. Design
Patterns: Abstraction and Reuse of Object-Oriented Design. In ECOOP’
93 — Object-Oriented Programming, pages 406–431. Springer Berlin
Heidelberg, 1993.

[28] N. Golafshani. The Qualitative Report Understanding Reliability and
Validity in Qualitative Research. Technical report.

[29] G. Gousios, A. Zaidman, M. A. Storey, and A. Van Deursen. Work
practices and challenges in pull-based development: The integrator’s
perspective. In Proceedings - International Conference on Software
Engineering, volume 1, pages 358–368. IEEE Computer Society, 8 2015.

[30] R. Hodován, Z. Herczeg, and Á. Kiss. Regular expressions on the web.
In International Symposium on Web Systems Evolution (WSE), 2010.

[31] L. G. M. IV, J. Donohue, J. C. Davis, D. Lee, and F. Servant. Replication
package for ”Regexes are Hard: Decision-making, Difficulties, and Risks
in Programming Regular Expressions”, Sept. 2019.

[32] B. A. Kitchenham and S. L. Pfleeger. Personal opinion surveys. In
Guide to Advanced Empirical Software Engineering. 2008.

[33] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In Proceedings - International Conference
on Software Engineering, pages 344–353, 2007.

[34] B. L BERG. Qualitative research methods for the social sciences. 2001.
[35] E. Larson. Automatic Checking of Regular Expressions. In Source Code

Analysis and Manipulation (SCAM), 2018.
[36] E. Larson and A. Kirk. Generating Evil Test Strings for Regular

Expressions. In Proceedings - 2016 IEEE International Conference on
Software Testing, Verification and Validation, ICST 2016, pages 309–
319. Institute of Electrical and Electronics Engineers Inc., 7 2016.

[37] P. L. Li, A. J. Ko, and J. Zhu. What makes a great software engineer?
In Proceedings - International Conference on Software Engineering,
volume 1, pages 700–710. IEEE Computer Society, 8 2015.

[38] T. R. Lindlof and B. C. Taylor. Qualitative communication research
methods. Sage publications, 2017.

[39] J. G. S. C. Ltd. Regexmagic. https://www.regexmagic.com/autogenerate.
html, 2014.

[40] D. R. MacIver. What is property based testing? https://hypothesis.works/
articles/what-is-property-based-testing/.

[41] T. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, 12 1976.

[42] A. Møller. dk. brics. automaton–finite-state automata and regular
expressions for java, 2010, 2010.

[43] T. Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[44] R. Pressman. Software Engineering: A Practitioner’s Approach. chapter

Process Models, pages 30–64. McGraw-Hill, seventh edition edition,
2010.

[45] A. Rathnayake and H. Thielecke. Static Analysis for Regular Expression
Exponential Runtime via Substructural Logics. Technical report, 2014.

[46] S. Reid. An empirical analysis of equivalence partitioning, boundary
value analysis and random testing. pages 64–73. Institute of Electrical
and Electronics Engineers (IEEE), 11 2002.

[47] G. R. Sadler, H.-C. Lee, R. S.-H. Lim, and J. Fullerton. Research Article:
Recruitment of hard-to-reach population subgroups via adaptations of
the snowball sampling strategy. Nursing & Health Sciences, 12(3):369–
374, 9 2010.

[48] Y. Shen, Y. Jiang, C. Xu, P. Yu, X. Ma, and J. Lu. ReScue: Crafting
Regular Expression DoS Attacks. In Automated Software Engineering
(ASE), 2018.

[49] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. Mea-
suring and modeling programming experience. Empirical Software
Engineering, 19(5):1299–1334, 10 2014.

[50] E. Spishak, W. Dietl, and M. D. Ernst. A type system for regular
expressions. pages 20–26. Association for Computing Machinery
(ACM), 7 2012.

[51] C.-A. Staicu and M. Pradel. Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium (USENIX Security), 2018.

[52] S. Team. Sublime search and replace. http://docs.sublimetext.info/en/
latest/search and replace/search and replace overview.html.

[53] V. S. C. Team. Visual studio code - basic editing. https://code.
visualstudio.com/docs/editor/codebasics.

[54] M. Veanes, P. De Halleux, and N. Tillmann. Rex: Symbolic regular
expression explorer. International Conference on Software Testing,
Verification and Validation (ICST), 2010.

[55] P. Wang, G. R. Bai, and K. T. Stolee. Exploring Regular Expression
Evolution. Technical report.

[56] P. Wang, G. R. Bai, and K. T. Stolee. Exploring Regular Expression
Evolution. In Software Analysis, Evolution, and Reengineering (SANER),
2019.

[57] P. Wang and K. T. Stolee. How well are regular expressions tested in
the wild? In Foundations of Software Engineering (FSE), 2018.

[58] N. Weideman, B. van der Merwe, M. Berglund, and B. Watson.
Analyzing matching time behavior of backtracking regular expression
matchers by using ambiguity of NFA. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 9705, pages 322–334, 2016.

[59] R. S. Weiss. Learning from strangers: The art and method of qualitative
interview studies. Simon and Schuster, 1995.

[60] V. Wustholz, O. Olivo, M. J. H. Heule, and I. Dillig. Static Detection
of DoS Vulnerabilities in Programs that use Regular Expressions. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2017.

http://www.txt2re.com/
https://www.regexmagic.com/autogenerate.html
https://www.regexmagic.com/autogenerate.html
https://hypothesis.works/articles/what-is-property-based-testing/
https://hypothesis.works/articles/what-is-property-based-testing/
http://docs.sublimetext.info/en/latest/search_and_replace/search_and_replace_overview.html
http://docs.sublimetext.info/en/latest/search_and_replace/search_and_replace_overview.html
https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/docs/editor/codebasics

	Introduction
	Background and Related Work
	Regex Programming and Risks
	Empirical Regex Research
	Developer Perceptions, Practices and Information Needs

	Research Questions
	Research Method
	RQ1: What perceptions do developers have about the value and difficulty of regexes?
	RQ2: What Influences Developer Decisions when Programming Regexes?
	Choosing a String-matching Solution
	Using Regex vs. Using Alternative Code

	Composing a Regex
	Writing Regex vs. Reusing Regex
	Which Regex Should I Pick for Reuse?
	Match too much vs. match too little?

	Validating a Regex
	Is This Regex Correct?
	Is this Reused Regex Correct?

	Documenting a regex
	How Much Documentation is Required?

	RQ3 & RQ4: What do Developers Find Difficult About Programming Regexes, and How do They Handle Those Difficulties?
	Understanding the Problem
	Difficulty
	Handling

	Understanding the Regex
	Difficulty
	Handling

	Searching for Reuse Candidates
	Difficulty
	Handling

	Non-intuitive Syntax
	Difficulty
	Handling

	Testing Edge Cases
	Difficulty
	Handling

	Testing Enough Inputs
	Difficulty
	Handling

	RQ5: Are Developers Aware of Portability and Security (ReDoS) Risks when Programming Regexes?
	Portability Risks
	Awareness
	Handling

	ReDoS
	Awareness
	Handling

	Discussion and Implications
	Addressing String-Matching Problems
	Understanding String-matching Problems
	Diverse Solutions for String-matching Problems

	Assessing Regexes
	Regex Metrics

	Automated Support for Reusing Regexes
	Semantic Regex Search
	Regex Repositories
	Metrics-based Regex Ranking
	Regex Dialect Translation

	Automated Support for Composing Regexes
	Live Support for Regex Composition
	Regex Refactoring
	Automatic Regex Composition

	Automated Support for Validating Regexes
	Regex Input Generation for Humans
	Boundary-value Analysis for Regexes

	Automated Support for Documenting Regexes
	Automatic Regex Documentation

	Understanding Regexes
	Novel Regex Syntax for Comprehension

	Regex Education
	Learning Regexes
	ReDoS Awareness

	Threats to Validity
	Conclusion
	Replication
	References

