
Ursprung: Provenance for
Large-Scale Analytics Environments

Lukas Rupprecht

IBM Research–Almaden

Lukas.Rupprecht@ibm.com

James C. Davis
∗

Virginia Tech, IBM Systems

davisjam@vt.edu

Constantine Arnold

IBM Research–Almaden

Constantine.Arnold@ibm.com

Alexander Lubbock

Vanderbilt University

alex.lubbock@vanderbilt.edu

Darren Tyson

Vanderbilt University

darren.tyson@vanderbilt.edu

Deepavali Bhagwat

IBM Research–Almaden

deepavali.bhagwat@us.ibm.com

ABSTRACT

Modern analytics has produced wonders, but reproducing

and verifying these wonders is difficult. Data provenance

helps to solve this problem by collecting information on how

data is created and accessed. Although provenance collection

techniques have been used successfully on a smaller scale,

tracking provenance in large-scale analytics environments

is challenging due to the scale of provenance generated and

the heterogeneous domains. Without provenance, analysts

struggle to keep track of and reproduce their analyses.

We demonstrate Ursprung
1
, a provenance collection sys-

tem specifically targeted at such environments. Ursprung

transparently collects the minimal set of system-level prove-

nance required to track the relationships between data and

processes. To collect domain specific provenance, Ursprung

enables users to specify capture rules to curate application-

specific logs, intermediate results etc. To reduce storage over-

head and accelerate queries, it uses event hierarchies to syn-

thesize raw provenance into compact summaries.

ACM Reference Format:

Lukas Rupprecht, James C. Davis, Constantine Arnold, Alexander

Lubbock, Darren Tyson, and Deepavali Bhagwat. 2019. Ursprung:

Provenance for Large-Scale Analytics Environments. In 2019 Inter-
national Conference on Management of Data (SIGMOD ’19), June
30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3299869.3320235

∗
Work done while visiting IBM Research–Almaden.

1
“Ursprung” means “origin” in both German and Swedish.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3320235

1 INTRODUCTION

Modern data science pipelines have many stages, including

data preparation and cleaning, integration, and model se-

lection and tuning [9]. The process is rarely structured and

involves many ad hoc iterations over the same data using

a multitude of tools and frameworks [11, 15]. This unstruc-

tured approach, combined with the rapid increase in gener-

ated data [8], makes it challenging for analysts to reproduce,

understand, and compare results, leading to duplicated work

and limited productivity.

Provenance can help solve this problem. It describes the

lineage of a data object, e.g., a file, including its origin, the

transformations that led to its current state, and the reasons

for applying those transformations [5]. The lineage of all data

objects forms the provenance graph, which can be queried to

trace the exact steps necessary for the generation of specific

data objects. This not only permits the reproduction of data,

but also helps analysts understand its semantics and compare

it to other data produced by the same or similar pipelines.

While provenance prototypes have been proposed for

over 20 years [16], implementing provenance collection in

practice has proved challenging. Provenance collection faces

three known problems: (1) the sheer volume of provenance

data required to generate a comprehensive provenance graph,

incurring expenses during capture, storage, and querying;

(2) integration of provenance capture with existing systems,

due to the challenge of modifying applications to emit seman-

tic information; and (3) identification of provenance sources

and tailoring collection to only what is needed, usually re-

quiring expert knowledge of the entire system.

The problems of provenance collection are exacerbated

in analytics environments due to their scale and the vari-

ety of applications and pipelines. As a result, existing sys-

tems cannot be applied to this case in a straightforward way.

They either collect provenance at a too fine-grained gran-

ularity [13, 14], require changes to existing applications to

support provenance capture [10, 12], or do not capture all

relevant provenance [7]. While complete systems exist [6],

https://doi.org/10.1145/3299869.3320235
https://doi.org/10.1145/3299869.3320235

we believe they are difficult to configure as they require

low-level knowledge, e.g., on application function calls.

We showcase Ursprung, a system for collecting prove-

nance in large-scale analytics environments. Ursprung tack-

les the above three problems with three core design deci-

sions: event hierarchies, application-specific capture rules,

and provenance classes. To the best of our knowledge, Ur-

sprung is the first system to combines these techniques to

achieve practical provenance collection and querying.

To reduce the amount of captured provenance data, Ur-

sprung uses event hierarchies. Event hierarchies synthe-

size fine-grained system events, such as system calls or in-

dividual log entries, into coarser, semantically richer prove-

nance events. For example, a sequence of fork, execve, and

exit system calls can be combined into a process event with
start and finish time, executable, and parameters. By curating

the collection of events, Ursprung is able to eliminate noise

and produce semantically rich and intuitive provenance.

To collect relevant application-specific provenance, Ur-

sprung relies on the observation that most production soft-

ware has existing monitoring mechanisms available, e.g.,

log files or application databases. Rather than instrumenting

their toolchains, Ursprung offers a domain-specific language

for users to define application-specific capture rules to

extract provenance from these existing monitoring sources.

This declarative way of configuring provenance collection

allows to deploy Ursprung in a variety of analytical domains

without changes to existing applications.

To tailor the collected provenance to users’ needs, Ur-

sprung offers provenance classes. Provenance classes are

high-level abstractions, which model specific provenance de-

pendencies, e.g., read/write or inter-process communication

dependencies. Users select the provenance class(es) of inter-

est, and Ursprung responds by capturing and displaying

only the relevant information while filtering all other events.

Provenance classes allow users like auditors to configure

Ursprung without needing deep system knowledge.

2 URSPRUNG OVERVIEW

In this section, we discuss Ursprung’s architecture (§2.1)

and provide more details on provenance classes (§2.2), event

hierarchies (§2.3), and application-specific provenance (§2.4).

2.1 Ursprung Architecture

Ursprung follows an event-driven architecture (see Figure 1).

It listens for events from core system components, e.g., sys-

tem calls from the OS or file interactions from the file system,

emitted through mechanisms such as Linux’s auditd and

inotify, or IBM Spectrum Scale’s watch folders [3]. Users se-

lect different provenance classes to configure, which events

should be tracked and which should be filtered.

Distributed File System

Host OS 2 Host OS n

interact

Stateful Event Curator

raw events

Application-specific
Provenance Collector

provenance
events

LogDB

Provenance
DB

store

EHM 1 EHM 2

Rule 1 Rule 2 Rule 3

URSPRUNG

Provenance
Classes A + B

Application 1 Application 2

Host OS 1

fetch
app-
specific
events

Figure 1: Ursprung Architecture. An application trig-

gers raw events from sources.

After filtering, events are passed to the Stateful Event Cu-
rator (SEC). The SEC uses Event Hierarchy Models (EHM) to

implement different event hierarchies and produce prove-
nance events (see §2.3). Some raw-to-provenance transforma-

tions are one to one, while others require to keep state on

previous events as the EHM condenses multiple raw events

into fewer corresponding provenance events.

After the raw events have been curated, they are passed

to the Application-specific Provenance Collector (APC). The
APC runs the rule engine and evaluates each incoming event

against the rules (see §2.4). If a match is found, it executes the

rule to extract relevant provenance records from application-

specific sources. Any newly extracted raw event is fed back

to the SEC for curation, while the original event is stored

in the provenance DB. The combination of automatic low-

level and rule-based application-specific provenance capture

allows Ursprung to support a variety of analytics.

Prototype Implementation.We have built an Ursprung

prototype and collected deployment experience as part of a

collaboration with Vanderbilt University. The workload is

an image processing pipeline consisting of a combination

of R and python scripts, built using the Common Workflow

Language (CWL) [1], and scheduled via Spectrum LSF [2].

Ursprung is able to collect both low-level process informa-

tion as well as higher-level data such as CWL workflow sta-

tuses. Besides the Vanderbilt workload, we have also tracked

provenance for command-line based analyses and Spark jobs.

2.2 Provenance Classes

Ursprung categorizes system-level provenance into differ-

ent provenance classes. Each class is a high-level abstraction,

e.g., file-process interactions, and underneath, defines the

set of system calls that must be monitored to correctly cap-

ture the required provenance. Other examples for classes are

inter-process communication or network communication,

which require to track additional system calls such as pipe,

dup, socket, or accept. Presenting system-level provenance

in higher-level classes makes it easy for non-expert users to

define what should be collected and control the trade-off of

overhead vs. collection granularity.

2.3 Event Hierarchies

Event hierarchies are used to model provenance entities from

raw events. Here, we describe how Ursprung captures the

most fundamental provenance entities: processes and files.

Processes. A Process EHM is used to assemble process
provenance events. Therefor, Ursprung collects raw events

for fork, execve, and exit system calls
2
using auditd. A pro-

cess provenance event includes information like the process’s

pid (retrieved from fork), command line (execve), start time

(fork), and finish time (exit). The Process EHM accumu-

lates raw events for each of these system calls, and emits a

complete process event once the process’ exit is observed.

Files. For file-related information, Ursprung uses events

provided by IBMSpectrum Scale’s watch folder feature.Watch

folder events are triggered on file operations such as rename

or close and contain information including path and corre-

sponding pid. Additionally, close events contain the number

of bytes read from or written to the closed file. Hence, using

watch folder events, Ursprung can reliably determine the

relationship of the corresponding process to the file without

tracking an abundance of read and write calls, i.e. no event

curation is necessary and the File EHM is the identity.

Other storage systems such as Ceph or HDFS provide

similar notification mechanisms, which can be supported by

Ursprung by implementing the corresponding File EHMs.

2.4 Application-specific Provenance

Ursprung captures application-specific provenance to aug-

ment the provenance graph. For an analytics job, a usermight

be interested in both process-related and job-level prove-

nance such as the job’s input parameters. Ursprung can

retrieve additional provenance data from existing sources,

e.g., application logs or databases, by reading from or query-

ing those sources. Therefore, it seamlessly integrates with

different applications without having to change them.

Users define capture rules for application-specific sources

using Ursprung’s domain-specific rule language. A rule con-

sists of a set of conditions on the fields of the incoming

provenance event, and corresponding actions. Ursprung im-

plements three actions: dbload, logtransfer, and dbtrans-
fer. dbload is used to bulk load a file into the provenance DB

2
It also includes related calls such as clone, vfork, and exit_group.

path=/gpfs/spark/logs/*Master* AND written>0 AND event=CLOSE
->
LOGTRANSFER path MATCH 'Registered app'
FIELDS 1,8,11 DELIM ' '
INTO dbUser:dbPassword@dbHost:dbPort/workflows
USING starttime,name,id

Listing 1: A logtransfer rule to extract job infor-

mation from the Spark master log.

while logtransfer is used to monitor log files for specific

entries. dbtransfer loads specific rows from a database.

Listing 1 demonstrates a rule to extract the starttime, name,

and id of a Spark job. The first part of the rule specifies the

conditions: the rule fires if the Spark master log is updated.

The second part is a logtransfer action, which scans the

log file for lines matching Registered app, extracts the space-

delimited columns 1, 8, and 11 from each matching line, and

imports them into the workflows table in the database.

3 DEMONSTRATION

We now introduce Ursprung’s GUI (§3.1) and explain how

users can interact with it during the demonstration (§3.2).

3.1 GUI Design

Ursprung’s GUI is designed to efficiently traverse and view

the provenance graphs. Therefore, it implements an inter-

active step-by-step traversal approach. Users choose initial
node(s) to start from and then gradually explore the prove-

nance graph by expanding the neighborhood of a selected

node. By limiting expansion to a node’s immediate neigh-

bors at a time, users can pace exploration and easier navi-

gate large graphs. The Ursprung prototype uses a relational

store for provenance data with a schema optimized for the

step-by-step exploration to avoid expensive joins and recur-

sion. However, Ursprung can support other schemas such

as PROV-DM [4] by adapting the SEC (see §2).

Ursprung’s GUI is implemented as a web application and

consists of three parts: a search panel, the provenance graph

explorer, and a job display panel.

Search Panel. The search panel (see Figure 2) allows users
to search for specific nodes/data objects in the provenance

graph. A node can be either a file or a process and the

search results form the starting point for exploring the prove-

nance graph. The search panel also has a checkbox to toggle,

whether IPC provenance should be displayed or not, as an

example for a provenance class.

Provenance Graph Explorer. The explorer is the main

GUI component and is designed for interactively traversing

the provenance graph (see Figure 2). After selecting an ini-

tial node from which to start the exploration (via the search

Figure 2: Provenance graph display in Ursprung.

panel), users can view the dependencies of the node by click-

ing on it. A click will expand the graph to the neighbors of

the clicked node. For example, clicking on a file node will

show the processes that wrote to the file to its left and the

processes that read the file to its right. Users can view the

details of a node, such as the file path, by hovering over it.

Job Display Panel. Ursprung also comes with a panel

to display analytics jobs that were run on the cluster. This

information is captured from applications using the above

presented rule language. This panel currently supports Spark

jobs and CWL workflows. Users are able to select a job and

view its output files in the graph explorer to start analyz-

ing job provenance. The workflow panel is an example to

demonstrate the benefit of application-specific provenance.

3.2 Scenarios

We propose three main scenarios. Our goal is to demonstrate

how provenance is captured in Ursprung and how it can be

used to navigate data in analytics environments.

Discovery. In the Discovery scenario, attendees can ex-

plore the provenance of a file to identify its semantics and

importance. A user will run forensics on a file of indetermi-

nate origin. Using Ursprung’s GUI, the user can search for

the file in question and start tracing its dependencies. By

analyzing the steps and processes involved in creating the

file, the meaning of its content will become clear once traced

to its origin and a decision can be made on whether the data

is important or can be discarded/moved to cold storage.

Application-specific Provenance. In the second scenario,
we demonstrate Ursprung’s application-specific provenance

capture and its three main rules. We run the Vanderbilt im-

age analysis workload with CWL and Spectrum LSF. Using

dbtransfer and logtransfer rules, we collect CWL- and

LSF-related provenance to display the workload in the job

display panel. From the panel, attendees can select the work-

load and view its output files and their provenance. We also

show how to use dbload rules to collect and index temporary

data that is produced as part of the image analysis.

Interactive. The third scenario allows attendees to freely

interact with the system via a command line. They can create

and delete files and process them using both command line

tools and Spark. Attendees can then look at the generated

provenance of their processing in real-time. They can also

explore, how previous attendees interacted with the system

by examining the provenance of existing files.

4 RELATEDWORK

Provenance collection has received considerable attention

in past research. PASS [13] was one of the first systems to

provide transparent, system-level provenance capture. Later

systems such as PASSv2 [12] and CPL [10] extended the

PASS model to also capture application-specific provenance.

However, this requires changes to the existing applications

to disclose their provenance. Ghoshal et al. introduce the idea

of capturing provenance from log files [7] and use a domain-

specific rule language to configure the capture. While this is

similar to Ursprung, it does not deal with lower-level system

provenance. SPADE [6] and more recently CamFlow [14]

are complete systems that support both system-level and

application-specific provenance without requiring changes

to existing applications. However, they do not provide rule-

based configuration and provenance classes which makes

them harder to configure.

REFERENCES

[1] 2018. Common Workflow Language. https://www.commonwl.org/.

[2] 2018. IBM Spectrum LSF. https://ibm.co/2Lpafez.

[3] 2018. Introduction to Watch Folder. https://ibm.co/2Fze0Ox.

[4] 2018. PROV-DM: The PROV Data Model. https://bit.ly/2I9TyUN.

[5] Lucian Carata, Sherif Akoush, Nikilesh Balakrishnan, Thomas Bythe-

way, Ripduman Sohan, Margo Seltzer, and Andy Hopper. 2014. A

Primer on Provenance. Commun. ACM 57, 5 (2014).

[6] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Prove-

nance Auditing in Distributed Environments. In Middleware’12.
[7] Devarshi Ghoshal and Beth Plale. 2013. Provenance from Log Files: A

BigData Problem. In EDBT/ICDT Workshops’13.
[8] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neok-

lis Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods:

Organizing Google’s Datasets. In SIGMOD’16.
[9] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel.

2016. Model Selection Management Systems: The Next Frontier of

Advanced Analytics. SIGMOD Rec. 44, 4 (2016).
[10] Peter Macko and Margo Seltzer. 2012. A General-Purpose Provenance

Library. In TaPP’12.
[11] HuiMiao, Amit Chavan, and Amol Deshpande. 2017. ProvDB: Lifecycle

Management of Collaborative Analysis Workflows. In HILDA’17.
[12] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter

Macko, Diana L MacLean, Daniel WMargo, Margo I Seltzer, and Robin

Smogor. 2009. Layering in Provenance Systems. In ATC’09.
[13] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and

Margo Seltzer. 2006. Provenance-Aware Storage Systems. In ATC’06.
[14] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer,

David Eyers, Margo Seltzer, and Jean Bacon. 2017. Practical Whole-

system Provenance Capture. In SoCC’17.
[15] Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf

Klein, and Stephan Seufert. 2017. Automatically Tracking Metadata

and Provenance of Machine Learning Experiments. In ML Systems’17.
[16] Amin Vahdat and Thomas E Anderson. 1998. Transparent result

caching. In ATC’98.

https://www.commonwl.org/
https://ibm.co/2Lpafez
https://ibm.co/2Fze0Ox
https://bit.ly/2I9TyUN

	Abstract
	1 Introduction
	2 Ursprung Overview
	2.1 Ursprung Architecture
	2.2 Provenance Classes
	2.3 Event Hierarchies
	2.4 Application-specific Provenance

	3 Demonstration
	3.1 GUI Design
	3.2 Scenarios

	4 Related Work
	References

